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Abstract

Our goal in this paper is to apply a normal forms method to estimate the Sobolev norms of
the solutions of the water waves equation. We construct a paradifferential change of unknown,
without derivatives losses, which eliminates the part of the quadratic terms that bring non
zero contributions in a Sobolev energy inequality. Our approach is purely Eulerian: we work
on the Craig-Sulem-Zakharov formulation of the water waves equation.

In addition to these Sobolev estimates, we also prove L2-estimates for the 9% 7 B_derivatives of
the solutions of the water waves equation, where Z is the Klainerman vector field t0; + 2x0,.
These estimates are used in the paper [5]. In that reference, we prove a global existence result
for the water waves equation with smooth, small, and decaying at infinity Cauchy data, and
we obtain an asymptotic description in physical coordinates of the solution, which shows
that modified scattering holds. The proof of this global in time existence result relies on
the simultaneous bootstrap of some Holder and Sobolev a priori estimates for the action of
iterated Klainerman vector fields on the solutions of the water waves equation. The present
paper contains the proof of the Sobolev part of that bootstrap.






Introduction

1 Description of the main results

This paper addresses the well-posedness of the initial value problem for the motion of a two-
dimensional incompressible fluid under the influence of gravity. At time ¢, the fluid domain,
denoted by €(t), has a free boundary described by the equation y = (¢, x), so that

Q) = { (z,y) eR*; y <n(t,z) }.

The velocity field v:  — R? is assumed to be irrotational and to satisfy the incompressible
Euler equations. It follows that v = V ,¢ for some velocity potential ¢: {2 — R satisfying

1
(1'1) A$,y¢ =0, at¢ + 5 ’vz,y¢’2 + P+ gy = 0,

where g > 0 is the acceleration of gravity, P is the pressure term, V., = (0,,0,) and
Aypy=0%+ 85. Hereafter, the units of length and time are chosen so that g = 1.

The water waves equations are then given by two boundary conditions on the free surface:

{am =1+ (9:1)?0n¢p on 09,

(1.2)
P=0 on 012,

where 9, is the outward normal derivative of €, so that \/1 + (9;7)? On¢ = Oyd — (0x1)0r.

It is well known that the linearized equation around the equilibrium 7 = 0 and ¢ = 0 can be
written under the form 9?u + |D,|u = 0 where | D,| is the Fourier multiplier with symbol |£].
Allowing oneself to oversimplify the problem, one can think of the linearized equation around
a nontrivial solution as the equation (9; + V8,)?u + a |D;|u = 0, where V is the trace of the
horizontal component of the velocity at the free surface and a = —d,P|,—, is the so-called
Taylor coefficient. To insure that the Cauchy problem for the latter equation is well-posed,
one has to require that a is bounded from below by a positive constant. This is known as the
Taylor sign condition; see [22] for an ill-posedness result without this requirement. That the
well-posedness of the Cauchy problem depends on an assumption on the sub-principal term
a|Dg| reflects the fact that the linearized equation has a double characteristic, see Craig [16,
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Section 4] or Lannes [32, Section 4.1]. This leads to an apparent loss of 1/2 derivative in
the study of the Cauchy problem in Sobolev spaces. However, Nalimov [40] proved that, in
Lagrangian coordinates, the Cauchy problem is well-posed locally in time, in the framework
of Sobolev spaces, under an additional smallness assumption on the data; see also the results
of Yosihara [56] and Craig [15].

Notice that if n and ¢ are of size £ then a = 1 + O(e) so that the Taylor sign condition
is satisfied for ¢ small enough. As was first proved by Wu [52, 53], this property is always
true, without smallness assumption (including the case that the interface is not a graph, as
long as the interface is non self-intersecting). As a result, the well-posedness of the Cauchy
problem was proved in [52, 53] without smallness assumption. Several extensions or different
proofs are known and we refer the reader to Cérdoba, Cérdoba and Gancedo [13], Coutand-
Shkoller [14], Lannes [32, 34, 35], Linblad [36], Masmoudi-Rousset [37], Shatah-Zeng [44, 45],
Zhang-Zhang [58] for recent results concerning the gravity water waves equations.

Two different approaches were used in the analysis of the water waves equations: the La-
grangean formulation with a more geometrical point of view and the Eulerian formulation in
relation with microlocal analysis. Our analysis is entirely based on the FEulerian formulation
of the water waves equations: we shall work on the so-called Craig—Sulem—Zakharov system
which we introduce below. Let us also mention that the idea of studying the water waves equa-
tions by means of microlocal analysis is influenced by the papers by Craig-Schanz-Sulem [19],
Lannes [32] and Iooss-Plotnikov [29]. More precisely, we follow the paradifferential analysis
introduced in [6] and further developed in [3, 2]. We explain later in this introduction how
this allows to overcome the apparent loss of derivative in the Cauchy problem.

Following Zakharov [57] and Craig and Sulem [20], we work with the trace of ¢ at the free
boundary

w(ta $) = ¢(t7 €L, n(tv .7})),

and introduce the Dirichlet-Neumann operator G(n) that relates ¢ to the normal derivative
On¢ of the potential by

(GY)(t, ) = V1 + (021)? Ondly—n(t,0)-

Then (n,1) solves (see [20]) the system

om = Gn)y,

(1.3)
0001+ 50 = gy (G + @ua)(@r) =0

Consider a classical solution (n,1) of (1.3), such that (n,1) belongs to C°([0, T]; H*(R)) for
some 7' > 0 and s > 3/2. Then it is proved in [4] that there exist a velocity potential ¢ and a
pressure P satisfying (1.1) and (1.2). Thus it is sufficient to solve the Craig-Sulem—Zakharov
formulation (1.3) of the water waves equations (1.1)-(1.2).
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Our goal in this paper is to apply a normal forms method to estimate the Sobolev norms of the
solutions to the water waves equations. In practice, one looks for a local diffeomorphism at 0
in HS, for s large enough, so that the equation obtained by conjugation by this diffeomorphim
be of the form of an equation with a cubic nonlinearity (while the water waves equations
contain quadratic terms).

The analysis of normal forms for the water waves system is motivated by physical consid-
erations, such as the derivations of various equations in asymptotic regimes (see the recent
paper by Totz and Wu [50], the first rigorous results by Craig-Sulem-Sulem [21] and also the
papers of Schneider and Wayne [42, 43]). Another motivation is that, for solutions sufficiently
small and sufficiently decaying at infinity of a dispersive equation, it is easier to prove global
well-posedness for cubic nonlinearity. Let us mention that the results of this paper are used in
[5] where we prove global existence of solutions for the two dimensional water waves equations
with small, smooth, decaying at infinity Cauchy data, and get for these solutions a one term
asymptotic expansion in physical variables when time goes to infinity. In particular, the form
of these asymptotics shows that solutions do not scatter at infinity, i.e. do not behave like
solutions of the linearized equation at zero.

Nonlinear changes of unknowns, reducing the water waves equation to a cubic equation, have
been known for quite a time (see Craig [17] or Iooss and Plotnikov [28, Lemma 1]). However,
these transformations were losing derivatives, as a consequence of the quasi-linear character
of the problem (see [55, Appendix C] for the study of the Poincaré-Shatah normal form
associated to (1.3)). In her breakthrough paper, Wu [54] proved that one can find good
coordinates which overcome this loss of derivatives and ultimately proved an almost global
existence result for two-dimensional gravity waves. Then Germain-Masmoudi-Shatah [24]
and Wu [55] have shown that the Cauchy problem for three-dimensional waves is globally
in time well-posed for £ small enough (with linear scattering in Gerqlain—Masmoudi—Shatah
and no assumption about the decay to 0 at spatial infinity of |Dg|2 ¢ in Wu). Germain-
Masmoudi-Shatah [23] recently proved global existence for two-dimensional capillary waves.

We shall construct a paradifferential change of unknown, without derivatives losses, which
eliminates the part of the quadratic terms that bring non zero contributions in a Sobolev
energy inequality. Our main result is stated after we introduce some notations, but one can
state one of its main corollary as follows: There exists v > 0 such that, for any s > v+ 1/2, if
N, (t) = [In(t, )ler + || \Dx]% P(t, -)HC%% is small enough, then one can define an H*-Sobolev
energy, denoted by Mj, satisfying

(14) M) ~ 0t ey + 1Dl 61 gy + T @y (] oy
and
(1.5) My(t) < My(0) + /0 C(N, (7)) N, ()2 M () dr.

Let us comment on these estimates. The key point is that the summand in the right hand



side of (1.5) is quadratic in IV, (while, for an equation containing quadratic terms in the non-
linearity, one obtains in general a linear bound). Then it follows from the Sobolev embedding
that M(T) = supyeor) Ms(t) satisfies My(T) < My(0) + TC(Ms(T))My(T)?. This in turn
implies that, if the initial data are of size e, namely if M;(0) = O(£?) (notice that Mj is linked
to the square of the Sobolev norms) for some s large enough, then the Cauchy problem is
well-posed on a time interval of size e =2 (see also the results in Totz and Wu [50]).

Another important property is that the estimate (1.5) is tame, which means that it is lin-
ear in the Sobolev norm (v is a fixed large enough number which might be much smaller
than s). Eventually, let us notice that it would have been easier to obtain (1.5) with N,

replaced by Ny (t) + [|[Hn(t, )|l + ||H |Dx|% »(t, -)HC%% where H denotes the Hilbert trans-
form. A fortiori, it would have been easier to obtain the previous bound with N replaced by
ln(t, )l v+ H |Dz|% P(t,-) HHW, that is with Holder norms replaced by Sobolev ones. However,
the corresponding estimates would not be sufficient to prove global well-posedness in [5].

The smallness assumption on N, enters essentially only for the following reason: we shall
obtain Mj as the square of the H®-norm of some functions deduced from 7 and 1 by a
nonlinear change of unknowns. If IV, is small enough, then this nonlinear change of unknowns
is close to the identity. This is used to prove (1.4).

The estimate (1.5) will be proved in Chapter 3 (in fact we shall prove an equivalent statement
where the right-hand side of (1.4) is replaced by ||| < +|| |Dx|% w|| ;- where w is defined in the
next section of this introduction). To prove global well-posedness in [5], our approach follows
a variant of the vector fields method introduced by Klainerman in [31, 30]. In particular, in
this paper we shall not only study Sobolev estimates, that is L2-estimates for derivatives 02,
but also L?-estimates for 02Z° where Z = t0; + 220,. This is the most difficult task of this
work which will be achieved in Chapters 4 and 5.

The vector field Z appears for the following reason. If (n,) solves (1.3), then
mt ) = A2 (M, N%2), ot z) = A% (A, APa) (A>0)
are also solutions of the same equations. Now observe that for any function C' function

u, there holds Zu(t,z) = Hu(\t, \%z) | NP
waves equation around the null solution, that is 9?u + |D;|u = 0, then so does Zu. This

In particular, if u solves the linearized water

vector field already played an essential role in the above mentioned papers of Wu [54] and
Germain-Masmoudi-Shatah [23]. We also refer the reader to Hur [26] where a similar vector
field is used to study the smoothing effect of surface tension.

Let us mention that the paper is self-contained. We shall give simplified statements of our
results in this introduction and refer the reader to the next chapters for precise statements. Let
us also mention that Ionescu and Pusateri [27] have obtained independently a similar global
existence result to the one proved in [5], under weaker decay assumption for the Cauchy data,
and obtained an asymptotic description of the solutions in frequency variables.
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2 Properties of the Dirichlet-Neumann operator

A notable part of the analysis consists in proving several estimates for the Dirichlet-Neumann
operator. We present here some of the results on this topic which are proved in Chapter 1
and in Chapter 2.

e Definition of the Dirichlet-Neumann operator

Let n: R — R be a smooth enough function and consider the open set

Q= {(z,y) eR?*; y < nx) }.

It ¢: R — R is another function, and if we call ¢: 2 — R the unique solution of A, ¢ =0
in € satisfying ¢|,—,(,) = ¥ and a convenient vanishing condition at y — —oo, one defines the
Dirichlet-Neumann operator G(n) by G(n)y = /1 + (9:1)? Onply=n, where 9, is the outward
normal derivative on 0f2. In Chapter 1 we make precise the above definition and study the
action of G(n) on different spaces. In this outline we consider only the case where ¢ belongs
to the homogeneous space H'/2(R) or to the Holder space C7(R) of order v € [0, +o00[. (We
refer to Chapter 1 for the definition of these spaces and of the Sobolev or Holder norms used

below.)

Proposition. Let v be a real number, v > 2, v & %N. Let ) be in L2 N CY(R) satisfying the
condition

(2.1) 17l + [ |22 ||| 22, < 6.

Then G(n) is well-defined and bounded from H'/2(R) to H=Y/2(R) and satisfied an estimate

1
IGYN fg-1r2 < C(IIn' | cr1) [IDz? ]| 1o
Moreover, G(n) satisfies when 1) is in C7(R)

1
(2.2) IG ¢l cr-r < CIn ller-) [1D2]> 9| 3 -
where C(+) is a non decreasing continuous function of its argument.

Remark. Many results are known for the Dirichlet-Neumann operator (see for instance [12,
19, 35] for results related to the analysis of water waves). The only novelty in the results
proved in Chapter 1 is that we shall consider more generally the case where 1 belongs either
to an homogeneous Sobolev space of order greater than 1/2 or to an homogeneous Holder
spaces. As a corollary, notice that if we define G /5(n) = |Dz| 2 G(n), we obtain a bounded
operator from H'/?(R) to L?(R) satisfying

G122 < CUIT llor—1) |1 Dal® ] -

126’

20 .
-1 Hn H071 is bounded, then we

If we assume moreover that for some 0 < ¢/ < 0 < %, Hn’ H

prove that, similarly, ‘D$’—§+9 G(n) satisfies

D3 Gl oy < OO - Do ]y



Hereafter, v always denote a real number such that v > 2 and ~ ¢ %N . It is always assumed
that the condition (2.1) holds for some small enough §.

Let us introduce two functions that play a key role. Since H *%(R) C H 7%(]1%) and since
C7 YR) - Hfé(]R) C Hfé(]R) for v > 3/2, the following functions are well-defined

5 = Gy + (0:1)(0:¢)
B 1+ (0um)? 7

(2.3) V = 9,0 — Boyn.

These functions appear since one has B = (0y¢)|aq and V = (0,¢)|aq, so that B (resp. V) is
the trace of the vertical (resp. horizontal) component of the velocity at the free surface.

e Tame estimate for the Dirichlet-Neumann operator

If n € C¢°, it is known since Calderén that G(n) is a pseudo-differential operator of order 1
(see [47, 48, 51]). This is true in any dimension. In dimension one, this result simplifies to

(2.4) Gy = Dl + R(n)y,

where R(n) f is a smoothing operator, bounded from H* to H**™ for any integer m. Namely,

(25)  vmeN, 3K =1, Vu= o, (Rl gurm < C Unllgure) 100l s 1900 g -

N |

Several results are known when 7 is not smooth. Expressing G(n) as a singular integral
operator, it was proved by Craig, Schanz and Sulem [19] that if 5 is in C**! and + is in H**!
for some integer k, then G(n)y belongs to H¥. Moreover, it was proved by Lannes [32] that
when 7 is a function with limited smoothness, then G(7) is a pseudo-differential operator with
symbol of limited regularity. This implies that if n is in H® and ) is in H® for some s large
enough, then G(n)1 belongs to H5~! (which was first established by Craig and Nicholls [18]
and Wu [52, 53] by different methods). We refer to [2, 3, 44, 45| for results in rough domains.

We shall prove in Chapter 2 an estimate which complements the estimate (2.5) in two direc-
tions. Firstly, notice that, for the analysis of the water waves equations, 17 and ¢ are expected
to have essentially the same regularity so that the constant K corresponds to a loss of deriva-
tives. We shall prove an estimate without loss of derivatives. In addition, we shall prove a
tame estimate (which means an estimate linear with respect to the highest order norms).

Proposition (Tame estimate for the Dirichlet-Neumann operator). Let (s,7) € R? be such
that

1 1
- = 3 —N.
s—5>7>3 7%2

Then, for all (n,v) in H5(R) x H%(R) such that that the condition (2.1) holds, G(n)y belongs
to HS~1(R) and there exists a non decreasing function C: R — R such that

(2.6) (G = [De| ¥l s

< C(Inlls) {I1Dal? ¥l ooy Ilizs + lln 11Dal2 ]y b -



Remark. It follows from (2.6) and the triangle inequality that

@7 1Gmles < C Ul 1Dl 0l g Wl e + 1D ]|y

Other tame estimates, with Holder norms replaced by Sobolev norms H® for some fixed real
number sp, have been proved in [32] (see also [1]).

e Paraproducts

The proof of the previous proposition, as well as the proof of most of the following results,
are based on paradifferential calculus. The results needed in this paper are recorded in
Appendix A.1. To make this introduction self-contained, we recall here the definition of
paraproducts.

Consider a cut-off function 6 in C*°(R x R) such that

0(&1,&) =1 if |&] <erlél, 0(&1,6) =0 if |&] > ea o],

with 0 < £1 < g2 < 1. Given two functions a = a(x) and b = b(z) one writes

T ETE)G(£1)D(Ey) déy déy = Tub + Tya + Rp(a, b)

where

G 0(¢1 €)a(€1)D(E2) dEy dEs,

e €182 (¢y, €0)a(&1)b(E) dEy dEs,

Rp(a,b) () (1 — (¢, &) — 0(E2,61))A(E1)D(E) dey déo.

Then one says that T,b and Tya are paraproducts, while Rp(a,b) is a remainder. The key
property is that a paraproduct by an L function acts on any Sobolev spaces H® with s in R.
The remainder term Rg(a,b) is smoother than the paraproducts T,b and Tpa whenever one
of the factors belongs to C? for some o > 0 (see (A.1.17) in Appendix A.1).

e The quadratic terms

We call (2.6) a linearization formula since the right-hand side is quadratic in (n,). We shall
prove much more precise results, with remainders quadratic in (n,v) and estimated not only
in H5~! but in H for some s’ > s. To explain this improvement, we begin by considering
only the linear and quadratic terms in G (7). Set

G(<a) (M := |Dz| Y — |Da| (n|Da|9) — 0x(n021)).

Then it is known that G(1)1 — G(<2)(n) is cubic in (n,) (see [19] or (2.14) below).
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Now write

| Da| (D] ) = |Dal (Ty |Dal9) + |Dal (T, jyn) + |Da| R(n, |Dal %)

and perform a similar decomposition of 9,(n0d,¥). Noticing the following cancellation (cf.
Lemma A.1.11 in Appendix A.1)

(2'8) ‘DCB‘ (TT] ‘Dx’ w) =+ 817 (T”]azw) = 07
we conclude that
G(SQ) (MY = |Dz| ¥ — |Dgl (T|Dx|¢77) — O (Tawn) — |De| Re(n, |Dz| ) — 0 R5(n, 021).
The previous identity is better written under the form
(2.9) G <o) (M = |Da| (¥ = Tip,pun) — 0z (To,un) + Fi<a) ()¢,
where Fi<2)(n)Y = — [Dz| Rp(n, | Dz| %) — 0:Rp(n, 0x). Assuming s+ > 1, it follows from

standard results (see (A.1.17) in Appendix A.1) that Fi<9)(n) is a smoothing operator:

(2.10) 1 F <oy yress 2 < K Inllon ||1Dal? 9]

%
e The good unknown of Alinhac

In the previous paragraph, we considered only the linear and quadratic terms G (<2)(n). To
prove an identity similar to (2.9) for G(n)v, exploiting a cancellation analogous to (2.8), as
in [6, 3], we shall express the computations in terms of the “good unknown” of Alinhac w
defined by

w=1—Tpn

where B is as given in (2.3). As explained in [6, 3], the idea of introducing w is rooted in a
cancellation first observed by Lannes [32] for the water waves equations linearized around a
non trivial solution. Here, we want to explain that w appears naturally when one introduces
the operator of paracomposition of Alinhac [7] associated to the change of variables that
flattens the boundary y = n(z) of the domain. This is a quite optimal way of keeping track
of the limited smoothness of the change of coordinates. Though we shall not use this point
of view, we explain here the ideas that underly the computations that will be made later.

To study the elliptic equation A, ,¢ =0 in Q = {(z,y) € R?; y < n(z)}, we shall reduce the
problem to the negative half-space through the change of coordinates x: (x, z) — (z, z+n(x)),
which sends {(z,z) € R?; 2z < 0} on . Then ¢(z,y) solves A, ¢ = 0 if and only if
o =¢ok=a¢(x,z+n(zx)) is a solution of Py =0 in z < 0, where

(2.11) P=(1+1%0%+ 0% - 20,0, — 10,

(we denote by i’ the derivative 9,7). The boundary condition ¢|,—, ) becomes p(z,0) = ()
and G(n) is given by
G = [(1+0%)0:0 — 1/ 0u0] | _,.

10



We first explain the main difficulty to handle a diffeomorphism with limited regularity. Let
us use the notation D = —¢0 and introduce the symbol

p(2,&,¢) = (L+17/ ()% + &€ — 20/ (2)6¢ + in" (2)C.

Notice that P = —p(x, D, D). We shall write T, for Ty, ()2 D2 + D2 — 2T,y Dy D + Ty ...
Starting from p(x, D,, D,)p = 0, by using standard results for paralinearization of products,
we find that T, = fi for some source term f; which is continuous in z with values in H s—2
if 7 is in H® and the first and second order derivatives in x, z of ¢ are bounded. The key
point is that one can associate to x a paracomposition operator, denoted by x*, such that
Ty(k*¢) = fo for some smoother remainder term fp. That is for some function f> continuous
in z with values in HTY~%, if n is in H® and if the derivatives in z, z of order less than v of ¢
are bounded (the key difference between f; and f is that one cannot improve the regularity
of fi by assuming that ¢ is smoother).

We shall not define k*, instead we recall the two main properties of paracomposition operators
(we refer to the original article [7] for the general theory). First, modulo a smooth remainder,
one has

K'o=dok —Tyoxk

where ¢’ denotes the differential of ¢. On the other hand, there is a symbolic calculus formula
which allows to compute the commutator of k* to a paradifferential operator. This formula
implies that

K*A —T,Kr*

is a smoothing operator (that is an operator bounded from H* to H*™™ for any real number
i, where m is a positive number depending on the regularity of ). Since A, ¢ = 0, this
implies that T}, (gf) oK — Tqyo,ﬁ/i) is a smooth remainder term as asserted above.

Now observe that
w = (qﬁ 0K — Td)/o,iﬁ) | 20"

This is the reason why the good unknown enters into the analysis. The previous argument is
the key point to prove the following

Proposition (Paralinearisation of the Dirichlet-Neumann operator). Define F(n)y by
G(WW = ‘Dx| w— Oy (TV"?) + F(TIWJ

Let (s,7) € R? be such that

1 1
i 3 ~N.
s—5>7>3 7¢2

For all (n,v) in H¥(R) x H%(R) such that that the condition (2.1) holds,
1 1
(212)  EO) et < C nler) Dol 0l oy Ile + il 10413 6,3 }-

11



Our goal was to explain how to obtain an identity analogous to the identity (2.9) obtained by
considering the linear and quadratic terms in G(n)y. To compare (2.12) and (2.10), notice
that, from the definition of B and V' (see (2.3)), B — |Dy|v¢ and V — 9,4 are quadratic in
(n,%). Therefore, modulo cubic and higher order terms, |D;|w — 0, (Tvn) is given by the
expression |Dy| (¢ — TIDzW?) — 03 (Ty,yn) which appears in the right hand side of (2.9). We
shall compare F'(n)y and F(<2)(n)y in the next paragraph.

The main interest of this proposition will be explained in the next section. At this point,
we want to show that this estimate implies the tame estimate (2.6). To do so, write the
remainder R(n)v in (2.4) as R(n)Y = — |Dy| (Tsn) — - (Tyn) + F(n)¢ since |Dy|w—|Dy| ¢ =
— | Dy| (TBn). The key point is that (n,v) — F(n)y is smoothing, with respect to both
arguments, while the two other factors are operators of order 1 acting on 7. Indeed, as a
paraproduct with an L function acts on any Sobolev spaces, one has

10:(Tvn) || s < K1V | oo [I7l]

I1Da]w = [Da| ¢l gromr = 1Dzl (Tn)|| jro-r < K 1Bl o 0l s -

On the other hand, directly from the definition (2.3) of B, we deduce that

1Bl oo < NG M)Wl oo + 102n oo 102[] oo -

Now the estimate (2.2) implies that the right-hand side of the above inequality is bounded

by C(|]77’||m_1) H|Dz|% d)HCA/_%. Writing V' = 0,4 — B9d,n, we obtain the same estimate for
the L>-norm of V. This proves that (2.12) implies (2.6) (and hence (2.7)).

e Taylor expansions of the Dirichlet-Neumann operator

Consider the Taylor expansion of the Dirichlet-Neumann operator G(n) as a function of 7,
when 7 goes to zero. Craig, Schanz and Sulem (see [19] and [46, Chapter 11]) have shown that
one can expand G(n) as a sum of pseudo-differential operators and gave precise estimates for
the remainders. Tame estimates are proved in [19] and [8, 29]. We shall complement these
results by proving sharp tame estimates tailored to our purposes.

Proposition. Assume that
1
s=1/2>y>14, s>p=5 7¢N,

and consider (n,1) € HS+%(R) x (CY(R) N H’“r%(R)) such that the condition (2.1) holds.
Then there exists a non decreasing function C: R — R such that,

(2.13)  |F(m)v — F<o)y(m || yin

1 1
< Clllle) Inllon {NDAAE 0l oy Il + e 110215 ]
where recall that Fi<9)(n)Y = — |Dz| Rp(n, |De| V) — 0xRp(n, 0:¢).
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Notice that the right-hand side is cubic in (n,7) and that F(n) — F(<9)(n) is a smoothing

operator, bounded from H Hts to FHH (in fact it is a smoothing operator of any order,
assuming that + is large enough).

Let us prove that this estimate allows to recover an estimate for the difference of G(n)y and
its quadratic part G<g)(n)y introduced above. By definition of F'(n)y and F(<g(n)i, one
has

G(n)Y = |Dg| (¥ — Tpn) — 0:(Tyn) + F(n)v,

G (<o) (M = |Da| (¥ = Tip,1yn) — 0 (To,yn) + F<ay(n)-

Substracting these two expressions one obtains
Gy — G<oy(m = = |De| (Tp_ip, 1) — 02 (Tv—a,4m) + F(0)) — Fi<2) ().

Noticing that the L>®-norms of B — |Dy|¢ is bounded by C (||n]|c) |17l ||| Da | chv,,
together with a similar estimate for the L>°-norm of V' — 0,1, and repeating arguments similar
to those used in the previous paragraph, one finds that

(2.14) |Gy — Geay(m)|) 1oy

< € (llos) Wl {11Pal2 ]l ey Wllzs + Waller 11Dl 6]y }

for any s > v+ 1/2, provided that ~y is large enough.

On the other hand, we shall also need to study the case where (n,v) € C7 x H* with ~ larger
than p. Then we shall prove that G(n) — |D.| and G(1) — G (<9)(n) are smoothing operators,
satisfying

1G> — Dzl -5 < C (Inlle) [l 1Dz]2 %]

G = Gy )| 1y—s < C Umlle) 10l Ee 1Dl | 11

3 Paradifferential normal forms method

The main goal of this paper is to prove that, given an a priori bound of some Holder norm
of Z¥ (n+i|D, |2 1Y) for k' < s/2 + ko, we have an a priori estimate of some Sobolev norms
of Z¥(n+i|D, \2 w) for k <'s, where recall that w = 1) — Tg(;)yn. The proof is by induction
on k > 0. Each step is divided into two parts:

1. Quadratic approximations: in this step we paralinearize and symmetrize the equations.
In addition, we identify the principal and subprincipal terms in the analysis of both the
regularity and the homogeneity.

13



2. Normal form: in this step we use a bilinear normal form transformation to compensate
for the quadratic terms in the energy estimates.

For the sake of clarity, we begin by considering the case k = 0. Our goal is to explain the
proof of (1.4) and (1.5).

e Quadratic and cubic terms in the equations
The previous analysis of G(n)1 allows us to rewrite the first equation of (1.3) as
On + (%(Tvn) — |Dylw = F(n).

It turns out that it is much simpler to analyze the second equation of (1.3): expressing the
computations in terms of the good unknown w, it is found that

Ow + Ty Opw + Tyn = f,
where a is the Taylor coefficient and f is a smoothing remainder
f=TvTom — Tvo.y) B+ (Tvo,s — TvTs,B)n

1 1
+ 5 R6(B,B) = 5Rs(V,V) + Ty Re(B, 0,n) — Rs(B,V0,)

(the last four terms are remainders in the paralinearization of a products while the first two
terms are estimated by symbolic calculus, see (A.1.14)).

1
It is convenient to symmetrize these equations by making act 7' ; (resp. [D;[2) on the first

v=| vy,
|Dx|§w

We can now state the main consequence of the results given in the previous section.

(resp. second) equation. Set

Proposition. The water waves system can be written under the form

(3.1) oU + DU 4+ Q(u)U + S(u)U + C(u)U =G,
where D = 0 . |Dm|% , U= 7 , Q(u)U and S(u)U (resp. C(u)U and G) are
| D> 0 Dy |2 ¢

quadratic (resp. cubic terms). Moreover there exists p > 0 such that, for s large enough,
QU -1 < K [ullcp [|U| s »
1S@)Ul gstr < K fJullgo Ul s »
2
1C(W) Ul o1 < Clllullgo) l[ullce [Ul s »
2
G s < Cllullgo) lulle U g -
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Remark. i) The operators Q(u), S(u) and C(u) are explicitly given in the proof. The
previous estimates mean that U — Q(u)U and U — C(u)U (resp. U — S(u)U) are linear
operators of order 1 (resp. —1) with tame dependence on u.

ii) For ||n]|o, small enough, ¥ — 9 — Tg(y)yn is an isomorphism from C7 to itself. Then one
could write (2.12) in terms of U only. However, it is convenient to introduce u because the
Holder bounds are most naturally proved for u (see [5] for these estimates).

e Quadratic normal form: strategy of the proof

T
u = n; y U= \/6177 .
| Dz? 9 1Dz 2 w

We want to implement the normal form approach by introducing a quadratic perturbation of
U of the form

Recall that

® = U + E(u)U,

where (u,U) +— E(u)U is bilinear and chosen in such a way that the equation on ® is of the
form

where N(>3)(®) consists of cubic and higher order terms. To compute the equation satisfied

by ®, write

Hence, by replacing 0,U by —DU — (Q(u) + S(u))U, we obtain that modulo cubic terms,

0® =—-DU — (Q(u) + S(u))U — E(Du)U — E(u)DU
=—-D®+ DE(u)U — (Q(u) + S(u))U — E(Du)U — E(u)DU.

It is thus tempting to seek F under the form E = E; 4+ F5 such that

(3.2) Q(u)U + E1(Du)U + E1(u)DU = DE;(u)U,
(3.3) S(u)U + Eo(Du)U + Ea(u)DU = DEs(u)U.

However, one cannot solve these two equations directly for two different reasons. The equation
(3.2) leads to a loss of derivative: for a general w € H® and s > 0, it is not possible
to eliminate the quadratic terms Q(u)U by means of a bilinear Fourier multiplier E; such
that U — E4(u)U is bounded from H® to H®. Instead we shall add other quadratic terms to
the equation to compensate the worst terms. More precisely, our strategy consists in seeking
a bounded bilinear Fourier multiplier E; (such that U — E1(u)U is bounded from H® to H®)
such that the operator Bj(u) given by

(3.4) By (uw)U := DE,(uw)U — E{(Du)U — E1(u)DU,
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satisfies
Re(Q(u)U — B1(uw)U,U) gsxms = 0.

The key point is that one can find Bj(u) such that U — Bq(u)U is bounded from H® to H?.
This follows from the fact that, while U +— Q(u)U is an operator of order 1, the operator
Q(u) + Q(u)* is an operator of order 0. Once B is so determined, we find a bounded bilinear
transformation ) such that (3.4) is satisfied. We here use the fact that Q is a paradifferential
operator so that one has some restrictions on the support of the symbols.

The problem (3.3) leads to another technical issue. If one computes the bilinear Fourier
multiplier Eo(u)U which satisfies (3.3) then one finds a bilinear Fourier multiplier Ey such
that U — E3(u)U is bounded from H* to H®, but whose operator norm satisfies only

B2 ()l 2as 1y < K Ml g + K ([ Hul| e

where H denotes the Hilbert transform. The problem is that, in general, |[Hu| s, is not
controlled by ||u||~.. Again to circumvent this problem, instead of solving (3.3), we solve

Ba(u)U := DE3(u)U — Ey(Du)U — Fy(u)DU,
where By(u) satisfies
(3.5) Re(S(u)U — Ba(uw)U,U) gsx s = 0.
The key point is that one can find Bo(u) such that the solution Fy(u) to (3.5) satisfies
I

(u)Hg(Hs,Hs) < K ||UHCQ .

e Paradifferential operators

According to the previous discussion, we shall have to consider the equation
(3.6) E(Du)U + E(u)DU — D[E(u)U] = II(u)U,

where (u,U) — E(u)U and (u,U) — II(u)U are bilinear operators of the form

BU = Y o [ 064 6. )T () e de

1<k<2 (2m)?
1 . — N
(37 N = 30 s [ M 6 0 () s de

where A* and M* are 2 x 2 matrices of symbols. We shall consider the problem (3.6) in
two different cases according to the frequency interactions which are permitted in E(u)U and
II(u)U. These cases are the following:
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(i) The case where II(u)U is a low-high paraproduct, which means that there exists a
constant ¢ €]0,1/2[ such that

Supp M* € {(61,&) € B2 ¢ &2l > 1, [a1] < el

The operator Q(u) and its real part are of this type.

(ii) The case where II(u)U is a high-high paraproduct which means that there exists a
constant C' > 0 such that

Supp M* € {(61,€2) € R ¢ |1 + &l < C(1+min(l&], &) }-

This spectral assumption is satisfied by S(u) and its real part.
That one can reduce the analysis to considering such paradifferential operators is the key
point to prove tame estimates. This allows us to prove the following result.

Proposition. There ezist v > 0 and a bilinear mapping (u,U) — E(u)U satisfying, for any
real number p in [—1, 400/,

(3.8) 1B (W) f e < K fullgs [ F1] gz

such that ® = (Id — A)¥/? (U+ E(u)U) (with s large enough) satisfies
O® + D + L(u)d + C(u)d =T

where the operators D and C(u) are as in (3.1), the source term satisfies
T2 < Cllullgn) el || @]

and

(3.9) Re(L(u)®, ®) = 0

where (-,-) denotes the L*-scalar product.

The proof of this proposition follows immediately from the analysis in Section 3.7. We describe
now how one proves the estimates (1.4) and (1.5). Setting

My(t) = ||8(t, )3 = |U + E@)U||%. ,

the estimate (1.5) follows from an L2-estimate (the key point is that the quadratic terms
L(u)® do not contribute to the energy estimate in view of (3.9)). Also (1.4) follows from
(3.8) assuming that ||ul|,s is small enough ( to compare the right-hand side of (1.4) with M,

oy and H]Dz]% wl

one has also to compare ||(Vay¢)|y—y|

75> this will be done in Chapter 2).
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4 TIterated vector fields Z

We describe now how one gets L?-estimates similar to those of the preceding section when
1
one makes act iterates of the Klainerman vector field Z = t0; + 220, on (n,|D;|? w).

We fix real numbers a and v with v & %N and a > v > 1. Given these two numbers, we fix
three integers s, sp, s1 in N such that

S
S—aZS1ZSOZ§+’Y-

We also fix an integer p larger than sy. Our goal is to estimate the norm

S1

M @) = 3 (1200 gy + 10212 270(8) | -0)-
p=0

assuming some control of the Holder norms

No(8) = 1@l + |1 D2lZ (1) oo

and
50

N0 =3 (12200 ey + 11561 220001

p=0

To estimate M{*" we shall estimate the L2-norm of 0% Z"U for (a,m) in the set
77:{(a,n)GNXN;OSngsl7 0§a§s—n}.
(In fact, we shall estimate
022" s + 110212 05 2"l + 1212 9227 -3,

for some large enough exponent 3, but small compared to y; in this outline, we do not discuss
this as well as other similar difficulties).

We shall proceed by induction. This requires to introduce a bijective map, denoted by A, from
P to{0,1,...,#P —1}. We find that it is convenient to chose A such that A(a/,n’) < A(a,n)
holds if and only if either n’ < n or [0’ =n and o’ < «]. This corresponds to

n—1

Aa,n) = Z(s+ 1—p)+a.
p=0
Given an integer K in {0,...,#P} we set

MK:Z\

Ala/ ) <K-1

ag’Z”’U]

L2’
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As alluded to above, the Hilbert transform appears at several place in the analysis. The
problem is that it is not bounded on Hélder spaces and one has only an estimate of the form:
for any p ¢ N, there exists K > 0 and for any v > 0, any v € C” N L?,

1, 4
[Hollor < K[ Iellon + - o1& lollzz]
Here one cannot overcome this problem and we are lead to introduce the norms
]. 1—v v
Nie = N+ (V) (M)
for some v > 0 (the optimal choice is v = /¢ for initial data of size ).

We shall prove that there are for any K = 0,...,#P —1 a constant Ax and a non-decreasing
function Ck () such that for any v in ]0, 1], any positive numbers Ty, T and any ¢ in [Tp, T,

M (t) < AgMED(Th) + Cx (N (1)) (1 + N (£)) Mk (¢)

(4.1) + / Cre (NSO (@) [|ult’, ) || M ()

To

+ /t Cr (NS ()N (¢')* M () dt!

To
(setting Ny =0, My =0 when K = 0).

This estimate will be used to prove that, if for any ¢ € [Ty, T'| and any ¢ €]0, g¢]

(4.2) 11DalZ (t, )| ooy + 10t o = O(et™3)
and
(4.3) NE(t) = O(et~2+)

for some constant 0 < v < 1, then there is an increasing sequence (dx)o<ip<#p, depending
only on v and ¢ such that for any ¢ in [Ty, T[ and any e,

(4.4) Mg (t) = O(et’%).

The proof is by induction on K. For K = #P we obtain an estimate for Ms(sl) . The key point
is that, when we use Gronwall lemma to deduce from (4.1) a bound for M g1, assuming that
(4.2), (4.3), (4.4) hold, the coefficient of M ;1(#') in the first integral in (4.1) is O(e?t71)
by (4.2). In that way, it induces only a O(t=°C) growth for My 1. The fact that, on the
other hand, Mg (t') in the second integral in (4.1) is multiplied by a factor that may grow
like ¢~ 2719 (with 0 < 0 < 1) is harmless, as Mg (t') is a source term, already estimated in
the preceding step of the induction.

The proof of (4.1) contains an analysis of independent interest. Namely, we shall prove various
tame estimates for the action of iterated vector fields Z = t0; + 220, on the equations. Such
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estimates have already been obtained by Wu [54] and Germain-Masmoudi-Shatah in [23]. We
shall prove sharp tame estimates tailored to our purposes (one key point is to estimate the
action of Z* on F(n)1). This part is quite technical and we refer the reader to Chapter 4 for
precise statements. In this chapter, we shall prove that

ZG(n)y = G(n)((Z — 2)¢ — BZn) — 0:((Zn)V) +2[G(n),n] B + 2V 0.

Since B and V are expressions of 0,1, 0,9 and G(n)y, one deduce from the above identity
formulae for ZB and ZV. This allows by induction to express the action of iterated vector
fields Z on the Dirichlet-Neumann operator G(n) in terms of convenient classes of multilinear
operators.
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Chapter 1

Statement of the main results

In this chapter, we state the main Sobolev estimate whose proof is the goal of this paper, and
we describe the global existence theorem for water waves equations established in [5] using
these Sobolev bounds. Before stating the result, we define in a precise way the Dirichlet-
Neumann operator that appears in the Craig-Sulem-Zakharov version of the water waves
equation, and establish properties of this operator that are used in the sequel as well as in [5].

1.1 Definitions and properties of the Dirichlet-Neumann op-
erator

Let n: R — R be a smooth enough function and consider the open set
Q:={(z,y) eRxR;y<n(=)}.

If ¢p: R — R is another function, and if we call ¢: & — R the unique solution of A¢ = 0
in (2 satisfying ¢|,—,;) = % and a convenient vanishing condition at y — —oo, one defines
the Dirichlet-Neumann operator G(n) by

G(UW =v1+ (3x77)2 8n¢’y=77’
where 9, is the outward normal derivative on 9€2, so that
G = (0y9)(w,n(x)) — (021)(9:9)(x, n(x)).

The goal of this section is to make precise the above definition and to study the action of
G(n) on different spaces.

We shall reduce the problem to the negative half-space through the change of coordinates
(r,y) = (z,2 = y — n(z)), which sends Q on {(x,2z) € R*; 2z < 0}. Then ¢(z,y) solves
A¢ =0 if and only if ¢(z,z) = ¢(z,z + n(z)) is a solution of Py =0 in z < 0, where

(1.1.1) P =141+ 0, — 219,0. — n"0.
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(we denote by 7' the derivative d,7n). The boundary condition becomes ¢(x,0) = ¥ (x) and
G(n) is given by
G = [(1+ 1) = 1'0e0] |

It is convenient and natural to try to solve the boundary value problem

Pp=0, ¢l—o=1
when 1 lies in homogeneous Sobolev spaces. Let us introduce them and fix some notation.

We denote by S (R) (resp. S7(R)) the quotient space S'(R)/C[X] (resp. S'(R)/C). If Soo(R)
(resp. S1(R)) is the subspace of S(R) made of the functions orthogonal to any polynomial
(resp. to the constants), S, (R) (resp. Sj(R)) is the dual of Seo(R) (resp. S1(R)). Since the
Fourier transform realizes an isomorphism from So(R) (resp. S1(R)) to

Swo(R) = {u € S(R); u*¥(0) = 0 for any k in N}

(resp. S1(R) = {u € S(R); u(0) = 0}), we get by duality that the Fourier transform defines
an isomorphism from S’ (R) to (Sx)'(R), which is the quotient of S'(R) by the subspace of
distributions supported in {0} (resp. from Sf(R) to (S1)'(R) = S'(R)/Vect (dp)).

Let ¢: R — R be a function defining a Littlewood-Paley decomposition (see Appendix A.2)
and set for j € Z, Aj = $(277D). Then for any u in S’ (R), the series > jez Aju converges
to u in S, (R) (for the weak-* topology associated to the natural topology on Sy (R)). Let
us recall (an extension of) the usual definition of homogeneous Sobolev or Holder spaces.

Definition 1.1.1. Let s',s be real numbers. One denotes by H**(R) (resp. C**(R)) the
space of elements u in S (R) such that there is a sequence (c;)jez in €*(Z) (resp. a constant
C > 0) with for any j in 7,

1Al o < ¢;2795 774

(resp.
|1Ajull oo < €279 7749)

where j, = max(j,0). We set H¥ (resp. C* ) when s = 0.

The series S 7°° A:u always converges in &'(R) under the preceding assumptions, but the
7=0 =7

same is not true for 3271 Aju. If u is in H¥*(R) with s’ < 1/2 (resp. in C¥*%(R) with

Jj=—00
s’ < 0), then Zj;l_oo Aju converges normally in L, so in S'(R), and u — > 7% Aju gives
the unique dilation and translation invariant realization of H"* (resp. C**(R)) as a subspace
of S’(R). One the other hand, if s € [1/2,3/2[ (resp. s’ € [0,1]), the space H¥ (R) (resp.
C*(R)) admits no translation commuting realization as a subspace of &'(R), but the map
u — Zfz Aju defines a dilation and translation commuting realization of these spaces as

subspaces of 8] (R). We refer to Bourdaud [11] for these properties.

For k € N, we denote by Czlf(] — 00,0],S.,(R)) the space of functions z — u(z) defined on
] — 00,0] with values in S’ (R), such that for any 6 in Soo(R), z — (u(2),6) is C*, and there
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is M € N and a continuous semi-norm p on Sy (R), such that for any ¥’ =0, ..., k, any € in
SOO(R)a
|05 {u(2), 0)] < p(B)(1 + |2

We denote by D'(] — 00, 0, S. (R)) the dual space of C5°(] — 00, 0]) @ Soo (R). We shall denote
by L%(] — 00,0], 8., (R)) the subspace of D'(] — o0, 0[, S, (R)) made of those distributions u
such that for any 6§ € Soo(R), z — (u(z,-),0) is in L?(] — 00,0]) and there are continuous
semi-norms p on Sy (R) and an L2-function h on | — 00,0] so that for any 6 in Sy (R),

[(u(z,-),0)] < p(0)h(z).
Definition 1.1.2. We denote by E the space
E={peD(—00,0[S(R)); Va.p € L*(] — 00,0[xR)}.

(We consider L?(] — 0o,0[xR) as a subspace of D'(] — 00,0[, S’ (R)) using that the natural
map from L?(R) to S (R) is injective). We endow E with the semi-norm ||V .| 2 2.

Remarks. — If ¢ is in E, then ¢ belongs to Cp(] — 00,0], S5 (R)). In particular, ¢|.—¢ is
well defined as an element of S._(R). Actually, if 0; is a test function in Seo(R), it may be
written f; = 9,0, for another function 8; in S.o(R), so that, for any 6y in C§°(] — oo, 0]),

{(0,00(2) ® 01(x)) = —{Dpip, 00(2) @ 01 (x))

which shows that z — {©(z,-),61) is in L?(] — oo, 0[). Moreover, its z-derivative is also L?, so
that z — (p(z,-),0:1) is a continuous bounded function.

— The semi-norm ||V .||, 2> is actually a norm on E, and E endowed with that semi-norm
is a Banach space. Actually, if (), is a Cauchy sequence in E, if 6y, 0,0, are as above, we
may write

(o — m 00(2) @ 01(2))] < 102(0n — @)l r2r2 [|00 @ 01| 2,

which shows that (¢y,), converges to a limit ¢ in D'(] — 00, 0[, SL,(R)). That limit ¢ satisfies
Va2 € L*(] — 00,0[xR) i.e. belongs to E.

The space E introduced in Definition 1.1.2 is a natural one in view of the following lemma.

Lemma 1.1.3. Let ¢ be in S, (R). There is an equivalence between

i) The function x — (x) is in H%(R)

ii) The function (x,z) — eP=ly)(x) is in E.

Moreover
(1.1.2) 102 (P19 (122 + [|0: (P10 1222 = [|1D2 ]2 0|2
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Proof. If 4 is in H%(R), it is clear that (z, z) — €*/P=l¢) is a bounded function with values in
S (R). Moreover,

1[0 ~ 1 1
0 (10) s = 5= [ [ O 1l dedz = 5Dt 07

1 .
and H |D,|2 @ZJH 12 1s equivalent to the H 1/2(R)-norm. As a similar computation holds for the
0,-derivative, the conclusion follows. O

The preceding lemma gives a solution e* 1Dz4) to the boundary values problem A(e? D I'iﬁ) =0
in 2 <0, eZ‘D””'w\ =0 = ¥. Let us study the corresponding non homogeneous problem.

Lemma 1.1.4. Let f be given in L?(] — 00,0],S% (R)) and ¢ be in S'_(R). There is a unique
Junction ¢ in C}(]—00,0],S.,(R)) solution of the equation (03+02)¢ = f inz <0, ¢|.—0 = 1.
It is given by the equality between elements of S. (R) at fized z:

1

0
(p(z’x> — €Z|Dz‘w+ 2/ e(Z+Z )|Dz| |Dac‘_1 f(zl,') dZ/

(1.1.3)
1

0
_ / e_IZ_ZIHDII ’D$’—1 f(Z/,-)dZ,.
2 ) e

Moreover, if we assume that V. . is in L*(] —00,0] X R) (resp. that ¢ is in L*(] —o00,0] xR))
the solution ¢ is unique modulo constants (resp. is unique).

Proof. Let us show first that the integrals in the right hand side of (1.1.3) are converging
ones when acting on a test function 6 in S, (R). By definition of L?(] — oo,0], S’ (R)),
there is a semi-norm p on S, (R), there is an L?(] — 00,0]) function z — h(z) such that
1(f(2,-),01) < p(01)h(2) for any 0] in Ss(R), any 2’ < 0. Moreover, for any N, |D,|" is an
isomorphism from S (R) to itself. We may write for fixed z and for any 0 in S (R)

z—1
(1.1.4) / (e =Dl D 7Y £ ()0, 0) d2

z—1 p 9 dz’
- / (F(, ), 7= 10: (1 = 2| | D, ) (1D.] 2 60))

. 2 — 2]

Any semi-norm of the term in the right hand side of the bracket is controlled uniformly in
2 <0, 2 < 0. It follows that the integral converges. The same is trivially true for the integral
from z—1 to 0 of the integrand in the left hand side of (1.1.4). This shows also that the right
hand side of (1.1.3) is in Cj(] — o0, 0], 8., (R)). Taking the d.-derivative, we get in the same
way that 0,¢ is in Cg (] = 00,0], S, (R)). Moreover, a direct computation shows that we get
a solution of (92 + 02)¢ = f with the wanted boundary data.
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To prove uniqueness, we have to check that when ¢ = 0, the unique function ¢ in the space
Cp(] — 00,0], 84, (R)) satisfying (024 0%)p =0in z < 0, p|,—0 = 0 is zero in that space. If

we set
%) 0 1
U= A Dm == ’
(@ ) ) (w 0)

this is equivalent to checking that the only solution of 3,U = A(D,)U in C)(]—00,0], S, (R) X
SI (R)) with Uy|,—9 = 0 is zero. If we set

1 1 \Z _
P(D,) = <|Dx| _|Dm‘>, V= (é) = P(D,)"'U,

we are reduced to verifying that the unique V in CD(] — o0, 0], S, (R) x 84 (R)) such that

0,V = (‘DOI‘ _‘%IO V and Vi + Va|,—0 = 0 is zero in that space. It is sufficient to check that

Vo € CP(] — 00,0], S5 (R)) and 9,V + [Dy| V2 =0 = V5 =0,

(1.1.5) ’ , -
Vi€ Cp(] —00,0], S5 (R)) and 9. V1 — | D[ V1 =0 = V1 =0.

To prove the first implication, we take 6 in C3(] — 00, 0[, Soo(R)) and set

0(z,x) = / e =AID:lg (o Ly dz

z

If 0, is some C§°(] — o0, 0]) function equal to one close to zero, such that 6,(2)0(z,z) = 0(z, z),
we may write for any M > 1, using that 6 vanishes close to z = 0,

0 ~
0= [ (0 +1Dul) Vb1 20z, ) =

- /OOO (Va,0(z,-)) dz — /io (v, %9’1 (57)0z,)) d=

and the conclusion will follow if one shows that the last integral goes to zero as M goes to
+00. Because of the fact that V5 is assumed to be at most at polynomial growth, it is enough
to show that any semi-norm of -6} (ﬁ)g(z, -) in Seo(R) goes to zero more rapidly than M —F
(or |z|7F) for any k when M goes to +oco. This follows from the fact that, as above, we may

write 6 as
’ —(2'=2)|| D] ! N -N ’ dz'
e ((z' = 2) [ Do) (| De| e(z,.))m

if a is such that Supp 6 C [a,0] x R, if z is in the support of 6;(z/M) and N is an arbitrary
integer.

To prove the second implication (1.1.5), we argue in the same way, taking

H(Z,x):/ e G=IP=lg(o ) dz!
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and replacing 6; by 1. Since Vi|,—9 = 0 and 0 is supported for z in a compact subset of
] — o0, 0], we obtain

0 _ 0
0:/ <(az—|Da:\)V1,9(Z,-)>dz:—/ (V1,0(z,)) dz

this implies the conclusion.

The above uniqueness statement holds in general only in Cj(] — 0,0], 8. (R)) i.e. modulo
polynomials at fixed z. Let us check that if we assume moreover that V, .y belongs to
L?(] — 00,0] x R), then ¢ is constant. By what we have just seen, we already know that for
any fixed z, © — Opp(z,x) is zero in S, (R) i.e. is a polynomial. Consequently, for almost
every z, * — ¢(z,x) has to be a polynomial such that d,¢(z, ) is in L?(dz). This implies
that ¢ has to be independent of =, which, together with the equation (02 4 92)¢ = 0 implies
that ¢ is a constant. If we assume that ¢ is in L?(] — 0o,0] x R), one proves in the same way
that ¢ is zero. This concludes the proof. O

We use now the preceding result to write the solution of the Dirichlet boundary values problem
associated to the operator P defined in (1.1.1) as the solution of a fixed point problem.

Lemma 1.1.5. Let ¢ be in S|(R), n in C7(R) with v > 2, hy, hy two functions in L*(] —
00, 0[xR), with O,hy in L*(] —o0,0[, H"1(R)). Let ¢ be an element of the space E of Defini-
tion 1.1.2, satisfying Py = 0zh1 + Ozha, ¢|s=0 = . Then ¢ is in C’;(] — 00, 0], S, (R)) and
satisfies the equality between functions in C’S(] — 00, 0], 8L (R))

plz,x) = Pely

0
+ % / NP9, | D, [ (1020 + Do) | 42/
L Y ? /
(1.1.6) +2/_ € : [—(71 Do —1 3z90+h1)] dz
I ‘
N 2/ o—=—#1Da [_ax 1Dy~ (/0.0 + h2)] d?’
I ‘
+5 / eI [sign(= — &) (n/Oup — 020.0 + ) | a2’

If we assume that v is in Hé(R), this equality holds modulo constants. Conversely, if ¢ is in
E and satisfies (1.1.6), then Pp = 0,h1 + 0ha, ¢|.—0 = .

Proof. The equation Py = 0,hy + 0, ho implies

/ 1!
n n 0.h1 + Ozho
T 0.0 + [ 0.0+ BT

1
(1.1.7) %o = —1+77,2a§<p+2
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The assumptions on 7 imply that the coefficients of the first two and last terms (resp. of the
third term) in the right hand side are in C7~1(R) (resp. C7~2(R)). Since 92¢, 0,0.p, 0,h1,
Ozha (resp. 0,¢) are in L%(] — 00, 0], H 1(R)) (resp. L?(] — o0, 0], L?(R))), property (A.1.21)
of the Appendix A.1 and assumption v > 2 imply that 0%2¢ is in L?(] — 00,0], H (R)).
Consequently, if we set

(1.1.8) fi=10p =000+ h1, fo=10.0+hs, f=0.fi+fo,

we obtain that f is in L?(] — o0,0], S, (R)) and the equation Py = 0.hy + 0zha, ¢|.—0 = ¥
may be rewritten

(1.1.9) 02 +02)p=f. ©(0,) =1

Moreover, since 92¢p is in L?(] — 00, 0], H~*(R)) and 9,¢ in L?(] — oo, 0[xR), we conclude that
0, is in C’g(] — 00, 0], S, (R)). Consequently, we may apply Lemma 1.1.4 which shows that
the unique C(] — 00, 0], 84, (R)) solution to (1.1.9) is given by (1.1.3). If we replace f by its
value given in (1.1.8), we deduce (1.1.6) from (1.1.3) if we can justify 0,.,-integration by parts
of the 0,/ f1 contribution to f. Let us do that for the second integral in the right hand side of
(1.1.3) with f replaced by 0,/ f1. Take 6 a test function in S (R), 61 in C§°(] — 00, 0]) equal
to 1 close to zero. Compute

/_OOO< ~l=21ID:l g, | D, 7t £ (), 0 >91(p:>d2’
= <e|ZHDz|f1(O’.)79>
0
_lm <e_‘Z—Z/HDz‘Sign(z_z/)fl(Z/’ ) 9>91(R> dz

a /_0 (e PPl Dy | (2 ')79>Rel (R) dz'.

Since fi is in L?L?, the first integral in the right hand side may be written

(1.1.10)

/ / —|z—2"||€] sign(z — z )f ( f)A( 5)91<R> dZ/df,

where 8 is in S (R) and vanishes at infinite order at £ = 0, converges when R goes to +oo to
the same quantity with 6; replaced by 1. On the other hand, the last integral

oo [ [ R 0 o () aa

goes to zero if R goes to 400, using again the vanishing properties if 0 at & = 0. To finish the
justification of the integration by parts, we just need to see that the left hand side of (1.1.1)
converges when R goes to infinity to the same quantity with 6y dropped. This follows in the
same way since 0, f is in L?(] — oo, 0], H 1(R)).
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The equality (1.1.6) holds in the space C’; (] = 00,0}, S5 (R)) i.e. modulo polynomials for each
fixed z. To check that it actually holds modulo a constant when we assume that ¢ is in
H'Y2(R), it is enough, according to Lemma 1.1.4, to verify that the (z,z)-gradient of both
sides belongs to L?(] — 00,0] x R). This is true for ¢ by assumption. On the other hand,
Lemma 1.1.3 shows that Vzvz(ezmﬂ”'z/}) belongs to that space. It remains to show that if g is
in L?L? then f?oo e 1#EIEN €] g2/, €) d2' is in L?(] — 00,0] x R; dzd€), which is trivial.

Conversely, if ¢ is in C’g(] —00,0], 8, (R)) and V¢ in L?(] — 00, 0] x R) and solves (1.1.6),
one checks that Py = 9,h1 + 0:hs by a direct computation. O

The main result of this section, that allows one to define rigorously the Dirichlet-Neumann
operator, and prove some of its property, is the following.

Proposition 1.1.6. Let v be a real number, v > 2, v & %N.

i) There is 6 > 0 such that for any 1 in CV(R) with |||~ < 6, for any ¢ in HY/*(R), any
h = (hi,hg) in L?L? with d,hy in L?(] — oo,0[, H-(R)) the equation Py = 0,h1 + Oyha,
©lz=0 = ¥ has a unique solution ¢ in E. Moreover there is a continuous non decreasing
function C: Ry — Ry such that for any n, p, ¥, h as above

(1.1.11) 19220l p2ze < O ) (1Dl 9l + Bl o2

A112) [ Fanlo = P0) | g < OO ) (e 1015 ] + 1 2

Moreover, if |[1|lcv-1r < § and h = 0, then V,.¢ is in (L% N C%)(] — oo,O},H_%(R)),
(1 4+ 100,00 — 10y is in (L NC°)(] — oo,O],H_%(R)) and

(1.1.13) ii}gHVx,ze”Dz'szH,% < C||D.|? V|2

(1.1.14) sup|| Vg, (¢ — e*IP=ly) HH_% < C|n|| e H|Dm‘% W 25
2<0

(1.1.15) supl|(1+ 17%)00 — 7/ Oasp| ;-3 < C[[1Dal? ¥ 2.
2<0

i) bis. Let p € [0,4o00], v > u+% and assume that 1) is in 243 Then the unique function
¢ found in i) when h = 0 is such that V. is in L*(] — 00, 0], H’“%), (141700 — 1/ 0rp
is in C°(] — 00,0, H-2#+2) N L®(] — 00,0], H"2#"2) and

(1.1.16) Sg}g“ ((1 +1?)0.¢ — n'@mcp) (z, )HHH < CH|D:):|% ¢"Hu+%’

ii) There is § > 0 such that for any n € C7(R) N L*(R) satisfying

(1.1.17) 17 g + | |20 1 | 102 s < 6,
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any ¥ in HY2(R) N C.'%”*%(]R), the unique solution given in i) when h =0 satisfies

(1.1.18) va,z@HLoo(]foop],Cvfl) < C(HUIHCV*) H|Dx|% wHCV*%‘

Moreover, if 0 < 0 < 6 < % and if Hn"‘;ingn’H?; 1s bounded, one has the estimate

(1.1.19) sgngDzl‘%” (14100 = 1/020) (2 )| oo < CIDal2 0] -
2<

Notation. We shall denote by &, the set of couples

(n,4) € C7(R) x (HY*([R) N C3773(R))

such that the condition (1.1.17) holds. By the proposition, the boundary value problem
Py =0, ¢|.—0 = ¢ will have a unique solution ¢ satisfying all the statements of i) and 3) of

the proposition.

Proof. By Lemma 1.1.5, the equation Py = 0,hy + 0,ha, ¢|.—0 = 1 has a solution in F if
and only if the fixed point problem (1.1.6) has a solution in E. Moreover, since (1.1.6) holds

modulo constants, we get

_ 2| Dy| ax¢

0
(1.1.20) + /_ K2, 2YM() - Vaop(,-) 2!

0
0
K(z,2)Moh(2,-) d2’
+/_oo (5 2)Moh(7, ) d +<77/8m90_77/26290+h1>

where h = (hy, ha), K(z,2'), My, M(n') are the matrices of operators

1 / 0, 0,
K(z,2') = Ze#*)IDxl ’ g
2 [Dz| | Dl

PN — Oy —(sign(z — )0,
2 (sign(z — 2)) | Dy | D ’
0 0, |Du| ™ (- 0 0 Do
(1.1.21) M(ny') = (—77’ | ,,llz b ))7 Mo = <_1 ’o | )

Let us notice first that if U is in L?(] — 00,0] x R), then UEOO K(z,/z’)\U(z’,f) d?'| may be

bounded from above by expressions of the form

0
| et g g as
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where u stands for one component of U. It follows that U — fi)oo K(z,2")U dz" is bounded
from L?(] — 00,0] x R) to itself. Moreover,

[Mohl[gz <Az,

(1.1.22) , , ,
[M@)U| o < C(lln'llzoe) 117 [0 U] 2 -
Consequently
(1228) [[Vosp— P (00 V| <Ol ) 0 [Vl g+ C [l
) |D:E| w 212 — ) L4L L?L
This, and the fact that by Lemma 1.1.3, e*lP=! Qgﬁ@) is in L2L? if ¢ belongs to H1/2(R),
x

implies that for ||7/|| = small enough, the fixed point problem (1.1.6) has a unique (modulo
constants) solution in £. Moreover, the norm of ¢ in E, i.e. ||V .| ;2,2 is bounded according

to (1.1.23) and (1.1.2) by 2(H|Dx|% ¥|| 2 + C Il 2p2) if ||| Lo is small enough. This gives
(1.1.11) and (1.1.12).

We notice next that (1.1.13) holds by definition of the H'/?(R)-norm. To prove (1.1.14), we
shall show that the fixed point problem (1.1.6) has a unique (modulo constants) solution ¢
in the subspace of E formed by those functions ¢ for which sup,<q |V .0(2, )|l 172 < 400.
Taking (1.1.13) into account, we see from (1.1.20) that it is enough to show that

0
(120 sup | [ K00 Vool a2 | < () I 1541 0]
FAS —00 H 2
and
(1.1.25) ilélan’ﬁxso = 1°0:0]| -3 gy < C I lleo=2) Il igHvx,szH_%(R).

Inequality (1.1.25) follows from Property (A.1.21) in Appendix A.l. Taking into account
(1.1.22) we see that (1.1.24) will follows from (1.1.11) if we prove that, for any g in L?(] —
00,0] x R), there is an ¢?(Z)-sequence (c;); such that

sup < &2 ||gll 22

2<0

0
/ K(z,2")(Ajg)(7,-) d2’

L2

for any j in Z. According to the definition of K, the left hand side of this inequality is
bounded from above in terms of

0
H/ 6*|Z*Z I1€] ’§| 1C*1<2*J‘|£|<CAjg(ZI,§) dz'
—00

L3 (df)

which has the wanted upper bound by Cauchy-Schwarz.
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To prove (1.1.15), we rewrite the second component of equality (1.1.20) as
0
(1.1.26)  (145%)dp — 1/ 0pp = /P21 | D, ¢ + / [K (2, 2)YM(1) - Vaep(2', )], &'

—00

where [-]o stands for the second component. By (1.1.13) and (1.1.24), we conclude that
(1.1.15) holds.

We notice also that the right hand side of (1.1.26) is a continuous function of z with values
in H~'/2. This is trivial for the e*/P=l|D, |+ contribution. For the integral term, it suffices to

show that if g is in L?(] — 00, 0] x R), then Hfi)oo [K(z,7) — K(20,2)]g(#,-) d2’

ig1y2 808

to zero if z goes to zg. This reduces to showing that

H/O | eI 1IEl o= NEl) e |g(, )| d2!
—o0

L2 (dg)

goes to zero if z goes to zg. This follows by dominated convergence, from Cauchy-Schwarz
and the fact that

0
C(z,20,§) = / e~ == lEl e"zﬂizl”ﬂf €] dz’

—0o0

is uniformly bounded and goes to zero as z goes to zg at fixed &.

The same proof shows that ¢ is also continuous on | — co,0] with values in H 7%(]1%) C
H_%(]R). Using (1.1.26) to express 0,¢ from (14 12)0,¢ — 0’0z and 9., we conclude that
0 is also continuous with values in H 3 (R).

This concludes the proof of i) of Proposition 1.1.6.
i) bis. By i), we only need to study large frequencies. We notice that if ¢ is in H %””‘%,

e? Pzl ngﬁp) is in L2(] — oo,O},H“*%). Moreover, we have seen after (1.1.21) that U —
x

ff’oo K(z,2)U(#,-)d? is bounded on L?L?. Consequently, for any j > 0

0
8 [ KoMVt

< C||A; [M (1) Va,z¢)]
L2L2

22

Since v > p+ %, we have the product law C7~! HM3 ¢ HPS 5o the right hand side of the
preceding equality is bounded from above by

CU7 llcv-1) 17l gr-12790F 2 e ()| Voot |

L2Hu+% .

where 3, ch(z’)Hig(dZ,) < 400. We conclude that

Vi 0(z,-) — eAPel ( Oz >

1Dy < C(Hn/HCW*l)”77/HC"Y*1 HVJZ,ZQDHLQHM% )

L2(]—o00,0], H* )
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so that the fixed point giving ¢ provides a solution in E with V, . € L?(] — 00,0, H”*é)
1

and Vool ey < CIDaIE ], e

Let us check that (1+7)0,¢0—n'0,p is in L>(]—o00, 0], H_%””'%). The case of low frequencies

follows again from i). Thus, by (1.1.26), we just need to stuy for j > 0 the L?-norms in z of

Ajelezl |Dy| %

A, / (; K2 )M () Vool )] d2

The L?(dx)-norm of the first expression is bounded uniformly in z < 0 by

OPP2| 87 1Dl ] 2 < C279¥]| ;1D 0|

HH+% .

On the other hand, the L?-norm of the second quantity is smaller than

0
. 1 /
(1.1.27) 973(nt3) '/ e P M gy e 18] 952, €) 2
[o.¢]

L2(d§)

where

—

Tt
9;(2',€) = 20D A M () Vi 20(2', )] )
By the product lax C7~! . Hi S H‘”'%, we know that

2 2
> losliese < O llor) V0l s
j>

Cauchy-Schwarz then shows that (1.1.27) is bounded from above by C279#||g;|;2;>. This
gives the wanted inequality (1.1.16). The continuity is established as in 7).

Before starting the proof of ii), we state the following lemma.

Lemma 1.1.7. Let ¢ be in C°(R*), X in CO(R) with X equal to one close to zero. Let b
be some function homogeneous of degree v > 0, analytic outside 0. For j in N*, z, 2/ <0,
x € R, define

(1.1.28) k]i(z,z/,:r) _ QL /eix&—lzizfl|€|b(§)¢(2—j§) d¢.

s

Denote by k:g[(z, 2, x) the similar integral with @(Q_jf) replaced by X (§). There is C' > 0 such
that for any j in N*,

(1.1.29) sup / kji(z,O, r— a2 )g(z') dz’ <O |\ gl poe
=<0 ||/R Lo (dz)
and
O .
(1.1.30) sup / / kj-[(z, Zx—a)g(2,2') d2' da’ < 020D | g|| oo oo -
z<0 ||J —o0 JR Lo (dx)
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Moreover, when 0 <r < 1,

(1.1.31) sup
2<0

< Cligll L~
L (dx)

/ kE (2,0, —2')g(2') da’
R

and if 0 <r <1andp€]l,1/(1—r)],

(1.1.32) sup
2<0

<Cligllpors -
L (dx)

0
/ / k(2,2 2 —a')g(2', 2') d2'da’
—oo JR

Proof. For j in N*, we perform the change of variables ¢ = 2/¢" in (1.1.28). Making then
Og-integration by parts, we get a bound

’kj-[(z, 7 x)| < Cn200H) (14 2|z + 2]z + z’|)_N

for any N in N. This implies immediately (1.1.29) and (1.1.30). To treat the case j = 0, we
remark that, in the expression

[ et w6 de

we may deform in the complex domain the integration contour close to £ = 0, replacing & by
€ + ie(signz)€. We obtain

(1.1.33) k(2,2 0)| < C(1+ o] + 2= 2))

Since r > 0, (1.1.31) follows at once. To get (1.1.32), we bound the left hand side by

0 , o
(SUP/ |:/ ‘k(:)t(zvzlvxl)‘p dxl] dZ/) HQHLOOLP
2<0 J—00 R

where p’ > 1 is the conjugate exponent of p. Using the bound (1.1.33) and r > 1/p/, we get
the finiteness of this quantity. O

End of the proof of Proposition 1.1.6. To prove ii) of the proposition, it is enough to show
that under the smallness condition (1.1.17), the fixed point problem (1.1.6) has a unique (up
to constants) solution in the subspace of those ¢ in E such that supzSOHVx,chHm,l < +00.
According to (1.1.20), this will hold if we prove that

(1.1.34) sup|[¢17% (0410, 1Dz | 9) | o1 < C[IIDa12 9| ooy
2<0

(1.1.35) Sli%” (7 = n0:0) (2, )| gr—r < C>IN =)0 Nl ev=1]| Va2 oo 1
EAS
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and

(1.1.36) sup
2<0

/ K(z, 2)M@7) - V() d?’

vt
1 1
(I low) (' o + [l |2 [ 1) [ Vsl o

Moreover, these inequalities, (1.1.20) and the smallness condition (1.1.17) imply that estimate
(1.1.18) holds.

We notice that (1.1.35) is trivial. To prove (1.1.34), we write the function in the left hand side
1

as e?P=lb(D,) | D, |2 1 for some b(&) homogeneous of degree 1/2. Then using the notations of

Lemma 1.1.7, for j > 0,

Aj(eP<b(D,) [ Da]? o) = /k;-“(z, 0,2 — ) [|Du]} Ao (o) o',
So(e21P=1b(D,) | Dy | ) = /kaL(z,O,x — 2)[|D.|? Sov) (a') da’

Estimates (1.1. 29) (1.1. 31) with r = 1/2 show that the L*°-norm of these quantities is
bounded by 277(7=1/2) |1 Ds \2 wHC’Y 12 uniformly in z < 0, whence (1.1.34).

To prove (1.1.35), we notice that by (1.1.21), the operator associating to a R2-valued function
g, f?oo K(z,2)Ajg(#,-)d2 (resp. fBOO K(z,2")Sog(7', ) dz") may be written from

0
/ kj:(z, 2w —a)Ajgi(7, ") da’
— 00

(resp. the same expression with j = 0 and A; replaced by Sp), where gy is a component of
g, and k; is given by (1.1.28) with b homogeneous of degree 1. It follows from (1.1.30) with
r =1 that

sup
2<0

/ K(z,2YM(n) - V(<) d?

LOO

< CAM ) - Vol oo oo < C2790 D sup |A; M (1) - Vip(z

<0 HCV !

Since the Hilbert transform is bounded on the subspace of those f in C7~! whose Fourier
transform vanishes on a neighborhood of the origin, the expression (1.1.21) of M (/) shows
that this quantity is smaller than

(11.57) C (=) o=+ sup [V (=", ) grpma 27700
On the other hand, (1.1.32) shows that

(1.1.38) sup
2<0

0
So / K(z )M - V() d2’
—o0 Lo

< CHS()M(”/)'VQOHLOOLP'
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Since the Hilbert transform involved in the definition of M (n') is bounded on L? for 1 < p <
0o, we see that we are reduced to estimating HSO (n'V) HLOOLP and ||So(n*V) HLOOLP. Taking
p > 2, we conclude that (1.1.38) is bounded from above by a multiple of

2 1—2 2 1—2
18001 Vo) f oo 12 [[S0 (' V) || Locpoe + | S0 (V) |7 oo 12| So (V) || o'y
We write for k =1, 2,
150 V)| e g < 117Vl e g1 < C 110 | 10165 190l e

1S001* V)| e < 1290 s < C Il [l 2 IVl oo

using property (A.1.21) of the Appendix A.1 and the fact that the product is continuous
from C7~1 x C~! to C~'. Taking for instance p = 4, we get a bound for (1.1.38) of the form
0 llcvr) 17152 1’ ||1/2 IVl Loogrr—1. Combining with (1.1.37), we obtain (1.1.36).

Let us prove the last assertion in ii). If we cut-off spectrally the quantity to be estimated
outside a neighborhood of zero, the upper bound follows from (1.1.18). We have thus to study

sg%H\Dm\_%w X(D2) (1 +0)0ep = 0/ 0:0) (2, ) || o

where x € C§°(R) is equal to one close to zero. By (1.1.26), the wanted inequality will follow

from
~ 1 1
sup|[¥(Da)e”!! D22 9| e < C|lIDa]2 9| o,
0
(1.1.39) Sup/ [‘Dx’—%#?)z(Dx)K(z,z’)M(n').Vx,zip(z’,-)} dz'
2<0 [|J -0 2
C(Un =)l 2 10 e [ V20
1-260

from the boundedness assumptlon of Hn H Hn H c—1 and from (1.1.18). The first estimate

follows from (1.1.31) with 7 = 3 1 10, as in the proof of (1.1.34). To prove the second inequality,
we bound its left hand side from quantities

0
/ / k(:]t(zazlax - x/)g(zl,l',) dZ/ dx
—o0 JR

where k3 is given by an integral of the form (1.1.28) with $(277¢) replaced by X(£) and b homo-

(1.1.40) sup
2<0

oo

geneous of degree r = 3 + 6, and where g is any of the components of So(M (7)V, .¢(2',2')).
By (1.1.32), we bound (1.1.40) by C'||g||jcz» if p < 1/(3 — 6). We have seen above that this
quantity is smaller than

C(l o) |1 3|7 |62 1Vl o -

Taking % = % — 6, we get the conclusion. O

35



Corollary 1.1.8. Let n be in L> N CY(R) satisfying the condition (1.1.17). We define for 1
in H'/2(R) the Dirichlet-Neumann operator G(n) as

(1.1.41) Gy = [ +1)d0 —1/0e] |

where @ is given by Proposition 1.1.6. Then G(n) is bounded from HY?(R) to H='/?(R) and
satisfied an estimate

(1.1.42) IG@) %l -1z < C (I llem-1) |1 Dol ] o

In particular, if we define Gy 2(n) = \Dm\_% G(n), we obtain a bounded operator from H'/?(R)
to L*(R) satisfying

(1.1.43) 1G]] 2 < CI k) |[1Dal? ] 2
Moreover, G(n) satisfies when 1 is in C%”_%(R)
(1.1.44) IG@) Dl rs < C (I ) |[1Dal 2 v

where C(+) is a non decreasing continuous function of its argument.

1.
c2

If we assume moreover that for some 0 < 6/ < 6 < %, }n’}H{__ZfIHn'HQCG; is bounded, then
|Dx|7%+0 G(n) satifies
(1.1.45) 1102754 G omgoa < O ) 1Dl ] oy

Proof. Inequalities (1.1.42) and (1.1.43) follow from (1.1.15). The bound (1.1.44) is a conse-
quence of (1.1.18), the definition (1.1.41) of G(n)y and the fact that C7~! is an algebra. [

1.2 Main Sobolev estimate

Consider a couple of real valued functions (n,v) defined on R x R satisfying for ¢ > 1 the
system

atq/] = G(Tl)w7
1 1
O +n+ 5(5%1#)2 T2+ ()

with Cauchy data small enough in a convenient space.

1.2.1
(121) (G + undap)” =0,

The operator G(n) in (1.2.1) and in the rest of this paper is the one defined by (1.1.41) in
Corollary 1.1.8. We set, for 77,79 smooth enough and small enough functions

(1.2.2) B(n)t = G(nl)zi TafZ?f”'

Let us recall a known local existence result (see [52, 35, 2]).
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Proposition 1.2.1. Let vy be in ]7/2,400[\iN, s € N with s > 2y — 1/2. There are 5y > 0,
T > 1 such that for any couple (no, o) in HS(R) x H%’V(R) satisfying

21 1
(1.2.3) Yo = Tpmoysoo € H2(R),  mollcy +[[1Dal? tol| oy < do,

equation (1.2.1) with Cauchy data n|i=1 = 1o, Y|t=1 = Yo has a unique solution (n,) which
is continuous on [1,T] with values in

. l . l s
(1.2.4) {{(,9) € HY(R) x HEV(R); ¢ — Ty € HE*(R) |
Moreover, if the data are O(e) on the indicated spaces, then T > c/e.

Remarks. The assumption ¢y € H 3 implies that g is in (2773 so that Corollary 1.1.8
shows that G(n)1o whence B(ng)ip is in C7~! ¢ L>°. Consequently, by the first equality in
(1.2.3), \Dx]% Y is in H2 C C""2 as our assumption on s implies that s > v+ 1/2. This
gives sense to the second assumption (1.2.3).

— The well-known difficulty in the analysis of equation (1.2.1) is that writing energy inequal-
ities on the function (7, |Dx|% 1) makes appear an apparent loss of half a derivative. Thelway
to circumvent that difficulty is now well-known: it is to bound the energy not of (1, |Dy|2 ¥),
but of (7, \Dx]% w), where w is the “good unknown” of Alinhac, defined by w = 9 — Tg(;)yn
(see Chapter 2). This explains why the regularity assumption (1.2.3) on the Cauchy data
concerns Yo — T'B(yy)y, M0 and not vy itself. Notice that this function is in H3 while g itself,

written from 1o = wo + T(yy)y,70 18 only in H %’Sf%, because of the H®-regularity of 7.

— By (1.1.44) if ¢ is in 2772 and 7 is in C7, G(n) is in C7~1, so B(n) is also in 7~
1

with | B(n)t|lgr-1 < C(|I0lcr—1) ||| Da| 2 chw_%. In particular, as a paraproduct with an

L°°-function acts on any Holder space,

110212 Togyinl] -y < CUI ller-1) Illen [[1D212 | -y

This shows that for ||n]|s, small enough, 1 — ¢ — Tg)yn is an isomorphism from 373

to itself. In particular, if we are given w in H 5 O %’7_%, we may find a unique % in
.1 1 1
C2772 such that w = ¢ — Tp(y,)yn. In other words, when interested only in €™ 2-estimates

1 1
for |D;|? w, we may as well establish them on |D,|2 v instead, as soon as |||~ stays small
enough.

— We check in Appendix A.4 that our assumption (1.2.3) implies the one made by Lannes
in [35] so that Proposition 1.2.1 follows from Theorem 4.35 in [35].

Let us state now our main result.

We fix real numbers s, s1, sy satisfying, for some large enough numbers a and v with v ¢ %N
and a > v, the following conditions

(1.2.5) s,50,51 € N, S—GZS12802§+7.
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We shall prove L?-estimates for the action of the vector field
(1.2.6) 7 =t + 220,

on the unknown in equation (1.2.1). We introduce the following notation:

For (7,1) a local smooth enough solution of (1.2.1), we set w = 9 — Tg(yn and for any
integer k < sy,

s + [1Da]? ZPeo(t, )|

)

k
(1.2.7) => (/|z"n(t,
p=0

In the same way, for p a positive number (that will be larger than sp), we set for k& < sp,

Mw

(1.2.8) NE @) =3 (12200t oo + [1Da]2 2P0, )| ) -

3
I
o

We consider the set of functions (1, %) satisfying for any integer p < s;
(€0,)Pn0 € HSP(R), (20,)Pbo € H2S P73 (R),

('Ial‘)p (/IJZ)O - TB('I]Q)?/)Q"?O) € H%’S_p(R)v

and such that the norm of the above functions in the indicated spaces is smaller than 1. For
€ €]0, 1[, we solve equation (1.2.1) with Cauchy data n|i=1 = eno, Y|t=1 = €1by. According to
that proposition, for any Ty > 1, there is € > 0 such that if ¢ < ¢, equation (1.2.1) has a
solution for ¢ € [1,Ty]. Moreover, by Proposition A.4.2, assumptions (1.2.9) remain valid at
t="1Tj.

(1.2.9)

Our main result is the following:

Theorem 1.2.2. There is a constant By > 0 such that Ms(sl)(To) < %Bgs, and for any
constants Boo > 0, BL > 0 there is gy such that the following holds: Let T > Ty be a number
such that equation (1.2.1) with Cauchy data satisfying (1.2.9) has a solution satisfying the
reqularity properties of Proposition 1.2.1 on [Ty, T[xR and such that

i) For any t € [Ty, T, and any ¢ €]0, 0],

1 _1
(12.10) 1Dal? 0t )| -y + It e < Bocst 3.
i1) For any t € [Ty, T, any € €]0, o)
(1.2.11) NGO () < Boost™ 2755,

Then, there is an increasing sequence (8x)o<k<s, , depending only on Bl and e with 65, < 1/32
such that for any t in [Ty, T, any € in |0,0], any k < s1,

(1.2.12) MP(t) < %ngték.
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The rest of this paper will be devoted to the proof of the above theorem. In [5], it is shown that
this result, together with an L®-estimate of the solutions of (1.2.1), implies global existence
and modified scattering for solutions of (1.2.1) with Cauchy data e(ng, o), where (19, o)
satisfy(1.2.9) and ¢ is small enough. For the reader’s convenience, we reproduce below these
two statements. The proofs are given in [5].

The L conterpart of the Sobolev estimates of Theorem 1.2.2 is the following:

Theorem 1.2.3. Let T > Ty be a number such that the equation (1.2.1) with Cauchy data
satisfying (1.2.9) has a solution on [Ty, T[xR satisfying the regularity properties of Proposi-
tion 1.2.1. Assume that, for some constant By > 0, for any t € [Ty, T[, any € in |0,1], any
k S 51,

MP(t) < Baet®,

(1.2.13)
NGO < Ve <1

Then there are constants Bog, BL, > 0 depending only on By and some ¢;, €]0,1], independent
of Ba, such that, for any t in [Ty, T[, any € in )0, £p],

N{(t) < %ngf%%@éo,
(1.2.14) .
1 _1
1212 6t )| g+ It o < 5 Bocet ™.

The main result of global existence for the water waves equation with small Cauchy data
deduced in [5] from the above estimates may be stated as:

Theorem 1.2.4. There is g9 > 0 such that for any e €]0, g, any couple of functions (1o, o)
satisfying condition (1.2.9), and whose norm in the indicated spaces is smaller than 1, equation
(1.2.1) with the Cauchy data n|i=1 = eno, Y|t=1 = € has a unique solution (n,v) which is
defined and continuous on [1,4+00| with values in the set (1.2.4).

Moreover, u = \Dm\% ¥ 4+ in admits the following asymptotic expansion ast goes to +00:

There is a continuous function a: R — C, depending of € but bounded uniformly in e, such
that

€ T 1 ie? |a(z/t)]? 1
(1.2.15) u(t,z) = %g<¥> exp<4|xt/t| + o1 ’|EU/{57‘2)| log(t)) +et 2 " p(t, x)

where Kk is some positive number and p is a function uniformly bounded for t > 1, £ €]0, go].

In the rest of this paper, we prove Theorem 1.2.2 i.e. we show estimates for the Sobolev norms
M (t) introduced in (1.2.7) assuming a priori Holder estimates of the form (1.2.11). To do
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so, we first need to establish a collection of estimates for the Dirichlet-Neumann operator.
Chapter 2 will be devoted to such a task. Next we have to design a normal form method
that will allow us to eliminate in the Sobolev energy the contributions coming from the
quadratic part of the non-linearity. This is the object of Chapter 3. Chapter 4 is devoted to
the commutation of the Z-vector field to the water waves equation, and in particular to the
Dirichlet-Neumann operator. In Chapter 5, combining the results obtained so far, we prove
the Sobolev estimates for the action of the Z-vector field on the solution we are looking for.
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Chapter 2

Estimates for the
Dirichlet-Neumann operator

The Dirichlet-Neumann operator G(n) has been defined in the first section of Chapter 1 (see
Corollary 1.1.8) and H'/?-estimates have been obtained for it. The goal of this chapter is to
prove Sobolev estimates for G(7n) and related operators. We shall make an extensive use of
paradifferential operators. We refer to Appendix A.1 for the main definitions and results on
this topic.

We use in this chapter the notations introduced at the beginning of Chapter 1, in particular
for the elliptic operator P introduced in (1.1.1). We shall consider a couple (7,1) belonging
to the set &£, introduced after the statement of Proposition 1.1.6. This implies in particular
that estimates (1.1.14) and (1.1.18) hold.

Given (n,%) in &, we introduce the notations

G () + (0:n)(929))
2

(2.0.0) Bl = P o

) V(UW = 8;,;1/) - (3(77)1/1)39577
Remarks. i) It follows from equality (1.1.41) and the fact that ¢|.—¢ = ¢ that

G(T/)T/} = (1 + (3x77)2)3z90 — 0zn0zp ‘ 2=0?
(2'0'2) B(nW = az90|z=0a
V(n)y = (0xp — 0z10:) | .=0-

If one goes back to the (x, y)-coordinates introduced at the beginning of Section 1.1, for which
the fluid domain €2 is given by {y < n(z)} and the velocity potential is ¢(z,y) = o(z,y—n(x)),

one sees that B(n)y = (9y¢)|aq and V(n)y = (0:9)|aq-

i1) We rewrite, for further reference, the first equality of (2.0.2) taking into account (2.0.1),
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as

(2.0.3) B(m)Y — (0zn)V (n)y = G(n)y.

Finally, we shall eventually denote 1’ instead of (9,7n) to simplify some expressions.

It follows from (2.0.1), the estimate (1.1.18) and the classical product rule in Hélder spaces
(see Proposition 8.6.8 in [25]) that we have the following

Lemma 2.0.5. Let vy 6]3,—&—00[\%1\1. There exists a non decreasing function C: Ry — Ry
such that, for all (n,v) € &,,

(2.0.4) HGOﬂwmwfl+H30ﬂ¢mw7r+HVOﬂ¢MﬁflSCXWmeA)WDdéwHUF%

2.1 Main results

We shall state in this section the main result that will be obtained in this chapter. We want
to get estimates for the Dirichlet-Neumann operator G(n)i, as well as the related operators
B(n)y, V(n)y introduced in (2.0.1), in terms of Sobolev and Hélder norms of n and 1. The
main result will be expressed in terms of the “good unknown” of Alinhac w = w(n)y defined
by the relation

(2.1.1) w(my = ¢ — Tpyn-

We shall explain, in the comments following the statement of the next theorem, the interest
of working with (n,w) instead of (n,1). Recall from the introduction that w defined by
(2.1.1) appears naturally when one introduces the operator of paracomposition of Alinhac [7]
associated to the change of variables that flattens the boundary y = n(x) of the fluid domain,
namely (z,y) — (z,z =y —n(x)). This is a quite optimal way of keeping track of the limited
smoothness of the change of coordinates. Though we shall not use this point of view here, it
underlies the computations that will be made at the beginning of the next section.

Let us now state our main result.

Theorem 2.1.1. Let (s,v) € R? be such that

1 1
- 3 —N.
s—5>7>3 7%2

There exists a non decreasing function C: Ry — Ry such that for all (n,v) in H5(R) X
H%’Sfé(R) such that (n,v) belongs to the set £, introduced after the statement of Proposi-
tion 1.1.6, the following properties hold:
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(1) (Tame estimate)

2.1.2) NGl s + IBOY ] s—1 + V)Pl o

< Cnlles) {INDal? 0| ooy Illizs + 11Dal2 0]y b

(i) (Paralinearization) Define F(n)y by
(2.1.3) G = |Da|w — 0x Ty (yypn) + F(1)1.
Then

(21.4)  NF@lgor-s < C Umllem) {N1Dl2 0l ooy Illirs + Il 19212 @] ey b

(7i1) (Linearization)
(2.1.5)  Gm¢ = [De| Pl gs—r + 1B = [De| Yl gor + 1V ()Y — 02t)| o

< C(nlles) {I1Dal? ¥l ooy Ilizs + lln 11Dal2 0]y b

Let us comment on the above statement.

— All these estimates are tame: they depend linearly on the Sobolev norms. Moreover, we
consider the case where n and v are at exactly the same level of regularity (i.e. n in H® and
¢ in H %b_%) This is important to prove H®-energy estimates for the water waves equation.
Indeed, as already explained in the introduction, we shall write in Chapter 3 the water waves
equation as a quasi-linear system in the unknowns (7, ]Dx]% w). To be able to obtain H*-
energy inequalities for this equation, it is important to check that the right-hand sides in the
inequalities of Theorem 2.1.1 are controlled by the H*-norm of (), ]Dz|% w). Let us show that
this property holds. To do so notice that by Lemma 2.0.5 if (1,) belongs to &, then B(n)v
belongs to C7~! so that B(n)i is in L. Then, as a paraproduct with an L>-function acts

on any Sobolev spaces, we have

S Bl poo 101l s

< C (Inllg) [1D212 | -y Nl s

D212 Toyunl] oy
210 I Byl o3

Thus if we express ¢ as w + T'g(;)y7n then one obtains

(2.1.7) Dt ],y < [1DalF ] oy +C lnlle) 1Dl ]| -y Nl

5 —

1 replaced with

Had we proved the statements of the theorem above with H]Dxﬁ(/}HHk

H\D:c\% @DH s> then this would give a bound in terms of HnHH preventing us to control

s+

this quantity from the H*-energy (which is the H®-norm of (), ]Dx|% w)).
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— It has been known since Calderén that, for n a smooth function, G(7) is a pseudo-differential
operator that, in one dimension, differs from |D,| by a smoothing remainder. The paralin-
earization result (ii) above gives a more precise description of G(n)1 when 7 has limited
smoothness. Namely, this result states that G(n)Y — |Dy|1 is the sum of the “explicit”
contribution — |Dy| Ty — Ou (T (m)yn) and of a smoothing remainder F()y.

— Assertion (iii) of the theorem computes the error one gets when approximating G(n),
B(n)y, V(n)y by their linear part. In this direction, we mention that we shall prove two more
technical statements that will be used below. In section 2.6 we study the Taylor expansion
at order 2 and 3 of G(n)y and of related quantities as a function of 7, when 1 goes to zero.
The explicit knowledge of this expansion will be used in the rest of the paper. In particular

|F(m)v — Fiepy ()| . is

we shall prove that, for some explicit quadratic term F(<g) (m,
estimated by

Cllmlle) nllo {11D21? 0l ooy Inllsze + Il 1D21% @] ey

This estimate will allow us to have a quadratic approximation of the equations without loss
of derivatives.

The proof of Theorem 2.1.1 will be given in the next sections. Let us describe the strategy
we shall use.

To be able to obtain estimates for G(n)y (and the other quantities B(n)y, V(n)y), we need
to return to the definition of this function from the boundary values of the solution ¢ of
the elliptic boundary values problem Py = 0, ¢|,—0 = v, where P is given by (1.1.1). The
beginning of the next section is devoted to the study of a related elliptic paradifferential
problem T, W = f, W|.—o = w, where W = ¢ — Tj_,n is a function whose boundary value
is the new unknown w, and where pg is the symbol of P. The point is that the choice of W
is made so that the right hand side f = T}, is a continuous function of z with values in
H5™=3 (C H* if v > 3) while a mere paralinearization of Py = 0 would give that T), is a
continuous function of z with values in H5~!. This gain of smoothness in the right hand side
will be instrumental in the proof of the estimate in (i) of the theorem.

Once the elliptic problem satisfied by W is established, we deduce from it bounds for W
in z < 0 in terms of W|,—9 and n (see Proposition 2.2.9). They are proved microlocally
decomposing the elliptic boundary value problem into two coupled forward and backward
parabolic equations, and performing a bootstrap argument exploiting the gain of smoothness
of f =T, W explained above.

These estimates of W are next used in section 2.3, which is devoted to the proof of the tame
estimate (2.1.2) from the bounds of W in z < 0.

Section 2.4 studies the paralinearization of the Dirichlet-Neumann operator: one establishes
that F'(n) defined by

F(UW = G(UW - (|D:r| W= ax(TV(n)wn)
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is a smoothing operator satisfying (2.1.4), using again the bounds on W obtained in sec-
tion 2.2.

The assertions of the statement (iv) of the theorem are deduced from the preceding result in
section 2.5.

We end up Chapter 2 with a section devoted to a variant of the estimates of Theorem 2.1.1.
Actually, inequalities (2.1.2) and (2.1.5) hold when 7 and 1) are at the same level of regularity
(i.e. nin H® and v in Hésfé) We shall need estimates of the same type when 7 is smoother
than ¢, namely n in C7 and ¥ in I35 for some 1 < v — 2. These bounds are established
in Section 2.7.

2.2 Sharp estimates

Let us introduce the following notation. Set

1 /1

!
a:m, b= —-2an, c=an’,

where 7’ stands for 9,n. Then the solution ¢ of Py = 0, ¢|.—9 = 9 obtained in Proposi-

tion 1.1.6 satisfies,
(2.2.1) 020 4 ad?p + 00,0, — cO,p =0 in {z <0},
(2.2.2) ©lz=0 = .

Assumption 2.2.1. We fir (s, u,7) € R® such that

1 1
s—§>7>3, 0<uc<s, 7¢§N.

Throughout this section, we assume that (n,1) is in the set £, defined after the statement of
.1 -1 1
Proposition 1.1.6 and that moreover (n,v) € HS x H2" is such that w € H2Mt2,

We introduce the function defined on {(z, z); z < 0}

(2.2.3) W=¢—Then

where the paraproduct is taken relatively to the z-variable alone, z < 0 playing the role of a
parameter. In particular by (2.0.2), Wl.—0 = ¢ — Tg(;)yn = w(n)1. Our goal is to study the
regularity of ¢, W in terms of the regularity of v, n and w.

Let us set a notation that will be used constantly below. If u is defined on {z < 0}, we
shall denote by |lu|| 4+ the z-dependent function defined by |[ull - (2) = |lu(z,-)| 4. The
inequality || f|l g < |lgll g thus means that ||f(2)| - < |lg(2)||y~ for any z such that f(z)
and g(z) are well defined. We denote by C' various non decreasing functions of their arguments.
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Lemma 2.2.2. There exists a non decreasing function C: Ry — Ry such that

(2.2.4) O2W + (Id + Ty 1)PW + Ty9,0.W — T.o,W
satisfies the bound
(2.2.5) Sup £ -5 < (I lle) [l 599 [ V0l -

Remark 2.2.3. — In equation (2.2.4) above, we make appear as a coefficient of O2W the
operator (Id + T,—1) instead of T,. By definition (A.1.3) of the paradifferential operators,
T} — Id is a Fourier multiplier whose symbol is supported for |£| < 2. Therefore, (Id+T,—1) —
T, = Id — T is a smoothing operator. Nevertheless, we prefer to use (Id + T,—1) instead
of T, because a — 1 = O(n?), ¥ — 0, so that the remainder coming from symbolic calculus
will vanish at " = 0. In that way, we shall get the quadratic bound (2.2.5) instead of a mere
sub-linear bound as (7, ¢) — (0,0).

— The idea of the proof of the proposition is as follows: we shall paralinearize equation (2.2.3).
This will give us

82 + (Id + To1)02p + Ty0:0.00 — Teboip = f1 + f,

where f} is a a remainder that has similar bounds as f in (2.2.5) and f{ is made from
expressions of type Tag‘p(a — 1), Ty,6.4b, Th.,c. These contributions will not be smoother
than 7" (since ¢ involves ) i.e. will not be in a better space than H*"2 if 5 is in H°. The
gain in introducing W instead of ¢ lies in the fact that

(62 + (1d+ Tu1)02 + T10,0. — T.0. ) To.on

will be equal (up to smooth remainders) to f, which gives the asserted result.

To start the proof, we first obtain a paradifferential description of the coefficients a, b, ¢ in
(2.2.1).

Lemma 2.2.4. One may write
(2.2.6) a—1=Tyun +r1, b=Te_ o +re, c=Tyn" + Tabn/n’ +r3
where r¢, £ =1,2,3, belong to HT7=3 and satisfy

(2.2.7) Irell groea-s < C(II0 =) 1 e ||| oy s €=1,2,3

Proof. We use the fact (see section 5.2.3 in [38]) that if F' is a smooth function vanishing at
0 and if w is in H®*(R) with s > 1/2, then

F(n') = Tpipyu + R(n')
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where R(1') € H**2(R) and | R(1)l|ggeer—2 < O ) 17| pror-
Since a — 1 = Fi(n') and b = Fy(n') with

2
u 2u
A =-1rg RU=-1g

so that F{(n') = ab and Fj(n') = b*> — 2a, we obtain the first two formulas in (2.2.6). To get
the last one we write
c=an" =Ton" + Tya+ i,

where the remainder r3 is in H5+7=3 by the paraproduct formula (A.1.17) in Appendix A.1
and satisfies the bound (2.2.7). We use the first equality (2.2.6) to express a in T;»a. We get

Tn//a = anl + T77” abn’ + T%,

for a new remainder of the same type r% (as a paraproduct with an L* function acts on any
Sobolev spaces, see (A.1.12)). Finally, by symbolic calculus (see (A.1.14)), T,n Topn' = Toppn’
modulo another remainder of the same type. Since T,»1 = 0 by definition of a paradifferential
operator, this concludes the proof of the lemma. O

Proof of Lemma 2.2.2. We use the notation D = —id. If po(x,&, () is a polynomial in ¢, with
coefficients that are paradifferential symbols in (z,€) i.e.

pO(maga C) = Zpg(x7£)caa

we shall write T}, for ) Tpe (Dg@)(z, ).
Let us write the contributions to the left hand side of (2.2.1) as

(a—1)D2p =T,1(D2yp) + Tp2p(a—1) + Ry,
beDZQD = Tb(DwDZgO) =+ TDxngob =+ RQ,
cD.p =T.(D.p)+ Tp,,c + Ra,

where Ry, ¢ = 1,2,3, the remainders in the paralinearization formula, satisfy estimate (2.2.5).
In the second term in the right hand side of the above equalities, we express a — 1, b, ¢ using
(2.2.6). The remainders ry in (2.2.6) will give rise, according to (2.2.7), to new contributions
satisfying (2.2.5).

Now we introduce
po(x,6,¢) = * + & 4 (a — 1)& + b&¢ + icC

and
Ty, = D+ (Id+ T, 1)D? + T,D,D, — T.D.,.

Notice that we do not have Ty = D? (because we assume in Definition A.1.2 that the cut-
off function €, which enters into the definition (A.1.3) of paradifferential operators, satisfies

47



0(&1,62) =0 for |&] < 1). However, T), — Tvpo =T — D? is a smoothing operator. Then we
see that (2.2.1) may be rewritten as

TPOSO = _TD%QOTabT,I - TDIDZWTb2—2a?7/

(2.2.8) ] ;. Y
— ZTDZ@Tabn”U — ZTngoTan +7r

where r satisfies (2.2.5). Since D2p, D, D,y (resp. D,p) is in L*(] — 00,0],C7~2) (resp.
L>®(] — 00,0],C771)) and ab, b? — 2a, a (resp. abn”) belong to C7~! (resp. C7~2), it follows
from the symbolic calculus result (A.1.14) that the differences

Tp2,Tab — Twpp2os  IDuD.oli2—20 — T(v2—2a)DeD.os ID.oLabry’ — Tabn' Dy
xT xT

are operators in L(H*~!, HS™7=3) (resp. Tp.yTy — Tup. is an operator in L(H~1, H¥+772))
with operator norms bounded from above by

C(In'llcr-1) sup | Ve 20l gyt -
2<0

We conclude that (2.2.8) may be written
(2.2.9) Tpotp = Tyl + 7
where 7 is a remainder satisfying (2.2.5), and where ¢ is the symbol

(2.2.10) q(z,&,¢) = abagcp + (b2 —2a)0,0,p — abn" 0,0 — ia(d,p)E.

By definition of W, the left hand side of (2.2.4) is up to sign Tvpo (¢ =Ty, ,m), so that taking
(2.2.9) into account, and remembering that Ty, — Ty, = T¢2 — D? is a smoothing operator, we
see that the proposition follows from the following lemma.

Lemma 2.2.5. Under Assumption 2.2.1,

sup || Ty’ — Tpo To.n| os—s < C (10 llov=1) 10l s 8D [| Va2 0ll o1 -
z<0 2<0

By the formula of composition of paradifferential operators (A.1.7), which is exact at order 3
since po(z,-) is a polynomial of order 2 in (¢, (), we may write

(2.2.11) TpTo.p = Tpooop + Tgy + Ty + R

where R is an operator satisfying

HR||L(HS,HS+H) < C(H??/HCW—I) Sl<1]8 Va2l gv-1
and where g1, go are given by
1
91(2,€,€) = = (0cpode + (9cp0)(9:0:9))

92(2,€,0) = = ((02p0) (920) + 2(0c0epo) (9:6%2) + (92p0) (620:0))

1
2
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Computing these expressions using that (2.2.1) implies that
(63 + a@i + b&,ﬁz)ﬁz@ = c@fg@,
we obtain
1 ‘
91(2,€,€) = = ((2 + b€ + i) + (208 +b)2,0:¢0)
(2.2.12) i
92(w,€,¢) = —cdZp.

Finally, we get that the right hand side of (2.2.11) may be written T, + R where e is a symbol
of the form

6(1‘, 2, fa g) = CQF()(J), Z) + Crl(xv Z, g) + F2($, 2, 5)7
where Ty is a function of (z, z), I'1, 'y are symbols in (x,¢) depending on the parameter z,
with
Ta(2,2,€) = a(02)€” — ib(0Z )¢ — 2ia(0x0:)¢.

We are reduced to showing Tyn' —T,n = 0. Since 7 does not depend on z, we have T,.n = T, 7,
so that it is enough to check that I's(x,z,&) = ¢q(x, z,£)(i€). This follows from the above
definition of 'y where we substitute to 02¢p its expression 92¢ = —ad?p — b0,0.p + O,
coming from (2.2.1), remembering that ¢ = an”. This concludes the proof. O

We thus have proved that the unknown W solves the paradifferential equation PW = f,
where

(2.2.13) P =0+ Id+ T, 1)0% + Tp0,0, — T.0..
Our next task is to find two operators P_ and P, such that

P = (0.~ P)(0. - Py)
modulo an admissible remainder.

Lemma 2.2.6. Set
P- = —|Da| + Tprig; P =[Dal + Tp—ig

where p = p(x,€) and P = P(z,&) are two symbols given by

p(z,§) = a(x) (10xn(x)€ — [€]) + c(x),

(2.2.14)

P(x,€) = a(z) (10 ()¢ + [€]) -
Then
(2.2.15) (0. — P-) (0. — P) = P + Ry,

where P is given by (2.2.13) and Ry is a smoothing operator, satisfying

2
(2.2.16) [Roull g5 < Clllnll o) 1l |10zl g

for any p € R and any u € H*(R).
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Proof. Below we freely use the facts that, for any symbol a = a(z, &),
Tae)ie) = Tadzs Tawg)lg) = TalDel s 02(Tou) = Tadou + T, qu-

Since b = —2a0,n, by definition of P_ and Py, we have P_ + P, = —T,0, +T.. Consequently,
we have (2.2.15) with

Ry=P_P, — (Id+T, 1)0>
= Tyiig) | Dal = |Da| Tp—jg + Tpiig Tr—jg) — Ta-105.

The proof of (2.2.16) is in two steps. We first give an exact formula for T}, ¢| [Dy|—|Dz| Tp_j¢)-
Namely we prove that Tp,, |¢| | Dz |—|De| Tp_je| = T,-10%—T, for some explicit symbol g. Then
we use symbolic calculus to estimate the difference between T}, ¢/ Tp_j¢| and Tj.

To compute T}, yi¢| | Dz| — |Dz| Tp_j¢| we use the two following identities (see Lemma A.1.11):
for any function a = a(x) in L°°(R) and any function u in L?(R),

(2.2.17) |Dy| Ty | Da| u + 03 Ta0pu = 0,
(2.2.18) |Dy| TaOyu — 8, T, | Dy u = 0.

Now, by definition,
p+ €l = an'(i&) + an” + (1 —a)l¢], P -] = an'(i€) + (a — D[],

SO

(2.2.19) T

ptle) 1Dzl = |Da| Tp_jg

= Ty Or |Da| + Taryr |Da| + T1—q |Da|* = | Dy| Tary Ox — |Da| Tue1 | Dal .
Since Ty Op + Topyr = O (Tan/-) — T{9,ayy, the identity (2.2.18) implies that
(2.2.20) Ty O | Di| + Tagyr | D = | D| Toy O — T, ayny | D] -
On the other hand, (2.2.17) implies that
(2.2.21) |Dy| To1|Da| = —0:To 102 = —Tp,000 — Ty 102
Setting (2.2.20) and (2.2.21) in (2.2.19), we obtain that

Tyig |1 Dal = 1Dul To_je) = —T(o,apy [Pl + Th—a | Dal® + T,a0s + Ta 10
- T(a,1)8£ - Tq

with
(2.2.22) q = 1 (9z0)[¢] — Bpa(i€) + (a — 1)IE[.
We conclude that Ry =Ty ¢ Tp_jc| — Ty-
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It remains to estimate the difference between T}, ¢ Tp_|¢| and T;. To compute T ¢ Tp_¢|s
it is convenient to introduce the symbol

oz, &) = a(x) (10n(x)§ — [£])

and to decompose p as p+ c. Since 8?@(3:, ¢) =0and 85[5\ =0 for k > 2 and £ # 0 and since
the symbols g, P belong to F}kl(R), using (A.1.7) applied with (m,m’,p) = (1,1,7 — 1), we
obtain that

Torig Tr—jg) = T + Q1

where Q1 is of order 3 — v and the symbol ¢; is given by

@1 = (9 + )P~ 1€) + 306+ €D0u(P I,

This simplifies to

1 1
0= ~€+ pP + 208 + ~0cp0, P + Z,éaxp.

On the other hand, using the notation (A.1.4), we have
My (p+ 1€ + My (P —1€]) < C(lnlle) 1l
and hence ||Q1| gt prer—sy < C([nll o) HUH%W
Similarly, (A.1.7) applied with (m,m’, p) = (0,1,2 — ~) implies that
TeTp—jg) = Te(p—jg) + Q2

2
where [[Qall (gt gy < ClInllen) Inll2-

The previous observations yield T}, ¢ Tp—j¢) = Tr + Q1 + Q2 with

1 1
T =&+ pP +2a¢® + g@g@@xp + ié|arp + (P — [€)).

Now using the calculation results
9 1
pP = —a&”, ;(agp)(ﬁxp) +cP =0,

we obtain that
1¢&
i [¢]

and it is easily verified that 7 = ¢ where ¢ is given by (2.2.22) (recalling that ¢ = an”). We

7= (a—1)EP + - 0. P — clé|

conclude that Ry = @1 + @2 and the previous observations yield

1Roull grse-3 < Cllnllen) Il llull g -
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Having proved this first estimate for the remainder, we prove it is estimated by the derivative
of u only:

2
[Roull gn < Cllnller) Inllcn 19zl i -

To do so, introduce & = £(§) such that #(§) = 1 for [£] > 1/3 and &(§) = 0 for [£] < 1/4.
Split Ry as
Rg/%(Dx) + R()(Id — E(Dx))

Notice that Ry(Id — k(D,)) = 0 since A(Id — k(D,)) = 0 for any paradifferential operator A.
On the other hand,

1RoA&(DzYull g3 < Cllnllca) Il 1E(DYull e
2
< Cllnlle) il 0zull g -

This completes the proof. O

By construction, it follows from the previous lemma that
(0, — P_)(0; — P)W = PW + RoW.
On the other hand, f := PW is estimated by (2.2.5). Introduce now
w= (0, — Py)W.
Then

(2.2.23) { (0: = Po)w = f + RoW,

(8z - P+)W = w.
Since Rep(z,£) < —c|¢| for 1 < [£|, the first equation in (2.2.23) is parabolic. Since
Re P(z,&) > c|{|, the backward Cauchy problem is well posed for the second equation. Hence,

up to time reversal in the second equation, System (2.2.23) is a system of two paradifferential
parabolic equations. We begin by recalling a classical estimate for such equations.

Lemma 2.2.7. Let p € R, T € [0,+00). Let u in C°([0,T]; H*(R)) N C1([0,T]; H*1(R))
and F' in L*=([0,T]; H*(R)) satisfying

ou + |DI‘ U+ Tq_mu =F,

for some symbol g € TH(R) (independent of time) such that Req > c|&|. Then, for any e > 0,
u belongs to CO([0,T); H*t17(R)) and there exists a positive constant K depending on M{(q)
(see (A.1.4)) such that

(2.2.24) HUHLC’O([QT];H;H-I—s) < K [[u(0) | s + K ||FHLoo([o7T];Hu) + K |’uHL00([07T];Hu) :
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Proof. This follows from [41] (see also [6, Prop. 4.10] and [3, Prop. 3.19]). We recall the
proof for the sake of completeness. Write

Ou+ Tyu = g := F + (Tj¢| — | Dz|)u.
Since Tj¢| — | D] is a smoothing operator we have

91l oo o, 77: 10y S NE | oo o770y F 1l oo 0,77 0 -

Given 7 < 0, one denotes by e(r,-,-) or simply e(7) the symbol defined by e(r,z,§) =
exp(7q(z,§)) so that e(0,z,£) =1 and d-e(r, z,§) = e(7, 2, §)q(x, §).

Now, given y € [0,7T] and ¢ € [0,y], write
O (Te(r—y)t) = Te(r—)9 + (Tore(—y)tt — Te(r—y) Tg) w
and integrate on [0, y] to obtain
Y

Tlu(y) = Te(—y)u(o) + /0 {Te(t—y)g(t) + (Tate(t—y) - Te(t—y)TQ) u(t)}dt'

Which is better formulated as
Y

u(y) = Te(—yu(0) + /0 {Te(t—y)g(t) + 5t —y)ult) }dt + (Id = Th)u(y),

With S(T) = (TaTe(T)u — Te(T)Tq)-

According to our assumption that Req > c|¢[, ¢ € TH(R), we see that e(7) belongs uniformly
to T'Y(R) for 7 € [T, 0]; which means that SUP,¢[—7,0] MY (e(r,-,-)) < C(M{(q)) where the
semi-norm Mg} (q) is as defined in (A.1.4). Therefore d.e = eq belongs uniformly to T'{(R).
It follows from symbolic calculus (see (A.1.8)) that S(7) = To(r)q —
order 0. Therefore there exists a constant K depending only on M{(q) such that, for any
y € [0,7] and any ¢ € [0, y],

To()Ty is uniformly of

15 = y)u®)ll gn < K [u@)]| e
Similarly, (A.1.12) implies that
1T~y O] e < K Nu(O)] s -

On the other hand, |y — t|' 7 (€)1 ¢e(t — y, z, ) is uniformly of order 0 so that

Yy
/O | Tett—p 9O || sa—c At S N9l oo (0,47, 20) -

It follows that there exists a constant K depending only on M (q) such that, for all y € [0, 7],

lu@)l guti-e < K [[u(0)] gusr-e + K HF”Loo([o,y];Hu) + K HUHLoo([o,y];Hu) :

This proves that u € L>([0,T]; H**17¢(R)). Since u € C°([0,T]; H*(R)) by assumption, this
implies, by interpolation, that u € C°([0, T]; H**172¢(R)). This gives the desired result with
¢ replaced with 2e. O
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We are now in position to estimate (w, W) by using the previous lemma and the fact that
(w, W) satisfy (2.2.23). For later purposes, it is convenient to state this as a general result.

Lemma 2.2.8. Consider 7 <0, p € R and € > 0.
(i) Let v in L®([r,0]; H*TY(R)), V in CO([r,0); H**L(R)) N C([r,0]; H*(R)) satisfying
(8z - P+)V = 0.

If 0,V (0) € HHFLI=5(R) then V € C([r,0]; H**2=¢(R)) and there exists a non decreasing
function C depending only on v, T, u, e such that

(22.25)  [IVa 2Vl poo 7,00 1)

< Clnlle) 19V (O | rutr-e M2l oo gr0p;mrt 0 + Va2V poo ir g3 ) -
([,0]

(i3) Consider V in L ([r,0]; H*=O=3)(R)), v in CO([r,0]; H*(R)) N C*([r,0]; H* *(R)), and
[ in L*°([r,0]; H*(R)) satisfying

(2.2.26) (0. — P_)yu=f+ RyV.

Then, for any 7' in |7,0[, v belongs to C°([7',0]; H*T1=¢(R)) and there exists a non decreasing
function C depending only on v, 7,7, u,e such that

(2.2.27) lell o o garti—ey < CUer) (171 oo gy + 12l oo gz

+ C(HTIHC’Y) ||77||Cv ”vx,zvHLoo([T,o};Hu—l—(w—g)) .

Proof. To prove statement (i) we apply Lemma 2.2.7 to the auxiliary function u(t,z) =
(0;V)(—t,x) which satisfies
du+ [Dglu+Tpjgu=G

where P is given by (2.2.14) and where G(t,z) = —(0,v + Ty, pV)(—t, z). Thus the estimate
(2.2.24) applied with T' = —7 implies that there exists a positive constant K = K(||1]|s~)
such that

||UHL00([0,_T];H}L+1—E) <K HU(O)HH;L-H—E + K ||GHL°°([O,—T};H“)
+ K ||ul| oo (10,1, 110) -
This yields
”aa:VHLoo([T,o];lefs) <K ”axV(O)HHuH*e + K HaxQHLOO([T,O];HH)
+ K102V oo (17,00 10) -

Since 0,V = P,V + v can be estimated by means of 9,V and v, we obtain (2.2.25).
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To prove statement (ii) we apply Lemma 2.2.7 to the auxiliary function u(t,z) = tv(t+ 7, x)
which satisfies u(0,2) = 0 and

Opu + | Dyl u+Ty_jqu=F
with ¢ = —p (where p is given by (2.2.14)) and
F(t,z) =tf(t+1,2) +t(RoV)(t + 1,2) + v(t + 7, ).

It follows from (2.2.16) and the assumption v > 3 that |[F|[ e (o, _r},gn) 18 bounded by the
right-hand side of (2.2.27).

Since u|i—¢p = 0, the parabolic estimate (2.2.24) implies that

[wll oo ([0, =) it 12y < KN F[| oo o, — sy + K ([0l oo (g0, -], mroe) -

Clearly,
[ull oo (0, —r); ey = sUP [1(z = T)(2)l| g < [7] sup |Ju(2)] g

z€[7,0] z€[1,0

and
sup |[[o] g1 < 7 osup |[(z = 7)u(2)l gatr--
z€[7!,0] |T -7 | z€[7!,0]
<L up )l g
|T - T/| te|0,—7] ar

Therefore, the previous estimates imply (2.2.27). O

We are now in position to prove the main result of this section. Given 7 < 0, we use the
notations
E(r) == sup {[|0:0llg-1/2 + |0ap — OamO: 0|l fg-1/2} ,

(2.2.28) selro
D(T) ‘= sup Haz@_ |Da:|<10HH—1/2'
z€[1,0]

Proposition 2.2.9. Let (s, u,7) € R? be such that

1 1
S_§>/y>35 OSMSSa rngNv

and assume that (n,) is in the set £, defined after the statement of Proposition 1.1.6 and
1 -1 1
that moreover (n,v) € H® x H2* is such that w € H2"*2.

Consider e > 0 and 7 < 7/ < 0. There exists a non decreasing function C: R — R such that

sup 10-W (2) = PyW(2) || gusv—s—e < c1 |0l s + c2 [|0zw]| gru—
(2.2.29) =€lr.0]
+ 2 E(1) + c3D(7),
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and

(2.2.30) p (VW < 1 il + €3 10l + s () + esD),
z€[T",0
where
(2.2.31) c3 = C([nllgr), c1:=cs St[lp] Ve 0215 c2:=cslnllor -
z€[1,0

Remark. We prove not only a prior: estimates but also an elliptic regularity result. Namely,
the previous statement means that if the right-hand side of (2.2.30) is finite, then so is the
left hand-side.

Proof. Given 7 €] — 00,0[ and (u, o) € R?, introduce

Ay(r;0) i= sup [[0:W = PLW||go ,

z€[7,0]

Ag(ip) == sup ||V Wy -
z€[1,0]

One denotes by A; the set of u €] — oo, s| such that the following property holds: for
all (o,7,7') € R? such that

o€ luu+y-3[, <71 <0,

the function 9, W — P, W belongs to C°([7/,0]; H° (R)) and there is a non decreasing function
C: Ry — Ry depending only on (s,~, u, 0, 7,7') such that

Ai(thio) < |Inllgs + 62“8waHM*1 + c3A1(T;—=1/2) 4+ coAs(T;—1/2),
where ¢1, c2 and c3 are as in (2.2.31).

Similarly, one denotes by Ay the set of u €] — 0o, s] such that the following property holds:
for all 7 €] — 00, 0[, the function V, W belongs to C°([r,0]; H#(R)) and there exists a non
decreasing function C': Ry — R, depending only on (s,~, u, 7, 7') such that

Ao(T'5 1) < c1||nll s + 63{“8575“)“HM + Au(7;=1/2) + Ax(T; _1/2)}'

The proof of Proposition 2.2.9 is in two steps. The key point consists in proving that
(2.2.32) Ay =]—00,s], Ay =]-00,s].
To prove (2.2.32), we proceed by means of a bootstrap argument (as in [2]).

Recall that, by notations, w = (9, — P1)W and

(az_P—)M:f"‘ROVVa
(az_P+)W:M7
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where f is given by Lemma 2.2.2. It follows from the estimate (2.2.5) for f and Lemma 2.2.8
that, for any (s,7, ) as above, any 7 < 7/ < 0 and any £ > 0, there exists a non decreasing
function C': Ry — R, such that

Ai(tip+1—¢) <clnllgs + c2da(msp—1— (v = 3)) + e3A1 (75 1),
As(tip+1—¢) < 30w gusi—e + c3Ai(T; p+ 1) 4+ c3Aa(T; ),

where ¢1, ¢ and ¢3 are as in (2.2.31). This implies that, for any € > 0,

(2233) u—(y—=3)+ec€ A, p—1—(y—3) € A
= min{pg+1—¢c—(y—23),s} € Ay,

and

(2.2.34) p+d—v+ecec A, peAy = min{u+1-—¢,s}e A.

Now, let us show that (2.2.33) and (2.2.34) imply (2.2.32). Firstly, notice that, clearly,
(2.2.35) 5/2—y €A,  —1/2€ As.

Observe that 5/2 — v < —1/2. Now assume that [5/2 — v, k] x [5/2 —v,k] C A; x Ay for
some 5/2 — v < k < s, and set

. 1 1
€ = min 1(7—3),1 , p=rk—1+4+2¢ v=xr+(y—3)—2e.

Then p < k and p+4—~y+¢e < k. Therefore p+4—~v+¢ € Ay and p € Ay. Property (2.2.34)
then implies that min {y + 1 — ¢, s} € As. Since p+ 1 — e = Kk + ¢ we thus have proved that
min{k+e¢,s} € Ay. Similarly, v — (y—3)+¢e < k and v — 1 — (7 —3) < k; so Property (2.2.33)
implies that min{x + ¢, s} € A;. We thus have proved that

[5/2 —~,k] x [5/2 =,k C A1 x Ay with & = min{x + ¢, s}.
In view of (2.2.35), this implies (2.2.32).

To conclude the proof of Proposition 2.2.9 it is sufficient to prove that

(2236)  As(7=1/2) S B() + Inll 5up Vo002 o
(2237)  A(r;=1/2) £ D7) + Cllnllca){ Il B(r) + sup IV sl ol -

Recall that

Ai(1;-1/2) = sup ||0.W — PyW || y-1/2,
z€[T,0]

Aa(ri =1/2) = sup {I0:W, -y + 10 W1, }
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Let us prove (2.2.36). Since 0,W = 9.¢ — Tpz,,n we have

[0 Wl < sl 3 + [@2ll ], 3 -

2

and hence sup.¢j HaZWHH* 3 is bounded by the right-hand side of (2.2.36) by definition
of E(7). To estimate 0,W, write

O W = 0pp — Tazapawn - Tazazw
= Oz — az‘paxn + (az@ - TBzap)a’L‘n - Taxazgaﬁa
SO
10WI,_y < 100 — BuoBonl,_y + |0sButl,
+ 1 To.00enll -1 + [ Tos0.0mll - -

This implies that

10:W -1 < E(7) + K |0l g1 sup [[ Va2l 1

which completes the proof of (2.2.36).
Let us prove (2.2.37). By definition of P, and W, we have

O.W — PLW = (0. — Py)p — (0. — Py)To,on
= (0: = |Dz|)p — Tp_jgp — To2on + P To.on.

The first term in the right-hand side is estimated directly from the definition of D(7). To

estimate the third term we write HT@W”HH% < Ha?(pHC,l |Inll .1 and then use the equation

H?
(2.2.1) satisfied by ¢ to estimate H(?EQDHC,T To estimate the last term, by using (A.1.5), we
first notice that

(1+ Mg (P — €)1 To. oll 12
(1 + My (P = [€D) 10=40ll oo 101 2/ -

Since My (P — |£]) < C(|Inllcr) 102m]lc1s we obtain that

1P+ To. ol 172

IZANRZA

1P+ To. ol 172 < Cllnll o2) 102l oo 1]l 1172 -
Similarly, (A.1.10) implies that
[ Tp—ig1ell -1 S Mo (P = €D 1020ll 5112 < CllInllc2) 10anllcr [102pll -1/ -

Since

1026l =172 S 102p = 0endzpl gr-1/2 + [|0xnll o1 1020l gr-1/2
S (L4 110zl ) E(7),

by combining the above estimates we conclude the proof of (2.2.37). This completes the proof
of the induction argument and hence the proof of the proposition. O
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2.3 Tame estimates

In this section we prove the tame estimates (2.1.2).

Proposition 2.3.1. i) Let (s,v, 1) € R be such that

1
5——=>7v>3,

1 1
— << —N.
5 5 SHES 7%2

Consider (n,v) € £,N (HS+%(]R) X H%’“(R)) and set w = — Tgyyn. Then

B(n)y € H*"3(R), V(n)y € H 3(R),

and there exists a non decreasing function C: Ry — Ry depending only on (s,7, p) such that:

(23.1) (Bl -y + V)

3

< C(Imlles) (1Dl 0 g Il + 1Dl ]}

ii) Let (s,v, ) € R? be such that

1 1
s—§>7>3, 1< pu<s, 7§Z§N.

Consider (n,v) € &N (HS+%(R) X H%“_%(R)) Then G(n)y € H*~Y(R) and there exists a
non decreasing function C: Ry — Ry depending only on (s,7, u) such that:

(23.2) Il -t < € i) {N1D212 0l ooy Wlgs + D212 ]y

Proof. We begin by proving the following estimates.

Lemma 2.3.2. Let 7 < 7' < 0 and consider (s,7, 1) as above. There exists a non decreasing

function C: Ry — Ry such that for all (n,v) € &N (HSJF%(R) X H%’“(R)),

sup 0.0,y + sup 10wo — Bundesl
z€[1!,0]

z€[1!,0]

< C(Imlles) { 11Dl %]l ey Wl + 1000l -y + E(T) + D(T)

where D(7) and E(T) are as in (2.2.28).

Proof. We begin by estimating 9.¢. To do so, write 0, = 9.W + Tyz2,n to obtain

(2.3.3) sup [0z, -1 S sup [O:W]| 1+ sup 110z oo Il ey -
2 0] 2l gr 2 0] z H* i H HL HF 2
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It follows from (2.2.30) applied with p replaced with p —1/2 € [0,s — 1/2] that

1 +c3E(T) + csD(7),

r-3

@34) s [VaiW ey < el +eafl0re]

where

c1:=C(|Inllen) sup |Ve0(2)||grv-1,  c3:=C(|nllcy)-

z€|[T,0

On the other hand, since 929 = —ad?¢ — b0,0.p + ¢, we have

sup [|02¢][ o < Clllnllc2) sup Vo z0llen -
z€[r!,0] z€[r',0]

As a result, since p <'s, (2.3.3) implies that

oup 1956l gumy < €1 il + 0]y + )+ euD(7),
z€[T’,

and the asserted estimate for 9, follows from (1.1.18) which implies that ¢; is estimated by
1
Ul |1Dal? ¥y

The estimate for 0, — 0,p0;n follows from similar arguments, the decomposition
Opp — 82'9089077 =0, W + Tazazgon - Taznaz@ - RB(@ZQO, 33577)7

and the classical estimates for paraproducts (see (A.1.17) in the appendix). O

We now apply Lemma 2.3.2 to infer the tame estimates (2.3.2) and (2.3.1). Clearly, since

B(n)¢ = 9.¢|.=0, V(m = (0 — 0:00:m)|.=o0,

Lemma 2.3.2 implies that ||B(1)9||gu-1/2 and ||V (n)¥|| gu-1/2 are bounded by

1
C (Inllos) {I1Ds12 ]y Iz + 1950l g + E(-1) + D(-D)}.
It follows from (1.1.14) that
1
E(=1) + D(-1) < C(llnllc2) ||| De|2 9| 2-

Therefore, to complete the proof of (2.3.1), it remains only to observe that, since ¢ = w +

Tnyyn,

(2.3.5) [ 1 L e Y
S D212 @l + 1B oo 1l
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where ||B(n)||;~ is estimated by means of (2.0.4).

Now, by using the estimate (2.3.1), the usual tame estimate for products (see (A.1.18)), (2.0.4)
and the identity

G(n)p = Bn)y — (V(n)y)9en,

we then obtain

1 1
(2.3.6) IGO)EN s-s < C (Umllerm) {1Pal? ¥l -y Illgze + [[1Da]? ]y } -
Now since 1 <'s, by definition of w = ¢ — T(,)yn and (2.0.4), we have

(2.3.7) D212 ]l ey < N1Del2 %l ey + C Unlln) 11D 12 | oy 1l

and hence (2.3.2) follows from (2.3.6). This completes the proof of Proposition 2.3.1. O

2.4 Paralinearization of the Dirichlet-Neumann operator

We here study the remainder term in the paralinearization formula
F(ny = G = {|D2]w = 05 (Ty ) |-

We prove an extended version of (2.1.4) where we add two extra parameters pu, o

Proposition 2.4.1. Let (s, 1,7) € R3 be such that

1 1
S_§>7>37 1§M§87 /ygiN

Assume that (n,1) is in the set £, defined after the statement of Pmposmon 1.1.6 and that
moreover (n,v) € H® X 3 is such that w = b —Tgmyyn s in H3k 3, Then, for any o <
p+y =3, F(n)y € H°(R) and

41)  IF@@lge < CUnller) {1Dal? ll oy Inlls + Il [1D212 ]| oy b

where C' is a non decreasing function depending only on (s, 1,7, 0).

Remark 2.4.2. For p < s, it follows from (2.3.7) and (2.4.1) that
242)  1E@Wlae < C(nllen) 11D @l g nlle + Inllen Do ]y

Proof. We use the notations and results of §2.2.
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Lemma 2.4.3. There holds

243)  sup Ve W (lipoms < CQlnllen) {NIDel? 6l ooy Il + 1D:l> ]y

and, for any o < u+~y—3 and any T € [—2,0], we have

(24.4)  sup [|0.W — P W || 4o
z€[7,0]

< (i) {1Del? ¥l ooy Illszs + Inllc 1D ]y } -

Proof. The first (resp. second) estimate follows from (2.3.4)) (resp. (2.2.29)), the Hoélder
estimate (1.1.18) (to bound the constant ¢; which appears in (2.3.4) and (2.2.29))1, the Sobolev
estimate (1.1.14) (to bound E(7) and D(7)) and the estimate (2.3.5) for |||Dq|2 wHL2. O

Given Lemma 2.3.2 and Lemma 2.4.3, the proof of Proposition 2.4.1 now follows from a close
inspection of the proof of Theorem 1.5 in [6]. Recall that, by definition,

Gy = [(1+ (02m)*)00 — 0] | __y-
Write
(2.4.5) (14 (9:0)%)0- — 02m0up
= 020 + T(9,n)2 029 + 2T, p9,0n0:1 — (To,n0up + T, ,0:m) + R,

where

Ry = RB(azSDa (a’r"])2) - RB(axSDv 5x77)
+ TachRB(axnv 0zn) + 2(TBZ¢T6M) - Tazsoazﬁ)axn

is estimated in LZ°(H?) by means of the paraproduct rules (A.1.14), (A.1.17) and (1.1.18).
We next replace 0,¢ by 0,(W + Tj,_,n) and 0,¢ by 0,(W + T5_,n), to obtain,

(14 (82m)?)0:0 — 0unOap = O W + T(,20:W — T, 0 W

+ T110.n)2)02e1 — T(02m)0,0.0M + L(0,m)0.0051 — To, 0021
4+ R+ Ro

with

Ry = —(Tia,n2Tozy + T(a,m)2020)0 + (LounTo.0,0 — T(0,1)0,0.0)7

Again, it follows from the paraproduct rules (A.1.14) and (A.1.17) that the L3°(H?)-norm
of Ry is estimated by the right-hand side of (2.4.1).
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Setting this into the right hand side of (2.4.5) we obtain

(1+ (92m)®)0z0 — DenOip
= 0.W + T(9,20.W — Ty, 0, W
+ To.00,n9:1 — 1,401
+ T4 0um?)020M = T(0um)0,0.0M + B1 + Ra,

Now it follows from the elliptic equation satisfied by ¢ that

(1+ (9:0)*)020 — (051) 00020 = —02p + (021) 02020 + D001
= —0y (axSO — (0xm)0. )

Therefore
(1 + (8961’])2)82@ — &;naxgo =0, W + T(an)2azW — TawaxW

- a:l? (Taxw—achaxnﬁ) + R1 + Ro.

Furthermore, (2.4.4) implies that
o, W + T(azn)zazw — TaxnaxW =P.W+ T(c')zr])QP-i-W — TaxnaxW +7r1
where the L°(H7)-norm of 71 is estimated by the right-hand side of (2.4.1). Now write
P, W + T(azn)2P+W - Tazn&pW = (‘Dx| + T>\—|f‘)W + ro,
with
A= (1+(0:m)*)P — i0sng,
(P is given by (2.2.14)) and where
r2 = (Tioun2Tp = To,n2p)W + Tom2 (1Dal = Tig )W

It follows from (2.4.3) and (A.1.11) that the L°(H7)-norm of ry is estimated by the right-hand
side of (2.4.1).

Now, since A = ||, by (2.2.14), and since 0, — 0,00,n|.—0 = V and W|,—y = w, we conclude
that
(1+ (021)%)0200 — 0anOpp = | Da| w — 0u(Tym) + [R1+ Ra 411 +72] |

This concludes the proof of Proposition 2.4.1. O

2.5 Linearization of the Dirichlet-Neumann operator

In this section, we prove the estimates (2.1.5). For later purposes, it will be convenient to
prove the following sharp estimates which depend on an additional parameter pu.
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Proposition 2.5.1. Let (s, u,v) € R?® be such that

1 3 1
- 3, S<u< =N.
s—5>7>3, ;<pu<s, 7%2

Consider (n,) € &, N (HSJF%(R) X H%”“%(R)) set w = 1 — Tpuyyn- There exists a non
decreasing function C': Ry — Ry depending only on (s,~y,p) such that

251) |G — Dal ¥l s <CIDal? | ey [l +Cllnll o 1D ]2 6| g
(252) 1B = Dalwll ey <CIIDal2 9 ooy Il + Cllnllon [|1D2 ]2 @]
(2.5.3) V@) = 0wl ey < CIID2I2 0| oy 1l s +C lnll [[1Dal? @]

where C = C([nlcv)-

Proof. Abbreviate B = B(n)y and V = V(n)1. In view of the definition (2.1.3) of F(n), we
can rewrite G(n)y — |Dy| v as

G = Dz = = [Da| Tpn — 9:(Tyn) + F(n)y.
Using (A.1.12), it follows that
Gy = 1Del ¥l gur S (1Bl oo + 1V lIgoe) Inll o + 1E )P s

Since 7 — 3 > 0, the estimate (2.4.2) (with (o, p) replaced with (u — 1, — 1)) for F(n)y
implies that

1 1
(2.5.4) 1E )l gur < C[1Dal2 9| oy 10l s+ Cllnll oo 1Dl 0[]
The estimate (2.5.1) then follows from the L>-estimate of (B, V') (see (2.0.4)).
Since B — V9,n = G(n)y (c.f. (2.0.3)) we have B — Vo,n = |Dy|w — 0:(Tvn) + F(n)y, so
B — ‘Dx|w =V — ax(TVn) + F(ﬁ)ﬂ}

Since

VOyn — 0:(Tyn) = Ty, V + Rp(V, 0:n) — To,vn,

we obtain
B =|Dg|w+ To,nV —To,vn + Rp(V,0.m) + F(n).

The estimate (2.5.2) follows from the tame estimate for V' (see (2.3.1)), the estimate (2.4.1)
for F'(n)y and the classical estimates for paraproducts (see (A.1.12) and (A.1.17)) together
with (2.0.4).

Similarly, with regards to V = 0,% — B0, n, replace 1 by w + Tpn to obtain

V =0, — BOyn = Opw + 0, (Tpn) — Boyn
= O,w + TamBn — Tg)an — RB(B, 89577).

Consequently, the estimate (2.5.3) follows from (2.3.1), (A.1.12) and (A.1.17). O
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Remark 2.5.2. Assume that 3/2 < u < s— 1/2 instead of 3/2 < p < s. Then, since ¢ =
w + Tg(p)yn, it follows from (A.1.12) and (2.0.4) that

I1Dal v = [Dalwll ey = [[1Dal Typnll -y S NIBOY Lo 1]l

(2.5.5) .
< C(Inle) 1Dz1? | ey Inll g -

Similarly |||Dy|? ¢ — [Da|2 w|| y,, and [|051 — .|l -1/ are bounded by the right-hand side
of (2.5.5). The estimates (2.5.2)—(2.5.3) then imply that

(2.5.6) (1B = [Da| ¢l ey + VDY = 0l 0y

< C (Inlle) {1Pa1? @l oy Illszs + inllen (10217 ]| -

H!™

The previous estimates means that B(n) — |Dg| and V(1) — 0, are operator of order 1: they
map H“*é(R) to H‘“%(]R). In sharp contrast, the estimate (2.5.1) means that G(n) — | Dy
is an operator of order 0. In fact even more is true: G(n) — |D,| is a smoothing operator.
Indeed, the proof of (2.5.1) shows that, if we further assume that > s+ 2 —~ and if we use
(2.4.1) instead of (2.5.4), then we obtain that ||G (1) — |Dz| %] ys—1 is bounded by

C (o) {N1D212 0l oy Wl + Il 1D 6] }-

2.6 Taylor expansions

We here study the Taylor expansions of the Dirichlet-Neumann operator G(n) with respect
to the free surface elevation 7. Craig, Schanz and Sulem (see [19] and [46, Chapter 11]) have
shown that one can expand the Dirichlet-Neumann operator as a sum of pseudo-differential
operators and gave precise estimates for the remainders. We present now another demon-
stration of this property which gives tame estimates. Tame estimates are proved in [19] and
[8, 29]. Our approach depends on the paralinearization of the Dirichlet-Neumann operator
with tame estimates. Furthermore, the scheme of proof allows us to prove similar expan-
sions for the operators B(n), V(n). The key result of this section is the estimate (2.6.3)

for F(n) — F<a) ().

Denote by A(n) either G(n) or one of the operators B(n), V(n) and F(n). In this section, we
compare A(1) to A<z)(n) where

G<2)(my := |Dz| ¥ — [Dg| (n|Da| ) — 02 (n0at)),
B<ay(m = G<a)(n)) + 9:m0,
‘/(52)(77)1/) = 0z — 0:m | Dy | Y,
(2.6.1) F<ay(my = —Da| (1Dz| %) + |Dal (T\p, 1) — 02(102) + 0u(To,ym)-
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Remark. When we later compute the cubic resonances, we will be forced to study cubic ap-
proximations to the Dirichlet-Neumann operator. The proof of the next proposition contains
also the analysis of the cubic terms.

Proposition 2.6.1. Let (s,v, 1) € R? be such that
1
s=1/2>y 214, s>p=5 ~¢oN,

and consider (n,v) € Hs+%(R) x (C"(R) N H%’”(R)) such that the condition (1.1.17) is
satisfied. Then the following estimates hold.

There exists a non decreasing function C: R — R such that, for any A € {G,B,V},

(2.6.2)  [JA(MY — Ay || 71

< Clnlle) Il {I1Dal? ¥ ooy Ilizs + s [1Dal? 0]}

and

(2.6.3) [|[F(n)v — F<o)(Me || in

< Cllmlle) Il {1DalZ 6 ooy Illsrs + Il 1Dl ] 5,

Remark 2.6.2. The estimates (2.1.7) and (2.6.3) applied with g = s — 1/2 imply that

(2.6.4) ||F(n)y — F<o(n)y| s

< Cllmlles) Il {1Dal? ¥ ooy Inllgze + Il (11Dl ]

Hs}?

where recall that w(n)y =1 — T,

Proof. We shall need to consider the cubic terms in the Taylor expansions of G(n), B(n)
and V(n). Set

1
G<g) (M := Gy (MY + | Del (0(|Da| (0| Dal 9))) + 5 | Da (n*034)
1

B<ay ()Y 1= G(<3)(n) + 0endath — (9xn)? | Dy | b,
V(S?)) (UWJ = Optp — aaan(§2) ("7)¢

For k € {1,2,3}, set

Ty = nllEs" {1212 6]l ey Il + Il (11Dl ], -
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The proof is in four steps. In the first two steps we prove the weaker estimates:

[ A = Ay Y| gumies < CUInll ) Ty

for A € {G,B,V} and k € {2,3}. (For k = 2, comparing this with (2.6.2) we see a loss
of 2 derivatives.) Then, in the second step, we prove (2.6.3). This is the key step. Indeed,
once (2.6.3) is granted, we show in the fourth step that one can obtain the optimal estimates
stated in the above proposition for A(n) — A<9)(n) with A € {G, B,V}.

STEP 1: First estimates for G(n)

In this step we prove that

(2.6.5) IGmY = |Da| ¢l gu—2 < ClInll )T,
(2.6.6) |Gy — Gy Y| s < Cllnll o) T2,
(2.6.7) |G — G<ay(MY|| s < ClInll ) T5-

To do so, we use the property, proved by Lannes [32], that one has an explicit expression of
the derivative of G(n)y with respect to n. Introduce g: [0,1] — H*~}(R) defined by g(\) =
G(An)y. Then

(2.6.8) g (\) = =G(An)(nbo(A)) — Iz (nvo(A)),
where by(A) := B(An)y and vo(A) = V(An)y. Since

(A) + A0210xt)
1+ A2(0,m)%

bo(A) i= BOp)yp = 2 v0(A) = Bat) — Abo(A)Da,

it follows that by and vg are C* from [0,1] to H*~%(R), with

ey o (00 4 D — 2@ o(N)).

T 1+ A2(0,1)
v(A) = —bo(N)0zn — Aby(N) D).

These expressions show that g’()), by(\), vo(A) may be written as sums of expressions of the
form ag(\,n,n')A2(An)ar (N, n,n')A1(An) where a1, az are analytic functions of their argument
with a1 (A,0,0) = 0 and A;i(n), Aa(n) belong to {G(n), B(n),V(n), 0z }. Moreover, in the case
of ¢'(\), one may assume that ag is constant and that As(n) belongs to {G(n), 0.}

We may thus iterate this computation, which shows that g(\) is C* with values in H*1=F,
and ¢ (\) is a sum of expressions of the form

14

(2.6.9) Agpr () T ae s m.0) Ap (M)
=1
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where Ay(n) is in {G(n), B(n),V(n),0:}, ' < £, Aga(n) in {G(n), 0} and ap are analytic
functions vanishing at (n,7n") = (0,0). To compute the first terms in the Taylor expansion of
g, we need to compute explicitly

g"(A) = =G () (b1 (X)) — du(nv1(N)),
b1(A) = p(A) — B(An)(nbo(N)),
vi(A) = vp(A) = V(An)(nbo(A))-

Since ¢(0) = |D,|, B(0) = |D.|, V(0) = 0,, it follows from (2.6.8) and the above equalities
that
g'(0) = = [Dz| (n]Dz| ) — 0 (n02)),
and
9"(0) = 2|Da| ((|Da| (7Da| ) + Dzl (n*030) + 07(n* | Da ).
If (1.1.17) is satisfied then (n,1) belongs to the set &, introduced after the statement of

Proposition 1.1.6. Using the Holder estimates (2.0.4) we successively prove that, for k = 0,1, 2,
we have (An,nbi(A\)) € £,——1 and according to (2.6.9)

(2.6.10) 19" D)z < Cllllo) IS 1Dl ] s

Using the tame estimate for product (A.1.18) and the tame estimates for G(n), B(n) and V(n)
(see (2.3.2), (2.0.4), and (2.3.1) applied with p replaced with p — 1/2 together with (2.3.7)),
we obtain

lg™ )| gu-ss < Cllmlle-) T for k € {1,2,3}.
The desired estimates (2.6.5)—(2.6.7) are then obtained by writing that, for n =0, 1,2,

n 1 _1\n
(2.6.11) Gy =g(1)=>_ %g‘k)(o) + / A= D 1) (3 g,
k=0 0

n!
This completes the proof of (2.6.6) and (2.6.7).

Also, by using (2.6.10) with £ = 0,1 and (2.6.11) with n = 0,1 we have
(2.6.12) IG(m)¢ — |Dal ¥l cr-2 < ClInlles) Inlley ||| Dal KZJHCW”

(2.6.13) |G — Gaoy (]| s < Cllmlen) 12 |1 Dl %

Notice that (2.6.12) (resp. (2.6.13)) holds for any v > 4 (resp. v > 5) with v & 3N

it N

STEP 2: First estimates for B(n) and V()

In this step we prove that

(2.6.14) B = Beoymd|| s < Clllnllc) T2,
(2.6.15) B = Bieg) || s < Clllnllc) T3,
(2.6.16) V)Y = Vieoy || s < CllInll ) T2,
(2.6.17) [V = Vieay || s < Cllnll ) Ts-
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By definition of B(n)y we have

e (G + 2um0)

= G()y) + 8undatp — (8um)* B(n)e.

B(n)y =

Therefore

(2.6.18) B(n)v — B<a)(n) = G(n) — G (<ay(n)¥) — (3am)>B(n)1p.

The estimate (2.6.14) for B(n)1 — B(<2)(n)Y then easily follows from the previous estimate
for G(1)Y — G(<2)(n)¥ (see (2.6.6)); indeed the tame estimate for products (see (A.1.18)) and
the estimates (2.0.4) and (2.3.1) for B(n)y imply that

1 @m)® B || gy
S 11 @em?|| o 11BN s + Bl o 197l e 10 e
< Cllnllo){ Il 11Dal? ]l ey + Illon 112212 ]l ooy Il }

< C(lnlle )Tz

(2.6.19)

where we used (2.3.7) in the last inequality. Consequently, (2.6.14) follows from (2.6.6).

To prove (2.6.15) we begin by noting that, directly from the definition of B(n), the estimate
(2.6.5) implies that

(2.6.20) | B(n)Y — [ Dyl w”Hu—Q < C(HnHCw)Tb

Similarly, the estimate (2.6.12) implies that
1
(2.6.21) IBm)¢ — | De| ¢l v < CllInll ) Inllen [[1Dal? ] -y -

By definition (B(n) — Bi<s)(n)¥ = (G(n) — G(<s)(m)¥ — (92m)?[B(n) — |Dx[]p. The first
term is estimated in (2.6.7) by the right hand side of (2.6.15). The second one is bounded
using (2.6.20), (2.6.21) and the tame estimate (A.1.18). This proves (2.6.15).

Since V(n)y = 0,9 — (B(n)1)0xn, the estimates (2.6.16) and (2.6.17) are consequences of the
tame product rule in Sobolev spaces (see (A.1.18)) and the estimates (2.6.14), (2.6.15).

For later references, we also record the following estimates

(2:6.22) IV — el ez < Clllallen) Inlles 10512 6,y
(2.6.23) B — Bresy ) s < Clllnllc) InlZ- 1Dal ]
(2.6.24) 1V = Vieaymtll s < Clnllen) Il 11Dsl2 ] s
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The estimates (2.6.22) and (2.6.24) follow from the definition of V' (n)y = 0;¢ — (B(n)Y)0.n
and (2.6.21). The estimate (2.6.23) follows from (2.6.18) and (2.6.13).

STEP 3: Key estimate
In this step we prove that

(2.6.25) [Em)y — Faay(m¥| s < C (Inllen) T2

The proof is based on an interpolation inequality which requires to take into account the
cubic terms. Introduce F(<3)(n) defined by

<y () = Grasy ()6 — {1D2] (6 = Ty (o) — 0Ty y ) }-

Lemma 2.6.3. There exist a constant K > 0 such that for all (n,v¢) € H%(R) x H%’“fé(R),
(2.6.26) [ F<2) (| sz < K 1llor 1028 s
(2.6.27) | Fi<sy(mv — Fi<ay (|| yusss < KT

Remark. It follows from (2.6.26), (2.6.27) and the triangle inequality that

(2.6.28) HF(<3 ¢HHM+W s < Clnller)Th

Proof. Notice that one can write Fi<y)(n)y under the form

F(SZ) (77) = - ’D ’ (77 ‘D W) + ‘D ‘ (T\DIW?) - 3x(773x¢) + 838(T311/)77)
— [Da| (T | Dz| ) — 0(T02%))

- |D$‘ RB(% |Da:‘ 1/}) - a:vRB(na xw)

Now the identity (A.1.22) in Lemma A.1.11 of Appendix A.1 implies that

(2.6.29) |D| Ty, | D | + 8T8y = 0.
Thus
(2.6.30) Fi<oy(n)Y = — |Dy| R(n, | Dz| ¥) — 0:Rp(n, 0:)),

and the estimate (2.6.26) thus follows from (A.1.17).

It remains to prove (2.6.27). Below, for A € {G,B,V,F}, we set Ay = A<py(n)y —
A<k—1)(n)y. We begin by noticing that

Gi) = |D | (nB2y) — 0:(nV(2)) + D,

1
= ) |Da¢| (772 |Doc‘2¢) + 5890(7723:0 | Dz| 1)),
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which can be checked by direct computations from the definitions of B(y), V() and G(3). Thus,

(2.6.31) F(3) = — |D:,;| TnB(Q) — BxTnV@) + D+ Ry,
where Ry := — |D.| Rg(n, B(2)) — 0. R5(n, V(2)) is estimated by means of (A.1.17).

Now observe that
By = G(g) + 0:n0z¢ = F(g) — |Dz| Tip,|pn — 0 To,yn + 0zn0z).
Setting this and V(o) = —0,1|Dz| 1 into (2.6.31) yields
F(S) = — |Dz‘ TnF(Q) + D+ Ry
+ Dyl T, | Dy | T\Dm\wn + | Dyl T,0:T5,4m
- ‘D:c’ Tnaa:77833¢ + axTnaxn ’Dz‘ ).

Since D = —%(G(Sg)(n2) |D| ¥ — | Dy|? 1) we have
L 2 1 2 1 2
D =5 |Do| Tip, 12y + 50T, D, 1™ — 5E(<2)(07) [Dal ¥
The cancellation (2.6.29) implies that

|Dac’ T77 |D:Jc| T\Dx\uﬂ? = _aanaxﬂwan'

Using this identity and replacing 72 by 2T,m + Rp(n,n), we obtain after some simplifications
that

1
Figy = = |Da| Ty Fieo) ()t — 5 Fiea) (n°) [ Da ¢

- |Da:‘ TnTaznaww + 8xTnT8zn ‘Dx’ (0
+ [ Dy TnTagM + | Dyl T\Dzﬁann

(2.6.32)

+ Rl + R27
with
1 1

+ 8$T7IRB(896777 ’Dw| ¢) - ’Dx’ TnRB(azna 8957/})

The remainder Ry is estimated by means of (A.1.17). The first two terms in the right-hand
side of (2.6.32) are estimated by means of the estimate (2.6.26) for F(<9y(n). The fifth and
the sixth terms are estimated by means of symbolic calculus (using the estimate (A.1.14) and
|D,|* = —82). To conclude the proof it remains only to estimate the sum of the third and
fourth term, denoted by ¥. Modulo a term which is estimated by means of (A.1.7), ¥ = ¥/
with
¥ = — |Dy| Tyo,n02% + 02 Tyo,n | Da| -

Now the cancellation (A.1.23) in Lemma A.1.11 implies that ¥’ = 0. This concludes the
proof. O
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It follows from (2.6.7), (2.6.23)-(2.6.24) and (A.1.12) that Fi>4)(n) := F(n) — F(<3)(n) satisfies

(2.6.33) | Fiza) (n)w||Hﬂ_4 < C(nlley)Ts

On the other hand, by using the triangle inequality and the estimates (2.4.2) for F'(n)y and
(2.6.28) for F(<3)(n), we have

(2.6.34) [Fen @l s < IE@Y s + [|[Fizay || e < Clinllen) T,

where, as already done, we used (2.3.7) and the fact that p+~v—3 > p+ 7 to apply (2.4.1)
with (p, s) replaced by (u—1/2,5 —1/2).

We complete the proof by means of an interpolation inequality. Namely, write

1E i %] s < | Fony ) s [|Fizay 6] e -

to deduce, from (2.6.33) and (2.6.34),

|Fen ]|y < CUnle)TT3 = Cllnllor) T2

Then write
Fny — Fl<a)(n) = Fiza (MY + Fiezy (MY — Fiegy(n)Y,
and use (2.6.27) to complete the proof of (2.6.25).

STEP 4: Optimal estimates
Now we return to the estimate of G (1) — G(<9)(n). By definition (see (2.6.1)), we have
Fn)y = G — [De| (b = Tpmyypn) + 0:(Tvn),
Feoy(m = G<oy (M — |Da| ¥ + [Dz| Tip, w1 + Ou(To,ym)-

Subtracting and using (2.6.25), (2.6.21) and (2.6.22), we find that G(n) — G(<2)(n) can be
written as the sum of two differences which are well-estimated in H5~1(R) U H*T1(R) C
H#~1(R). This proves (2.6.2) for A = G.

Now, using (2.6.19) and the previous control of G(1) — G(<2)(n) in H*~!(R), an inspection
of the second step yields the desired estimate for B(n) — B(<z)(n) in H*~!(R). This in turn
implies the estimate for V(1) — Vi<ay(n) in H*~!(R). This completes the proof of (2.6.2) and
hence the proof of the proposition. O

2.7 Smooth domains

In this section, we estimate G(n)y, B(n)y and V(n)y in the case where ¢ € H#(R) and n €
C7(R) with ~ larger than p. We study the action of these operators and prove approximation
results.
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The main new point is the following approximation result for B(n):

(2.7.1) 1By — Pr(mvll gr-s < C(nllev) Imll o H|Dm\% D[

where P, (n) is given by

(2.7.2) Py(n) = |Dy| + Tp_j| with P = i0:mé + |£)).

1
T @

The key point is that the right-hand side of (2.7.1) is at least quadratic in (7, ]Dz\% ) and
1

involves only the L?-norm of | D,|2 1, while one bounds B(n)w — Py (n)¢ in H"~3(R) where v

might be arbitrarily large. This is not a linearization result for B(n)y because Py (n) # |Dy]|

(except for n = 0). However, (2.7.1) will allow us to prove a sharp linearization estimate for
G(n) as well as to bound G(n)Y — G (<9) (7).

Proposition 2.7.1. Let (v, 1) € R? be such that

1
<p<y-—2, WZQN-

N | =

>3+1
Y2 B%

(1) Let n € CY(R) and ¢ € H%’“_%(R) with the assumption that ||n||oy is small enough.
Then G(n)y, B(n)w and V(n) belong to H*~1(R). Moreover, there exists a non decreasing
function C: Ry — Ry depending only on (v, u) such that:

(2.7.3) 1G] gt + 1B s + IV 08l s < C (nllen) 10212 D[ ey

(17) Let n € C'(R) and ¢ € H%(R) with the assumption that ||n|| -, is small enough. Let
Py (n) be as given by (2.7.2). Then G(n)y — |Dy| v and B(n)y — Py (n)y belong to H'~3(R).
Moreover, there exists a non decreasing function C: Ry — Ry depending only on v such that:

- G = 1Dal ¥l a=s < C (Inll ) Inllon 1Dl ? | s
1B — Pe()e] s < C (i) Il |1 D2 | -

Remark 2.7.2. (i) As already mentioned in Remark 2.5.2, the estimate (2.7.4) means that
G(n) — |D| is a smoothing operator.

(73) With the assumptions and notations of statement (i7), notice that (2.7.4) implies that

(2.7.5) B = Dl @l yu-s < C (Il ) Inll oo |[1Ds]2 Y| umy-

Indeed, it follows from (A.1.10)that

1
1P+ ()¢ = Dzl ¥l ggu—s < ClInlln) Inllo [[1Da]2 ] ey -
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Proof. Notice that statement (7) is a corollary of statement (ii). This is clear for the regularity
results and the estimates for G(n)y and B(n), using the triangle inequality and (2.7.5). For
V(n)y, this follows from the definition V(n)y = 9,9 — (9,n)B(n)yY and the product rule
(A.1.21) (applied with p’ = g+ 1 > |p — 1| = p) which yields

1
10em) B Wl g S N10znll s 1BV s < C (Inll o) 10unllgrr |1 D2l ] -y

where we used the estimate (2.7.3) for B(n)y and the assumption v > pu — 2.

To prove statement (i7) we use the strategy used previously to study G(n)y. Recall that

(2.7.6) { G(n)w - (1 + (3x77)2)8z80 — 0xnOzp | oy

B(n)Y = 0.¢|.-0,

where ¢ = ¢(z, z) solves the Dirichlet problem:

(2.7.7) %0 + ad2p + 00,0, — cd,p =0 in {z < 0},
(2.7.8) =19 on {z =0},

where a = (1 + (9,1)?)7 !, b = —2ad,n, ¢ = ad?n. It follows from Proposition 1.1.6 that,
if ||n|lc is small enough, then there exists indeed a unique solution ¢ to (2.7.7)-(2.7.8).
Moreover, V. ,¢ is continuous in z €] — 0o, 0] with values in H~'/?(R) and there exists a non
decreasing function C': Ry — R, independent of 7, such that

(2.7.9) ]Sup O]Hvx,z(SO(z) — P yoae < ClUlle) 10 ]| oo H!Dxlé [P
zE€|—00,

and

(27.10) 0 Vel ve < Ol 1Dl

To prove statement (i) we paralinearize (2.7.7) and factor out the paradifferential equation
thus obtained. The desired result then follows from a parabolic regularity result.

We begin with the paralinearization lemma.

Lemma 2.7.3. There exists a non decreasing function C: Ry — Ry such that

(2.7.11) D20+ (Id + Ty—1)02p + T10:0.p — TeOr0 = fo
with
1
(2.7.12) fup ) 1fo(2)l 25 < CUInllow) Inlle |1 D22 || 12
zE€|—00,
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Proof. We follow the beginning of the proof of Lemma 2.2.2. Write

(a— 1029 = Tu 1050 + Tyzy(a — 1) + Re(a — 1,07¢),
b0, 0, = Ty 0,00 + TBszgob + RB(b, 8&:8290)7
c0.p = T.0.¢0 + Ty, ,c + R5(c, 0.9),

so that (2.7.11) holds with

fo = —(Topp(a = 1) + Rp(a = 1,02¢)) — (To,0.0b + Rp(b, 9,0:¢))
+ Tachc =+ RB(C, aZQO)-

It follows from (A.1.20), (A.1.17) and the assumption v — 3 > 0 that

oz (@ = Dl s S lla = U1 0201 152+
1To,0.00 gr1-5 S 10l -1 102020l gr-s/2
1To.o¢ll grr-s S llellgn-2 110201 172
and
HRB(G -1, 3580)“wa3 S fla— 1”ow—1 HaiSDHH—B/z )
[R5 (b, 0:0:0) || g5 S [bllg-1 1020:0l] -5/ »

[1B5(c, 0:0)l -3 S el vz 1020l gr-1/2 -

Now use (2.7.10) and write
la =gy + bllgrr + llell v < Cllinlley) Inll ey
to complete the proof. O

Let P_ = P_(n), P+ = Py(n) and Ry = Ro(n) be as given by Lemma 2.2.6, so that (9, —
P_)(0, — Py)p = fo+ Rop, where Ry is a smoothing operator, satisfying

[ Boul| grrsv-s < CllInllow) Il e |0zull g1,

for any r € R and any u € H"(R). The key point consists in proving that one can express,
on z = 0, the trace of the normal derivative 0, in terms of the tangential derivative. To do
so, as above, we exploit the fact that ¢ = 0, — Py satisfies a parabolic equation.

Lemma 2.7.4. For any 7 <0, the function ¢ := (0. — Py )y is continuous in z € [r,0] with
values in HY73(R). Moreover, there exists a non decreasing function C such that

(2.7.13) e )l roms < ClImllen) Il [1Dal? ] o
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Proof. We prove only an a priori estimate. The regularity result is an immediate consequence
of the method used to prove the estimate. We shall prove a slightly stronger result. Namely
we shall prove that, for any ¢ €]0,1], (2.7.13) holds with sup,c[. HfHvaa‘ replaced with

Susz[T,O] H£HH772+5 .

Since
(0: — P_)p = fo + Royp,

the parabolic estimate (2.2.27) asserts that, for any 7 < 72 < 0 and any p € R,

HQHLOO([TQ@];H;H—I—E) < C(HnHC'v)(HfOHLoo([Tl,O};H#) + HQHLO"([ThO};H“))

+ Clnll o) Wl 1.2l o g - -

Consequently, for any p <~ — 3,

“f“Loo([7270];Hu+1—e) < C(Hn”cv)(HfOHLOO([TLO];HV*?r) + HEHLOO([T;[,O};HH))

+ Cnllex) Il en Va2l oo iy 0721 5
so, the estimate (2.7.12) for fp and the estimate (2.7.10) imply that
1
2l oy ptzissey < Cllals) Il 110517
+ C(HT/HC’Y) HfHL"O([Tl,O};Hﬂ) .
Hence, by an immediate bootstrap argument, it is sufficient to prove that, for any 7 < 0,
1
12l oo grogszz—12y < CImll ) Imll s ([1D]Z | -

This in turn follows from the fact that ¢ = (9. — |Dz|)p — Tp_j¢|p, by definition of P, and
the estimates (2.7.10), (2.7.9) and the operator norm estimate for paradifferential operators
(see (A.1.10)):

ITr il -y S MAP = €D 10sel, ), < Cllnlles) il 106l
This completes the proof of Lemma 2.7.4. O
Since B(n)Y — Py ()¢ = (0. — P+ (n))¢|:=0 = ¢(0), it immediately follows from (2.7.13) that
1
1B = P ()¢l grv-s < C(Inllor) 1nllon || 1D2] 9| o
To estimate G(n) — |Dg| ¢, starting from (2.7.6), we write

(1+ ((9;,;77)2)8290 — 0pnOzp = 0,0 + T(azn)QazSO - Ta;cnaxSO + Rl;
R = Tach(arn)2 + Rp (0., (8m77)2) - Tazgoamn — Rp(0zp, 0zm).
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Again, it follows from the paraproduct rules (A.1.20) and (A.1.17) that, for any 7 < 0,
the C°([r,0]; HY~3)-norm of R’ is estimated by the right-hand side of (2.7.4).

Furthermore, since (1 + (9,1)?)P — i(9,n)¢ = |£], by using the symbolic calculus estimate
(see (A.1.7)), it follows from (2.7.13) that

020 + T(9,n)202p — To,nOutp = | Da| o + 1,

where the C°([r,0]; HY=3)-norm of r is estimated by the right-hand side of (2.7.4). This
concludes the proof of Proposition 2.7.1. O

We next study the Taylor expansion of the Dirichlet-Neumann operator. We recall that the
sum of the linear part and the quadratic part is

We shall prove an estimate for G(1)1 — G (<2)(1)% similar to the linearization estimate (2.7.4)
proved above. Namely, we shall prove that G (1)) — G (<2) (1) is a smoothing operator, such
that if n € C7(R) with v large enough, then one can estimate G (7)Y — G(<2)(n)¥ in HY % by

means of a low Sobolev norm of \Dx|% ¥ only.

Proposition 2.7.5. Let v € R be such that v > 4 + %, v ¢ %N. Consider n € C7(R)

and ¢ € H%’I(R) with the assumption that ||n||o, is small enough. Then G(n)y — G (<2)(n)y
belongs to HY~4(R). Moreover, there exists a non decreasing function C: Ry — R, depending
only on v such that

(2.7.14) |G = Gy ¥l s < C (mlle) 113 [Pzl %] 1.

Proof. As in the proof of Proposition 2.6.1, there holds

Glnys — G0 / GO AN, GN) = GO mBON)Y) + 0,0V (n)us).
Let us fix some notations. We denote by

1
1+ (A0yn)2

the symbol obtained by replacing n with An in (2.7.2). Hereafter, we denote by C various
1
constants depending only on [|n||o, and we set € := HTIH%W |1D2|2 wHHl.

Notice that G(0) = |D,| and G(0) = |D,| (n|D+| %) + 0:(n0z1). One has to prove that there
exists a constant C' depending only on ||5|| -, such that

1G(A) = G(0)[| gy-1 < O
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To prove this estimate we shall prove that

(2.7.15) |G (BON)Y) = | Dal (0| Dl ) = | Dl (T 1)) || s < CL,
and

(2.7.16) 0=V (A1) = 0 (n0at)) + A (Tryo,mypy )] g4 < C,

(2.7.17) |Da| (Ty(py—1ep®) = Ae (Ty(a,mypr¥)-

We begin by proving (2.7.15). To do so, we use (2.7.4) to replace G(A\n) by |D,| and B(\n)
by Py(An). Write

|G (An)(nB(An)Y) — | Dg| (nBAN) )| gv—a < Clnll v (InBAD)Y| 7172
< Cnllzn B a2 < CLQ,

and

1Dz (nB(Xm)) = Dl 0P i)l s < [[n(BOM)Y = PLOm)tb) || -5
< lInllcs 1B = Pa(An) ]l -
< CQ,

where we used the product rule (A.1.21).

Now, by definition of Py (n) we have

|Dz| (P4 (An)Y) — |Dg| (0| Dz| ) = [Da| ("Tpy— 1)

so, to prove (2.7.15) it remains only to prove that

(2.7.18) D] (1Tpy—je¥) — | Da| (Tyipy—1eny®)]] o s < C.

Set px = Tp,_jg;tp. We first simplify |D.| (nTp,_j¢j7) by paralinearizing the product ngpy.
That is, we write npx = Tp\ + (Tp,n + Rs(n, pa)) and use (A.1.20) and (A.1.17) to obtain
that

1 Toxnll ggr-s + 1RB(0, 02| grv—s S H@AHH% Il -
Now it follows from (A.1.10) that

2

1
loall,,—3 < Clnlles 1058l gr-12 < Clinlley [1Dz2 ¢ -

Therefore
|Dz‘ (77TP)\—|£\7/)) = |Dm‘ (TnTPA—lglw) + R

with [|Ri| -4 < CQ. Next, since 8?17 = 0 for £ > 1, it follows from symbolic calculus
(see (A.1.11) applied with (m,m’, p) = (0,1, — 1)) that

|Do| (0T, — 1)) = |Da| Typy—jep® + Rz
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where Ry = Ry +|Dz| (TyTp,—je| — Tpy(py—|)) ¥ satisfies || Rz 7,—4 < CQ. This proves (2.7.18)
and hence completes the proof of (2.7.15).

The proof of (2.7.16) is similar. By definition V (An)y = 09 — A(0zn)B(An)y so (2.7.4) and
the product rule (A.1.21) imply that

102V (An)t) = Oz (10240) + A0z (n(0zn) Py (An) )| s < CR.
Thus to obtain (2.7.16) it is sufficient to prove that
|02(1(02n) Py A)1) — 02(Ty0,m Py || s < CL.
As above, this follows from (A.1.20), (A.1.17) and (A.1.11).

To prove (2.7.17), notice that

n(Px = [§]) = ia(x)€ = B(@)[¢],  n(Gan) Pr = iB(2)¢ + €]

with
_ ) g n(A0n)”
1+ (A0sm)?’ 1+ (A0xm)*
Therefore
’Dz‘ TW(PA_|§|) = ’DQJ To0y — ’Dz‘ Tg ’Dr‘ , &CTn(aw)pA = 8mT58$ + 0, T4 ‘Dm‘ s
and the desired identity (2.7.17) follows from Lemma A.1.11 in Appendix A.1. O

Corollary 2.7.6. Let v € R3 be such that v > 4 + %, v ¢ %N. Consider n € C?(R) and

(S H%’I(R) with the assumption that ||n|| - is small enough. Then F(n)y—F<g)(n)y belongs
to HY™*(R). Moreover, there exists a non decreasing function C: Ry — R, depending only
on v such that

1F e — Feny)e| o < C Ul nllEe [[1Dal? ] 1

Proof. By definition Fi<9)(n)® = G(<2y()Y — |Dz| ¥ + |Dz| Tip, |40 + 02 To,y1, S0
Fn)y — Fi<oy(my = Gy — G <) ()
+ [ Da| Tp(myp—|D, 101 + O (T (nyp—o,4M)-

The difference G (7)1 — G(<2)(n)Y is estimated by (2.7.14). To estimate the last two terms in
the right-hand side above, we use (A.1.20) to deduce that

10| Togy 10,1971 gr-a S 1B = [Dal ¥l -1 Il e
HY— 4 ~ ||V( ) ax,l/]HH_l/Q HT]HC"/ﬂ

02Ty (nyy—a,m

Now write

B¢ = [Da| ¢l g-172 < [[Bn)Y = Pr(mllgr-1/2 + 1P+ () — |De| @l -1z -
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The first term in the right-hand side above is estimated by means of (2.7.4). To bound the
second term, observe that, since Py (1) — |Dz| = Tp_¢|, (A.1.10) implies that

1
1P4 ()% = [Da| ¥ll =172 S CMg (P — [EN 1059l =172 < Cllnll e ||| Dal? | -
On the other hand V()Y — 0,1 = (0,n)B(n)Y so the product rule (A.1.21) implies that

1
V)Y = 0:¥ll =172 S N0unllgr-r 1B)Y =12 < Cllnll e [IDa2 ]| 1

where we used the product rule (A.1.21) and the estimate (2.7.3) applied with g = 1/2. This
completes the proof. O
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Chapter 3

Normal form for the water waves
equation

The main goal of this paper is to prove that, given an a priori bound of some Holder norms
of ZF (n+1i|Dg|2 9) for k' < s/2 + ko, we have an a priori estimate of some Sobolev norms
of Z¥(n +i |Dm\% w) for k <'s, where recall that w = 1) — Tz(;)yn. The proof is by induction
on k > 0. Each step is divided into two parts.

1. Quadratic approximations: in this step we paralinearize and symmetrize the equations.
In addition, we identify the principal and subprincipal terms in the analysis of both the
regularity and the homogeneity.

2. Normal form: in this step we use a bilinear normal form transformation to compensate

for the quadratic terms in the energy estimates.

Since the case k = 0 is interesting in its own, we shall consider the case k = 0 and the case
k > 0 separately. In this chapter, we consider the case K = 0. The case k£ > 0 will be
considered in the next chapters. The overlap between this two cases will be small. Moreover,
we will prove a slightly better result in the case & = 0 then in the case k¥ > 0 (compare
Proposition 3.6.4 with Proposition 5.2.1).

3.1 Quadratic approximations without losses

We now consider the Craig-Sulem-Zakharov system

8t77 = G(Tl)¢7

1 2
Op +n+ 5(3&&) T2+ ()
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In this section we use the abbreviated notations

G(N)Y + 0zn0z
1+ (9:m)?%

Assumption 3.1.1. Let T > 0 and fiz (s, o) such that

(3.1.2) B = V =040 —B0on, w=1v—"Tgn.

s>o0+1> 14, ng%N.
It is always assumed in the rest of this chapter that :
i) (n,9) € CO([0,T); H¥(R) x H2"2(R)) is such that w € C([0,T]; H2*(R)).
i1) The condition (1.1.17) is satisfied uniformly in time. Namely we assume that

(3.1.3) sup {Ilc’ixn( Mge-r + 10N |0 @) 12, }
t€[0,T]

is small enough, so that we are in position to apply Proposition 1.1.6 as well as the results
proved in the previous chapter.

Remark. Let us comment on the smallness condition. For our purposes ||0.1(t)||ce-1 =
O(et=/2) and ||/ (t)|| -1 < 11ll 7= = O(t?) for some § < 1/2 so that (3.1.3) will be satisfied.
One can also notice that, for smooth solutions, we have (see [20])

jt(/” dm+/1/1G wdx>—o

Now it follows from Corollary 1.1.8 that

0< / $G () da = / (D]} )G ja(mypde < C ([ |) | 1D2 2 )%

so that
2 2 1 2
1911700 (g 752y < Ml0llz2 + C([110]] o) || D)2 0|2
Thus, for (3.1.3) to be small it is sufficient to require that sup;cio 7 [|7(t)[lces 1m0z, and

| D, |2 tol| > are small enough.

For ¢t € [0, T], we set
1
My(t) = [0l + ||| D2 w(@)| s

No(t) == [In(®)l e + ||| Dzl 2 ¥ (1) o

From (2.0.4), (2.1.2) and (2.1.7) we know that

1Bl gs=1 + IV g1 < C(Ng) M,

(3.1.4)
|Bllco-1 + [[V][go-1 < C (Ng) No.

We start with some basic remarks about the Taylor coefficient a which is defined as follows.
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Notation 3.1.2. Define

(3.1.5) a=1+08B+Va,B.

If (n,v) € CO([0, T); H5(R) x H2*° 2(R)) solves (3.1.1) then
(n,0) € C1([0,T); H*"M(R) x H2*3(R)),
(B,V) € C°([0,T]; HS ' (R) x H'(R)).

In addition, it follows from the shape derivative formula for the Dirichlet-Neumann (see [35])
that G(n)y € C*([0,T); H*~(R)) together with

(3.1.6) G(n)p = G(n) (0 — (B(n)¥)dm) — 0 ((V (1)) sn).

Then it follows from the definition (3.1.2) that 9,B € C°([0,T]; H5~?(R)). Consequently, a is
well-defined and belongs to C°([0,T]; HS~2(R)). It is known (see [4, 32]) that a = —9, P|,—,
where P is the pressure. Here, we shall use the following identity for a which is proved in the
appendix (see (A.3.9)):

(17 a=— . (1 $VO.B— BV — OV — SGn)B® - G(n)n) -

T 1+ (O

Lemma 3.1.3. i) For any v > 3, there exists a nondecreasing function C such that,
1

(3.1.8) lo = lex < C(Umller ) [ Inlles + 1Dal? ] 1oy |

Using the notation N,, this means that ||a — 1||o1 < C(N,)N,.
i1) There exists a nondecreasing function C such that

(3.1.9) |Opa — agw”m < C(N,)NZ,
(3.1.10) la—1+ |Dg|nllcr < C(N,)Np.

Proof. Let us prove (3.1.8). By (3.1.7), we know that
lla =1l < C(lnller) [ 10snl[Er + 1Vl 10:Bller + 1Bl 182V [l
GV | oo + |G B2|| o + IGDM 1 |-

By (1.1.44) applied with v replaced by v — 1, we may write

Gl er < C(nllgr—s ) 10l gre1
HG(T})B2H01 < C( HnHC“ﬁl ) ”Bnévfl )
GV o1 < C(Inllgves ) IVI1E-1 s
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where we used that C7~1 is an algebra to obtain HB2HC%1 S IBIIZ -1, V2Hm,1 SIVIZ -

Since C7~2 is an algebra, we get from the definitions (3.1.2) of V, B,
1
IVlier +10:Viier < [[1Da]2 9| ooy + 10l [1Bllgr-1

and
1Bl < C(Ille ) [IGOSlerr + 11Dal2 0]l -y |-

Combining the inequalities and (1.1.44), we get finally (3.1.8).

The proof of the second estimate is similar. By using the identity (3.1.7) and (3.1.6) applied
with v replaced with V2, B2 or 7, together with the following expressions (see (3.1.5) and
Lemma A.3.1 in Appendix A.3)

OB =-Vo,B+a-— 1, OV = -V, V — aaﬂcna 8t77 = G(T])’¢,

we obtain that d;(a+G(n)n) is bounded by C(N,)NZ. Using again (3.1.6) to compute 9,G (1)n
we find that 0;G(n)n — G(n)dn is bounded by C(N,)N;. Since G(n)dmn = G(n)G(n)y, we
deduce from (2.6.12) that modulo quadratic terms which are estimated as above, G(1)0n is
given by |D,|* .

Eventually it follows from the identity (3.1.7) and the estimates (2.0.4) that

la =1+ Gm)nller < C(N,)Ng.

So (3.1.10) follows from (2.6.12). O

Notice that (3.1.8) implies that a is a positive function under a smallness assumption:

Corollary 3.1.4. If N, is small enough then
(3.1.11) a(t,z) >1/2, V(t,z) €[0,T] x R.
Assumption 3.1.5. Hereafter, it is assumed that N, is small enough, so that (3.1.11) holds.

Remark 3.1.6. Wu proved that a is a positive function (see [53, 52| and also [32]) without
smallness assumption.

Notation 3.1.7. Given two functions f, g defined on the time interval [0, T], we write
(3.1.12) f=g mod[H7],

to say that there exists an increasing function C, independent of (n,%,T) such that for
all t € (0,77,
Il f(t) — g(t)HHf’ < C(Ng(t))Ng(t)2Ms(t)-

We say then that f is equal to g modulo admissible cubic terms.
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We write now the water waves system as a paradifferential system of quasi-linear dispersive
equations. This will allow us to get energy estimates for the good unknowns 7 and w.

Proposition 3.1.8. Use Notation 3.1.7 and Assumptions 3.1.1 and 3.1.5. Introduce
a=va—1, Ul=n+Twm, U?=|Dy|?w.
Then

QU + Ty d,U" — (Id + Ty) |Dy|2 U? = F,
(3.1.13)

8tU2 + |Dac‘% TV _1/2890U2 + |Dz|% ((Id+ Ta)Ul) _ FQ’

&l
for some source terms F', F? satisfying
1

(3.1.14) F'= Fieoy(my — §T33w77 mod [H?],

1 1 1 1 ;
(3.1.15) F% = _|D,|%2 Rs(|Dy| %, |Ds|w) — = |Dy|2 R5(02%, 0pw) mod [HE],

2 2
where F<9)(n)Y is given by (2.6.1).
Proof. The proof is in two steps.

STEP 1: Paralinearization of the equations

We begin the proof of Proposition 3.1.8 by proving that

(3.1.16) {8t77+TV0x77— |Dalw = f1,
0w + Ty Opw + (Id + To—1)n = f,
with
(3.1.17) ft= Faoy(mv — Tozyn  mod [H],
(3.1.18) 1= %RB(|D1| V.| Do| w) — %RB(&c?ﬁ,@zw) mod [H*+1/2).

The first half of this result is already proved. Indeed, by definition (2.1.3) of F'(n)1), the first
equation of (3.1.16) holds with f! := F(n)y — Ty, 1. Consequently, the previous estimates
for F(n) — Fi<ay(n) (see (2.6.4)) and V(n)y — 0,9 (see (2.6.22)) imply (3.1.17).

To prove (3.1.18), we use the elementary identity

2 1 (8x778xw + G(n)¢)2
2 1+ (0z1n)?

1 1, 1,
~(0, = BV, — =B,
5 (0:1) V24 BV - 5

85



which is proved in the appendix (see (A.3.8)). The paralinearization formula ab = T,b+Tpa+
Rp(a,b) then implies that

2 1(0:m0: + G())?
2 1+ (0xm)?

=1TvV —TgB + Tyy,nB + TpVOo.m

1

1 1

By using the identity B — Vd,n = 9¢n (see (A.3.2)), one obtains
—TsB + TV O,n = —Tp0om.
On the other hand, starting from the definition of V' = 0,1 — Bd,n we have
TvV =Ty (0x¢ — BOn)
=Ty (0x¢ — TpOyn — To,nB — Rp(B,0;n))

=Ty 0, (¢p —Tpn) +TvTy,pn — Tv Ty, B — Ty R5(B, 0;n)
=Ty O,w + TvTy, BN — TvTaan - TvRB(B, 83577).

Consequently,
vV + TvawnB =TyO,w + TvTach?] + (Tvagm — TVTan)B — TvRB(B, 89577).

By writing 9y¢) — Tgon = dyw + Ty, pn and using (3.1.1), the expression of a — 1 in terms of
B,V given in (3.1.5) and the preceding expressions we thus end up with

Ow + Ty Opw + (Id + Ty_1)n = f2,
where
f? = (TyTo,y — Tvon) B + (Tva,s — TvTs, )1
+ S Rs(B,B) ~ L Re(V.V) + Ty Ry(B, dyn) ~ R(B,Voun).
The end of the proof is simple: (i) we use the paralinearization theorem to estimate all the

remainders Rp(a,b); (ii) we use the symbolic calculus theorem to estimate the two terms of
the form T,T, — Typ. More precisely, it follows from the symbolic calculus (see (A.1.14)) that

1(Tva,n — TvTs,,)B| SV g 10enll g 1B s s

S IVl 102 Bllgyz [l gs -

On the other hand (A.1.12) and (A.1.17) imply that

ety

(Tva,B —TvTs,5)nll

Ht 2

1Ty R (B, Ol oy S NIV I oc [[B5(B, )|

3

S IV oo 182l 3 (1B grs-1 -
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By using (A.1.17) with § =s — 1 and a = 3/2, we obtain that
IRs(B, VO g S VOl g I Blger
Using the bounds (3.1.4) for B and V, we thus find that
|(Tvo.y — TvTo)BIl .y S N2M;,
I(Tvo, e = TvTo,p)nll .y S NoMs,

1Ty Re(B.0un)l ..y < NZMs.

H %
It immediately follows from the previous analysis that
o _ 1 1 sl
f* = 5Re(B,B) — 5 Rp(V, V) mod [H"2].
Now write

RB(BaB) = RB(B - ’th/]aB) +RB(|DQT|¢7B - |D$|w) +RB(’Dw|¢7 ’Dx|w)7

and

RB(‘/v V) = RB(V — O, V) + RB(aﬂ/}» V- a:]cw) + RB(61¢7 a:]cw)
Using Proposition 2.5.1, (2.6.21), (2.6.22) and (A.1.17) we obtain

(3.1.19) 7= SRi(IDu] 6, 1De| ) — 5 Ri(00, 0u0) mod [H*5],
as asserted.
STEP 2: Symmetrization
Since 0Tyb = Ty,b + T,0b with 9 = 0; or 0 = 0;, we find that
(O + Tv0,)U" = (0 + Tv ) (n + Tan)
— (Id + To)(& + Ty 0 )y + {Tata + Ty Th,a + [T, Ta]ax}n
and hence (3.1.13) holds with

Flim (Id+ To) f* + {Tata Ty T 0 + [TV,Ta]ﬁgg}n,

where f! is given by (3.1.16).

Clearly, from the assumption a > 1/2 and the estimate of the C'-norm of a (see (3.1.8)) we
obtain that the C'-norm of a = /a — 1 is bounded by

(3.1.20) leflgr < C(Ng) N,
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Recall that we have proved that H fl‘
estimate for o implies that

s < C(Np)NpMs so, using (A.1.12), the previous

(3.1.21) T, f' =0 mod [H®].

Using the symbolic calculus estimates (A.1.12) and (A.1.8) applied with p = 1, we next deduce
that

TvTy,an =0 mod[H®], [Ty,Ta]0,n=0 mod[H"].

Together with (3.1.21) this implies that
F'= '+ Tp,,n mod [H®].

Now (3.1.9) implies that Ty,,n = %Tagwn mod [H®], so (3.1.17) yields the claim

1
F' = Fleo)(n)y — 5 Tozyn  mod [H7].

It remains to prove the second identity (3.1.15). Since

1 1
OU? + |D,|2 T, 1/20,U% = | Dy|2 (9w + Ty Opw)

€]
1
= |Doc‘2 (f2 - (Id+Ta—1)77) )
and since, by definition of o = y/a — 1,

(Id—i—Ta)(Id—i—Ta) =Id+T,T, + 2T,
= Jd+ Ta2+2a —+ (TaTa — Taz)
=Ild+ Ty 1+ (ToTo —T,2),

we find that the second equation in (3.1.13) holds with
2 1.0 1
F? = |Dg|? f*+ |Dz|? (ToTo — Tp2)n.
It follows from (A.1.8) (applied with p = 1/2) that

H|D:c|% (ToTo — Ta2)77‘

e S 0z Il s

This implies, since, as already mentioned, the C! norm of « is bounded by C (No)N,, that
1Da|2 (Ta T — Th2)n = 0 mod [H*],

and hence F? = \Dx]% f? mod [H?]. The identity (3.1.15) then follows from (3.1.19). O
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3.2 Quadratic and cubic terms in the equations

Previously in §3.1 we paralinearized the water waves equations and identified the quadratic
terms, with tame estimates for the remainders. Our next goal is to prove that one can further
simplify the equations. We want either to eliminate the quadratic terms from the equations,
or to eliminate the cubic terms from the energy estimates. In this section we introduce some
notations. The strategy of the proof is explained in Section 3 of the chapter of introduction.

ul! n Ut n+Tan
u = 2 = l s U: 2 = l 5
u | Dy |2 1 U |Dz|? w

with « = y/a — 1 where a is as given by (3.1.5) (see also (3.1.7)). Assuming that Assump-

Set

tions 3.1.1 and 3.1.5 hold, our goal is to estimate the Sobolev norms H*® of U given an a priori
estimate of some Holder norm C? of u. Recall that we fixed s and o such that

1
s>po0+1>14, ggiN.

In this section, we introduce some notations in order to rewrite the water waves system under
the form

(3.2.1) 0U + DU + Q(u)U + S(u)U + C(u)U = G,

where G is a cubic term of order 0, satisfying

(3.2.2) 1G1le < Clllullco) lullEe 1]

and where (u,U) — Q(u)U and (u,U) — S(u)U are bilinear while C'(u)U contains cubic and

higher order terms. In addition

e U Q(u)U and U +— C(u)U are linear operators of order 1 with tame dependence on
u: this means that for any u € R, if u € C9(R) then U — Q(u)U € L(H*, H*~1) and
U C(u)U € L(H*, H*=1), together with the estimates

1Q) Lz gy < Cllulle) e
2
”C(U)HL(HH,Hufl) < Cllullge) ullge
for some nondecreasing function C' depending only on g and pu.

e the linear operator U — S(u)U is a smoothing operator with tame dependence on u:
this means that for any m > 0 there exists p > 0 such that, for any p € R, if u € C?(R)
then U — S(u)U € L(H", H*t™) together with the estimates

IS z¢m rnemy < Clllullco) lulle

for some nondecreasing function C' depending only on m, p, p.
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To do so, we rewrite the conclusion of Proposition 3.1.8 as
o:U + DU + Ay =F,

where F' = (F', F?) was computed in the proof of Proposition 3.1.8, and where

1 1 12
R Ty8,Ut — Ty |Dy|2 U
(323) D= ( 0 A |D:p|2> ’ A _ ) T @ x )
‘Dm‘Q 0 ’D:r’iTv|§‘—l/28$U2+ ’D;B’ETaUl
We set
G=F+ Ao+ S,
with

(3.2.4) Ay = 2Tz L S=— X Fepmy
0 11D, |2 Ry(|Dy| 9, | Da| w) — 1 [Dy|2 Rp(0p0), 0pw),

where F(<2)(n)Y is given by (see (2.6.30))

F(§2)(77)w == ’Dx’ RB(% ’Dx| 1/}) - 8xRB(777 a$¢)

Then we may rewrite the equation for U as
U +DU +A1+A4+S=G,

where G = 0 mod [H*] by Proposition 3.1.8.

For later purposes, we write the explicit expression of G = (G!, G?):

gl = (Id +To)F(n)y — F(§2) (MY + Tata_axv+%ag¢77
o+ {~TaTo,y + T To,an + [T, Tu] o,
2 _p.3 (L _ !
G* = |Du|? (5R5(B. B) = 3 Ri(1Dal ,1Ds|w))
3.2.5 1 /1 1
(3:29) 1Dt (GRs(V,V) ~ L Ra(t, 1))

1

+ D)2 (TvTo, — Tva,n) B + (Tva,B — Tv Ty, 5)n)
1 1

+[Dz|2 Ty Rp(B, 0xn) — | Dz |? Rp(B,V0.m)

1
+[Dg |2 (ToTo — Th2)n.
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Definition of Q(u) and C(u).

Here we define the terms Q(u) and C(u) which appear in (3.2.1). They arise when one splits
Ag and A; to isolate quadratic terms. Write 41 = Q1 + C where

1
To,p0xU' = T_1p, |, |Dx|? U

Q1= 1 3 ’
D2 Ty, o120 + | Dal2 Ty U
1
(326) o Ty—9,40:U" — Ta+%|Dz\n D2 U
2. = 1 3
1Dal? Ty yje-1/202U% + [Dal* Ty 1y, U

Moreover, the quadratic term ()1 can be written under a form involving only the unknowns
u and U. We have

1 1.0

Q1= Q1 (WU = Tax‘Dx‘_%uzaxU — T yip,p [Dal? U
- " 1 2 1 1
Dl T 1o duzig 12020 + 1Dl Ty, n U

We write below C as given by (3.2.6) under the form C(u)U. This is an abuse of Iiotations
since C' cannot be directly written under the form of a function of u = (n,|Dy|2¢) and
U. Instead, C' is an operator acting on U whose coefficients depend on (n,1). This abuse of
notations will not introduce confusion since the estimates for this operator will always involved
only v and U. This is because the nonlinear estimates we proved for the Dirichlet-Neumann
operator involved only |Dx|% 1 and never 1) itself.

Similarly, write

1
_ 1 -
Tpae™ = "3 p, 30V T3l ip, e Ten

302

DN | =

|32

N | —

1
§T8§¢77 = -

to decompose Ag as a sum Ay = Qo + Cp of a quadratic term and a cubic term. The cubic
term Cj, being of order 0 will contribute to the remainder G in equation (3.2.1). Eventually,

we set
1_1 1 1o,
2. = _ X 2 : 1
IDe[? LoD bzl 1202 D> T_yp, iU

Definition of S(u).

Here we define the term S(u) which appears in (3.2.1). To do so, with regards to S, write
n=U'—T,n and
14 _1
|Dw‘¢:’D:)§|2u y axw:ax|Dm‘ 2u”,

1Dy w = |Dy|2 U2, Oyw = 8, | Dy 2 U2,
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to obtain S = S(u)U + S where S(u)U = (g%g;) with

(S(u)U)! = |Dy| Rp(| D |2 u2, U") + 0, R5(0, | Da| "2 u2,UY),
1
(S@W))* = =5 1Dal? Ru(|Dal? w?, | Dl U?)
1 1 _1 5 —1 5
+ 5 1Dal? Ry(00 | Dol ™2 %, 0, | Do | 72 U?),
and

(3.2.8) 3 <— |Dz| Rp(|Da| 9, Tan) — 8, Rp (8,9, Tan)>
2. ’ |

Definition of G.

It follows from the computations above that (3.2.1) holds with
(3.2.9) G=G-8—-Cy

where G is given by (3.2.5), S is given by (3.2.8) and Cy = (% Tun,0) arises when we

T 3

|Dz|2u?
rewrite Ap in terms of u and U. We have proved in Proposition 3.1.8 that G = 0 mod [H?].
On the other hand, it follows from (A.1.17) (resp. (A.1.12)) and the estimate (3.1.20) for «
that S = 0 mod [H*] (resp. Cy = 0 mod [H®]). This proves that G = 0 mod [H*] as asserted
in (3.2.2).

3.3 Quadratic normal form: strategy of the proof

To help the reader, let us reproduce here the explanations given in Section 3 of the in-
troduction. We want to implement the normal form approach by introducing a quadratic
perturbation of U of the form

¢ =U+ E(u)U,

where (u,U) — E(u)U is bilinear and chosen in such a way that the quadratic terms in the
equation for ® do not contribute to a Sobolev energy estimate.

Writing

and replacing 0;U by —DU — (Q(u) + S(u))U, we obtain that modulo cubic terms,

8® = —DU — (Q(u) + S(w))U — E(Du)U — E(u)DU
=—-D®+ DE(u)U — (Q(u) + S(u))U — E(Du)U — E(u)DU.
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It is thus tempting to seek E under the form F = E; + FEs such that

(3.3.1) Q(w)U + E1(Du)U + Ey(u)DU = DE;(u)U,

S(u)U 4+ Eo(Du)U + Eo(u)DU = DE3(u)U,
to eliminate the quadratic terms in the equation for ®. However, one cannot solve these two
equations directly for two different reasons. The equation (3.3.1) leads to a loss of derivative:
for a general u € H* and s > 0, it is not possible to eliminate the quadratic terms Q(u)U by
means of a bilinear Fourier multiplier £; such that U — E;(u)U is bounded from H® to H*.
Instead we shall add other quadratic terms to the equation to compensate the worst terms.

More precisely, our strategy consists in seeking a bounded bilinear Fourier multiplier E\ (such
that U — FE1(u)U is bounded from H® to H®) such that the operator Bj(u) given by

(3.3.3) B1(w)U := DE,(uw)U — E{(Du)U — E1(u) DU,

satisfies
Re(Q(u)U — B1(uw)U,U) gsxps = 0.

The key point is that one can find Bj(u) such that U +— By (u)U is bounded from H® to H*.
This follows from the fact that, while U — Q(u)U is an operator of order 1, the operator
Q(u) + Q(u)* is an operator of order 0. Once Bj is so determined, we find a bounded
bilinear transformation F; such that (3.3.3) is satisfied. We here use the fact that Q is a
paradifferential operator so that one has some restrictions on the support of the symbols.

As explained in the introduction, the problem (3.3.2) leads to another technical issue. Again,
we shall verify that one can find Fa(u) such that

|| B2 (u < K |lullge -

)Hc(Hs,Hs)
and such that the operator By(u) defined by
Bo(u)U := DE3(u)U — Ey(Du)U — Ey(u)DU,

satisfies

(3.3.4) Re(S(u)U — Ba(u)U,U) grsxpgs = 0.

3.4 Paradifferential operators

Below we shall consider the equation
(3.4.1) E(Du)U + E(u)DU — D[E(u)U] = II(u)U,
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where (u,U) — E(u)U and (u,U) + II(u)U are bilinear operators of the form

BV = Y g [ Ok 644 6,00 () dé de

MU = ) 271T /€m(§1+§2)&z(fl)Mk(§1,52)(7(52)d&dﬁz,

2
1<kL2 ( )

where A* and M* are 2 x 2 matrices of symbols.
We shall consider the problem (3.4.1) in two different cases according to the frequency inter-

actions which are permitted in F(u)U and II(u)U. These cases are the following.

(i) The case where II(u)U is a paraproduct of the form T,b. Namely, the case where there
exists a constant ¢ €]0,1/2[ such that

Supp M € {(61,62) € B? : [l 2 1, [ea| < cléal .

(ii) The case where II(u)U is a remainder of the form Rp(a,b). Which means that there
exists a constant C' > 0 such that

Supp M* € {(€1,€2) € R : |1 + &l < C(1+ min(l&], &) }-

There is another important property of the symbols which have to be taken into account.
Indeed, when solving the equation E(Du)U + E(u)DU — D[E(u)U] = H(u)U, we will have
to invert a matrix which yields a small divisors issue. Here this problem arrises only for low
frequencies. Therefore, we need to quantify the order of vanishing of the symbols on & = 0,
€& = 0 or & + & = 0. For the analysis of the first case, for instance, since |2 > 1 and
|€1 + &3] > 1/2 on the support of MF, it is sufficient to quantify the order of vanishing in &;.
We are thus lead to the following definition.

Definition 3.4.1. Let (m,~,v) € [0,+00[3. One denotes by S,"" the space of functions
(&1,&2) — A(&1,&2) with values in 2 x 2 matrices, C*® for (£1,&2) € (R\ {0}) x R and
satisfying

(3.4.2) Jc €]0,1/2[ such that Supp A(&1,&2) C {(51,52) & > 1, &) < c|§2\},

and, for all (o, B) € N2,

(3.4.3) 008, A(61, )| < Cap | (&)™ (&),

If a = a(&1,&) is a scalar valued function, we shall say that a € Sp"7 if als € SJ"" where Iy
the identity matriz.
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To analyze the remainders terms it is convenient to introduce the following definition.

Definition 3.4.2. Let (m,v1,1v) € [0,+00[>. One denotes by SR™ . the space of func-

tions (£1,&2) — R(&1,&2) with values in 2 x 2 matrices, C* for (fl,ﬁgsjléVQ(R\ {0}) x (R\ {0})
and satisfying

(3.4.4) 3C >0 s.t. Supp R(&1,&) C {(51,52) t &+ &2 < O(1 + min([& ], |§2’))}7

and

(3.4.5) agag}z(gl,gz)\ < Cop 1|72 |6 PF2 (14 [&4| + &)™

Notation 3.4.3. Given a scalar function v, a matrix A in one of these two classes of symbols
and f with values in C?, we set

~

(3.4.6) Op®[v, Alf = (Qi)Q / e ETRH(E) A6, &) (&) déy dEs.

When there is no risk of confusion, we will use the notation OpZ[v, A]f also for scalar sym-
bols A and scalar unknowns f.

Proposition 3.4.4. i) Given m € R, one denotes by SR, the space of functions (£1,&2) —

reg

R(&1,&2) with values in 2 x 2 matrices, O for (&1,&2) € R? satisfying (3.4.4) and

(3.4.7)

8?18?21%(51762)‘ < Cop(l+|&] + ’EQDTrL—a—ﬁ.

Then for any a € [0,+00| and any o € [0, +o0[ such that a + o > m,

(348) HOpB[v7R]fHHU+a—m S K ||UHH‘7 HfHC“
and
(349) HOpB[vﬂR]fHHcr+a—m S K ”UHCQ HfHH" :

i1) Let m in R and let vy,v2 in |0,4o00[. Consider two real numbers a € [0,+o00[ and o €
[0, +00[ such that a + o > m + vy + va. If R belongs to SR} ,, then

V1,02
HOpB[vaR]fHHaH-a—M—Vl—Vg S K ||U||H<’ ||f||Ca

and
HOpB[U7R]fH[{U-HJ—WL—!ﬂ—Vg < K HUHCG ”f”H" '

Proof. i) Notice that (3.4.4) implies that there holds Cy ' (£1) < (£&) < Co(&1) on the support

Of R(gl, 52)
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Consider a dyadic decomposition of the identity (see Appendix A.2) and write
Aj OpPlv, R|f = Z ZAj Op?B [Akv, R] Aof

k>0 ¢>0

+ ZA]» Op® [Ayv, R]Sof

k>0

+ Z A]’ OpB [S()U, R] Agf
£>0

+ A; OpP[Sov, R]So f.
By using the previous remark and (3.4.4) one can assume that |k — ¢| < Ny and j > k — Ny

in the first sum and the two other sums are non zero only if j < Ny, k < Ny, £ < Ny.

The summand of the first sum can be written
AP = A, / Kool — y1.@ — y2) Aro(y1) Ao (y2) dyrdys

with
2k+€

Ky = o

27T)2 /ei(2kz1§1+2522§2)(p(§1)¢(£2)R(2k€1’2552) dé,dés.

Since R satisfies (3.4.7), the partial derivatives of the non oscillating term are O(1) (since
|k — £] < Np), whence the estimate

—N
]Ku(zl, 22)’ S CN2k+£+km (1 + 2k‘2’1| + 2Z|Z2’>

for any N. Therefore

AR < 1A £ e / 28(1+ 28 =) |Aro ()| dys -2

SO

k.l k —La—ko+k
1451 2 < C2 1A fll o 1AR0] 2 < C2TOH e | £l g 0] 1o -

Since we sum for |k — £| < Ny, k > j, we obtain for a + o > m

1A < 279 | £l ga ol o 277
k.l

The analysis of the other terms is trivial. This proves (3.4.8). The proof of (3.4.9) is similar.

i1) Since we assume that (3.4.7) holds, if |{1] > 1 or [£2| > 1, the other term is large, and
they are of comparable size. Then we have

Op®lv, R f = Op® [Sov, R] (Sof) + Op® [v, R] f

where Sy cut-offs on a ball with a large enough radius and where R is in SRyt Tt
suffices to study the first term, in which we decompose

v = ZAkv, f= ZAgf.

k<No {< Ny
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If we set
Akt = /Kk;,z(l‘ —y1, T — Y2) Apv(y1) Aef (y2) dyrdyz

then the kernel K}, , satisfies

—-N
| Kyo(21, 22)| < C2RUFv)H+12) (1 + 2F| 2| + 2f|22|)
whence
145 12 < C A oo [AkvlL2 2142 < Ol oo 0] 2 21+,

To be able to sum on k < 0, £ < 0, we need the assumption v1 > 0, vo > 0. We then
obtain that HOpB [Sov, R] (Sof)HL2 < C|[fllzee V|l 2 (together with a similar estimate in

£l z2 Toll oo )- O

In the rest of this section, we study the case where A € S;"7. In particular, we shall prove
that, for all v € C? N L?*(R) and all A € SJ*7, the operator Op®[v, A] is well-defined and
bounded from H*T™(R) to H*(R) for any u € R. To prove this result, we first notice
that OpZ|[v, A] is a pseudo-differential operator. Indeed,

~

Onlo, Al = 3= [ eala.)F(6) de,

where the symbol a is defined by
1 N
(3.4.10) @ €) = o [ TG €

Since v € L2(R) and A(-,€) is bounded, a(-,&) is well-defined and belongs to L?(R;dx) by
Plancherel’s theorem.

The following two lemmas state that, in fact, if A € S)"7, then a is a paradifferential symbol
of order m and regularity C*~7~". We first consider the case v = 0 and then the case v > 0.

Lemma 3.4.5. (i) Let (m,v) € [0, +00[%, A € S;7 and consider a scalar functionv € CPNL?
where p is such that p > v,p € N,p —~v & N. Then, for all 8 € N and for all € €]0,1], there
exists a constant K such that the symbol a defined by (3.4.10) satisfies

<K 1 1—e €

< Kyllvllee + vl olz2 -

B—maB
sup H(&) 9 75)’ I
(ii) Let (m,v,v) € [0, +oc[> and assume that v > 0. Consider A € S;"”7 and a scalar function
v € CP N L*(R) where p is such that p > v+ v,p € N,p —~v —v & N. Then, for all B € N,
there exists a constant K such that the symbol a defined by (3.4.10) satisfies

< K|fvflep -

cp—y—v

S%pH(Qﬁmafa(-,g)‘
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Proof. Let us prove statement (). Consider the dyadic decomposition of the identity Id =
(D) + Z;’il A; introduced in (A.2.1). We have to prove, for j € N* and 8 € N,

|asofat-0) . . < Klvllos 02790,

and an analogous estimate for the low frequencies. One can assume without loss of generality
that g = 0.

Consider j € Z and a C'*° function QB with compact support such that (;3 =1 on the support
of ¢ and 45 = 0 on a neighborhood of the origin. Then

Ajala, &) = 5 / €6 §(279€)0(E1) A6y, €) déy

2J

T o

=9 /Ej(Qj(m —2'),8)Aju(a’) da’

/ 2 (=28 e ) Asu(a!) A(2¢y, €) da’ dg

where
(3.4.11) Ej(2,€) = o= [ € 3(e1) A6, €) d
4. (28 =5_[e€ 1 €1,€) d&a.

Then, integrating by parts, the inequalities (3.4.3) and the support condition (3.4.2) imply
that for all n € N there is a constant C,, such that, for all (z,£) € R? and all j € Z,

|27 Ej(2,€)| < Cu(277)(€)™.

Consequently, the kernel satisfies || (-, f)HLl(dz) < K(277)(&)™. For j > 0, we deduce that
18500 ) ey S €™ 1850110 277 S (2770 0] .

On the other hand, for j < 0, write
(3.4.12) 14;a(, ) oo < KE)™ |A50] oo = K ()™ A0l 725 140 7o -
Estimating ||Ajv]; e < 21/2 1Al 2, we get

1A a (-, )l oo < K2Z7/2(E)™ | Aj0ll7as | Ag0ll5 -

Since a(-, €) € L*(R) and since Y.~ 272 = O(e~!), summing on j < 0 (using Remark A.2.1),
we obtain that

J2(D2)al- s S 18(Dat, Ol L ol il

which completes the proof of statement ().
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We now prove statement (i¢). Since S, C Sp° YTV the analysis of the high-frequency
component follows from the previous proof. It remains only to bound the low-frequency
component. Namely, it remains to estimate H@(Dx)a? a(- &)l oo Again, it is sufficient to
consider the case = 0. As above,

(Dy)a(r,€) = / E(x — o, )(B(Dy)v)(z') da’

with 1
E(Z,f) = % /€ZZ£1®(§1>A(§17€) d§17
where ® € C3°(R) satisfies ® = 1 on the support of ®. To conclude the proof, we have to

estimate the L'(R; dz)-norm of E(-,¢). This will follow from the following fact: if g = g(¢) is
a compactly supported function, C* for £ € R\ {0} and such that its derivatives satisfy

9@ < I€l”, |d©| <t |g"©)] < g2,

with v > 0, then its inverse Fourier transform § belongs to L' (RR). O

We thus have proved that OpP[v, AU = ot [, ei*¢a(x, & )U (€) d¢ where a is a paradifferential
symbol. We now claim that Op” [v, A] is a paradifferential operator.

Lemma 3.4.6. Let (m,~,v) € [0,+o0o[>. Consider A € S;"7 and a scalar function v €
CPNLAR) withp>~v+v,pE€N,p—~v—v &N. Then

Op®[v, A] = T, + R,

where T, is the paradifferential operator with symbol a given by (3.4.10) and R is a smoothing
operator of order m — (p — v — v), satisfying

VRS gnemitor < K sup (€)% "0Fa(-,€)
l§1>1/2

B 1 P

Proof. By virtue of the support condition (3.4.2), there exists a C*° function © satisfying the
same properties as 6 does in Definition A.1.2, except that

O &) =1 if [&4] <a(1+[&]) and [&] > 2,

O(61,82) =0 if & > &(1+[&]) or  [& <1,

for some 0 < €] < g1 < €3 < €2 < 1/2 with the additional assumption that ¢ < €5 where c¢ is
the small constant which appears in (3.4.2). Denote by T° the operator defined by

191 = g [ OO SN, &) F(E) dé e

where @(£1,&) = [e ™a(x,&)dr. Now, OpPlv, A] = TP, which is better written as
OpB[v, A] = T, + R with R := T® —T,. Since 6 are © are two admissible cut-off functions (in
the sense of Remark A.1.4) it follows from [38, Prop. 5.1.17] that R =T — T, = T — T? is

of order m — r if a is a symbol of order m in ¢ with regularity C” in z. O
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We conclude this part by establishing two identities.

Lemma 3.4.7. Let (m,~,v) € [0,+o00[3. Consider A € S,"7 and a real-valued function
veECPNLAR) withp>vy+v,p €N, p—~y—v &N. Then

(OPB[U7 A])* = OPB[U7 B],

with B(&1, &) = AT (=€, & + &) where AT is the transpose of A.

Proof. We have

OpFlo AW () = 5 [ Bl€0) A& - )W n - &) des,
so that
(O [0, ATUW) = sz [ D)ol A6 — )62 — €0 deady
- o | MO &I (€& €)W () deadey
— 5 [ OVl BU (€)W () des,
with B(é1,6) = AT(—&1,& + &), 0

We shall also use the identity
(3.4.13) 20, OpPlv, A]f = OpBlxd,v, Al f + OpPlv, Al(x0.f) — OpPlv, & - Ve AlS.
Indeed, this follows from an integration by parts, using
w0, e E1182) — ¢, eiE1te2) | g5, einlE1tes)
In particular,
(3.4.14) 20 Tab = Tro,ab + T (xz0zb) + Sp(a,b),

where Sg(a,b) = Op®la, R]b with R = —¢ - V¢ where 6 is given by Definition A.1.2.

3.5 The main equations

We continue our normal form analysis by studying the equation
(3.5.1) E(Dv)f+ E(w)Df — D[E(v)f] =(v)f,
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where v = (v!,0?), f = (f', f?) and (v, f) — E(v)f and (v, f) — II(v) f are bilinear operators
of the form

E(v)f = Op® [v', A'] f + Op® [v?, 4% f,
II(v)f = OpP [vl,Ml]f +0p”® [UQ,MZ]f.
We first consider the case where (M, M?) € SJ*7 x SJ*7.

Proposition 3.5.1. Let (m,7) € ([0, 4+oc[)?, v € [1, +o0[ and consider (M*, M?) in S;*7 x

S)V7. Then there exist A' € S,’;'I_’Z/Q and A? € S’Zn_’l/Q such that

E(v)f = Op®[v', A'|f + OpP[v?, A?|f,

satisfies (3.5.1) and (MY, M?) — (AY, A?) is continuous from S;"7 x S, to S:Z’Z/Z X Sjﬂ/?

Proof. We have

DE(v)f = Op® [0}, D(&1 + &) AL (&1, &) ] f + OpB [v2, D(€1 + &) A%(&1,6)] f,

E(Dv)f = Op® [ = |D,|7 0%, A(&1, &)] f + Op® [|D.]7 0!, A2(&1, &)1 £,
E(v)Df = 0p® [v!, A&, &) D(&)] f + OpP [v?, A%(&1,&)D(&)] f,

where D(¢) = (Y 1) [€ \% is the matrix-valued symbol of the operator D. To solve
E(Dv)f + E(v)Df — D[E(v)f] =(v)f = Op® [v!, M'] f + Op® [v*, M?] [,
we thus have to solve

—D(& + &)A + A'D(&) + 6|2 A = MY,
(3.5.2) 1
—D(&1 + &)A% + A2D(&) — |&|2 A = M2,

Denote by afj (resp. mfj), 1 <i,j <2, the coefficients of the matrix A* (resp. M*), k = 1,2.
To solve (3.5.2), we have to solve two 4 x 4 systems for the 8 unknowns afj. To simplify the
computations, it is convenient to observe that this 8 x8 system can be decoupled into two other
4 x 4 systems: one system for (a2, aly,ad;,a3,) and another system for (aiy, a2y, ad,,a3;).
They read

‘51‘1‘52’%@%1 +‘§1‘%a%1 +|§2\%a%2 = mjy,
_|§1+§2|éa%1 _|§1‘%a%1 +|§2|%a%2 = m3;,
—|§1+§2|%a%2 +|fl‘%a%2 —|£2|%a§1 = M3y,

€1+ 6l ady — |&1]2 aly — |&al2 0}y =mb,
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and

(3.5.3) —1& +€2|%ah +|§1\éa%1 +\§2|éa52 = my,
(3.5.4) €1+ &l7ad; —|eil2al, +|&lZad, =md,
(3.5.5) &1 +§2|%a%2 +|§1‘éa%2 —\§2|%0&1 = miy,
(3.5.6) —l&1 + &olzady —|€1lZay —|6al2ad, = md,.

Clearly, these two systems are equivalent and it is enough to solve one of them.

Let us solve (3.5. 3) (3.5.6). By using (3.5.3) and (3.5.6) one can determine a2, and al; by
means of al, and a3;. It remains only a 2 x 2 system for (al,,a3;). Set

§ =&+ & — &l —1&], D=6 —4l&]]&].

It is found that

2 1 i1 E | 1 9 1 9
dazy — 26112 622 agy = — [1]2 mgy + [§2|2 m3g + [€1 + &2 2mTy,
11 1 1 1
Sagyy —2|&|7 6|2 a3y = [€1]2 m3y — |&2]2 myy + |& + &|2mi,,
thus
1 1 1
5(|§1 +§2\2m%1_|§1|2m%1+’52|2m%2)
2 1
+ D| 17 162 (|§1+€2|2m12+\§1|2m22 &2]2 md,y),
1) 1 1 1
a22—5(§1 +§2\2m}2+|§1\2m§2—]§2|2m§1)
(3.5.7) 2 1, 1,
|€1|2 &2 (11 + &olEm?) — 61| md, + |2 m3y),
1
ajy = — 7(|£l|2 22—|—|£2|2a21—|—m22)
’§1+§2|2
1
aj; = 7(‘51’2%1 + ‘52’“122 m%l)'
11 52’2

We here give simplified expressions for § and D on the support of the symbols m . Notice
that, by definition of the spaces S;,"”, we have |£;] < |£3] /2 on the support of the symbols m”
We then observe that

£16&2 >0 = 6=0 and D = —4 (&1 [&2],
§1&2 <Oand [&1| <[&| = 6=-2[&] and D = —4|§][& + &

Thus, for all (£1,&2) e R2, if |€1] < |&2] /2 then |D| > |&1] |€2|. Consequently, since |£a] ~ (£2)

on the supports of m¥., we have |D| > |€1] (£2) on the supports of mf’]

YK
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k.

Now, since m}; € S,"7 for some v > 1/2 by assumptions, one can write m =& |1/ 207 fj

with m € ST} /2 Furthermore there exists a C* function 6: R? — R sat1sfy1ng

(35.8) iE,8)=0 for |l > 516l or lel < 3,

such that = 0(¢1,&)m j.

Introduce the coefficients
~ 0 1 1 ~ 0 1 1 ~ 0
c1 1295 €112 €1 + &2, 2 2295\51’2|€2\27 cs 3295 &1l
~ 2 1 1 ~ 2 3 1 ~ 2
Cq = ‘95 1] |€2]2 [€1 4+ &2|2, c5:= 95\§1|2 2|2, c6:= 95 &1 1€2]

In view of the support restrictions (3.5.8) and the simplified expressions for ¢ and D given
above, these coefficients belong to 58’0.

one has Cgm es”

Thus, for any coefficient ¢, (¢ = 1,...,6) and any symbol 7n} e /2

i Now,

using the formulas (3.5. 7) we obtain that a3, and al, can be written as linear combmations

of terms of the form Cgm . This implies that the symbols a3, and a3, belong to S /o This

in turn implies that a2y, al; belong to S which concludes the proof. O

1/2’
We next consider the following problem:
Er(Dv)f + Eg(v)Df — D[Er(v)f] = S(v)f,
where we recall that S(v)f = <(S(U)f)1) with
(S()F) = Dol Rp(1Do|2 0%, 1) + 00 Ri(@: | Ds| 2 0%, 1),
(S)F)? =~ Dul* R(1Daf* o, [Del? )
+ 51Dt Re(0, 1D, 40,0, D, 1)

We shall see that it is useful to split S(v)f into two parts. Introduce

(3.5.9) St(w)f = ((S(“)f)l> , S(v)f = % ( " ) :

These two operators are different because S°(v) f satisfies S*(v)f = S°(f)v, while S%(v) f does
not satisfy this symmetry.

Our purpose is to study the equations
E*(Dv)f + E*(v)Df — D[E*(v)f]
E’ (Dv)f + E’(v)Df — D[E’(v)f] = S*(v)f.

I
.
—~
S
e
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The next proposition states that one can solve these equations, and that the solutions E*(v)
and Eb(v) f are smoothing operators depending tamely on v. Recall that the spaces of symbols
SR, have been introduced in Definition 3.4.2.

V1,V2

Proposition 3.5.2. There exist four matrices of symbols R, R¥2, R», R*2 in SR(ILO such
that the following properties hold.

i) Let (u,p) € R x Ry be such that p+ p > 1. The bilinear operators given by
(v, f) = E*(v)f = Op®[o!, R¥'] f + Op®[v®, R*]f,
(v, f) = E’(v)f = Op’[v", ] f + Op®[v?, R,
are well-defined for any (v, f) in (CP N L?*(R)) x H*(R) or in H*(R) x (CP(R) N L?(R)).
ii) There holds
(3.5.10) E*(Dv) + E*(v)D — DE*(v) = S*(v),
(3.5.11) E’(Dv) + E’(v)D — DE"(v) = S°(v).

ii1) The following estimates hold.

e For all (i, p) € R x Ry such that p+p > 1 and p & %N, there exists a positive constant K
such that, for any f € CP(R) N L?(R) and any v € H*(R)

(3.5.12) IE* () f[| o < K M Fll o 10]
(3.5.13) 1 ) f | ggseo—s < K (I low + 1HF o) 0]
where Hv is the Hilbert transform of v.

e for all (1, p) € R x Ry such that p+p > 1 and p & %N there exists a positive constant K
such that

(3.5.14) IE* () f | s + B @)l o < K (W0llgo + [H0ll o) 11l

iv) The operators Re E*(v) = 1(E*(v) + E*(v)*) and Re E’(v) satisfy

(3.5.15) Re E*(Dv) + Re E*(v)D — DRe E*(v) = Re S¥(v),
(3.5.16) Re E°(Dv) + Re E°(v)D — D Re E”(v) = Re 8 (v).

Moreover, for all (p,p) € R x Ry such that w+p > 1 and p & %N, there exists a positive
constant K such that for any f € H*(R) and any function v € CP(R) N L*(R) such that

0(&) =0 for [¢] > 1,

(3.5.17) [Re B*0) f|| jyusns + |Re B2 @) f|| jyusps < K Wil I1f ]l g -
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Remarks. Some technical remarks are in order. Had we instead obtained symbols R*!', R%2,
R*' R*?in S’Rll,ho for some 1 > 0, then we would have obtained the bound

HEﬁ(U)fHprfurl + HEb(U)fHHHP*"l*l < Kllvlice 11l »

that is, up to the harmless loss of v; derivative, the estimate (3.5.14) without the extra term
|[Hvl| . However we shall see that our symbols only belong to SR (see (3.5.19)). For such
symbols, in general, one cannot expect a better estimate than (3.5.14). For our purpose, it
is crucial to have an estimate which involves only ||v||~,. To overcome this difficulty, the key
point is that, on the one hand, the right-hand side of (3.5.12) does not involve ||v||, || f|| g
and on the other hand the estimates (3.5.14) and (3.5.17) are sharp. The latter estimates
will be used in the proof of Proposition 5.2.1. Finally an estimate analogous to (3.5.12) for
E’(v)f does not hold. We shall circumvent this by using the symmetry S°(v)f = S°(f)v, so
that the estimate (3.5.13) is enough for E”(v)f. As already mentioned, this is the reason why
it is convenient to split S(v)f as the sum of S*(v)f and S°(v)f.

Proof. The proof is divided into two parts. We first study E*(v), then we study E°(v).
STEP 1: Analysis of E*(v)

Set ((&1,&2) =1 —0(&1,&) — 0(&2,&1) where 0 is the cutoff function used in the definition of
paradifferential operators (see Definition A.1.2). Then

Ris(a,b) = (er)z / T (¢, )a(60)b(E2) b dE.
Introduce
(3.5.18) m (€1,€2) = 6172 (j61 + &l [&1] — (& + £)&1) (6 &).
Then

2
S(v)f = OpP[?, M?)f with M= (ngl 8).

We seek Ef(v)f under the form OpB[v!, R%|f + OpB[v?, R%?|f satisfying (3.5.10). Denote
by rfj the coefficients of the matrix R¥*. It follows from the proof of Proposition 3.5.1 that,
to solve (3.5.10), it suffices to set r3; = r{, = ra; = 73, = 0 and to solve

—J&1+ &lErd, TGl + |&l3rd, =0,
|§1+§2’%T%1 —|§1|%7“%1 +|f2|%7“%2 :m%p
€1+ &l3rhy +l613rd, —|&lirh =0,

—l&1 +&l3rd, — &zl —l6lid =0,
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As already seen in the proof of Proposition 3.5.1, we have

1
5 = 5|§1 + &|zmiy,

2 1 1 1
riy = = 16117 |2 6 + &l 2miy,

2|fl|+(5 1
7"%2:— I3 | 11»

5+2|€2| 1
riy = T|§1|2m%1~

where § 1= |&] + &o| — |&1] — |&2] and D := 6% — 4|&] &)

Notice that on the support of m?; we have (&1 + &)€1 < 0 so that &€& < 0 and |&1] < |&].
Then [& + &o| = [|&2] — |€1]| = |&2] — |&1| and we have

6=-2]&] and D =4[] (&]—[&]) = —41a]|& + &

This allows us to simplify the computations. It is found that

1 2
Tor = ————— 1M1,
2161 + &2
Pl = — l|§2\% _m?
2[&1|2 |61 + &2
T%Q :Oa
T}IZ ; %15
21¢|2
SO
! 1 §i+8& &
T21_ ‘51’ ‘§1+§2’ ( ’é- +§2H§ |>C(‘£17£2)7
1 1 S +8& &
7’22 _7‘52‘ |€1 +€2‘ ( ‘g +£2| 51’>C(£17€2)7
T%Z :O>
1 1 SRS 51)
1= Ty €1+ &2 <1 6+ &) 6] C(&1,&2).

We thus obtain the desired result (3.5.10) with

1 (§1+&) & &1 + & 0
Rl .= 2 <1—> , 1 1],
; \&+@KHC@§”( 0 \@4&+@J

2. 1 _(§1+52)§1> S0 0
RY% . 2<1 6t 6l ] C(&1,&2) Qe 6l o)

(3.5.19)
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Set H = —i0, |Dz|_1. Then Op” [vl,Rm]f is given by

1 ( —|Dy| Rg(v?, f1) + H |Dy| Rp(Hot, f1) >

2\ |D,|2 R(v!, |D,|7 f2) + H|Dy|? Re(Ho',|Dy|? £2)

and Op® [2}2, Rm] f is given by
1 0
2 <|Dx|% Ri(|Ds2 0%, ) = H |Da|? Ris(H |Dx|%v2,f1>> |
To prove (3.5.12) we have to estimate various terms of the form
A1 |D.|" Rs(Az | DLV, |DL|° F), Aje{H,Id}, a+b+c=1 ce/{0, %}, a,b > 0.

Since Rg(a,b) = Rp(b,a), the estimate (A.1.17) and the fact that H is bounded on Sobolev
spaces imply that
|41 1D:]® Ri(A2 | Dal” V. 1Dl F) | o
b c
(3520) S HRB(A2 |I;D$| ‘/’ ’D1’| F)HH;H—p—l-!—a
S HA2’Dw’ VHHwHHc
< 1Vl 1Pl

Dl FY| e

where we used (A.2.4) in the third inequality. This proves that

1OPP[0", B £ o1 S 10 | g 1 fllce
HOpB [U27Rﬁ72}fHHN+pfl SJ HUQHHM Hf||C’P7

which imply (3.5.12). Similarly, we have

1008 [, B £ pvos S (0 oo+ 1#0 | o) 151157
(3.5.21) 105 [, B¥2) £|| usos S 102 o 1 e

which proves (3.5.14).

It remains to prove statement iv). Notice that, since D* = —D, (3.5.10) implies that
E¥(Dv)* + E*(v)*D — DE*(v)* = S*(v)*.

This and (3.5.10) implies that Re E*(v) satisfies (3.5.15). We now have to prove that

(3.5.22) IRe E*(0) f| ysp1 < K I0llo 11l g

provided that the Fourier transform of v is supported in the unit ball. To do so we begin by
noting that Lemma 3.4.7 implies that

Re B (v) = Op® [v!, R¥ (€1, &) + RM (—€1,6 + &)
+0pP[v?, R¥2(€1,6) + R¥(—61, 61+ &)7].
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We begin by proving that

(3.5.23) |Op® [v!, ¥ (&1, &) + RM (=61, 6 + &) e o1y S v [l -

Below we use the following notation : given a scalar symbol p = p(&1,&2) we denote by p the
symbol defined by p(&1,&2) = p(—&1,&1 + &2).

To prove (3.5.23) we write R*! under the form R» = 1¢ (¢9). Then

RP (61,6) + RP (~60,6+ &) = 5 <“+5 b&) +3E-0) (5 9) ,

0 2 0 b
with
o=-la+al(1-2E2 ),
(3.5.24) a=—&| <1+IZHZI)
o=ttt el (1- @)
(3.5.25) b=—|¢1+ &7 |6 <1+‘Z||2)
so that

a+a=—|& +&| — ||+ &),

|61+ &f &2

As above it follows from (A.1.17), (A.2.3) and (A.2.4) that

b+b=—2 |f2|% \§1+52|% + |§2’% €1 -1-52\% <§1+§2 &2 ) éh

1,/ —la+&l—l&l+&] 0
B[,1 * < |[o?
e O G T )| L
Set
1 §1+ & &2 ) &1 1 1

3.5.26 J6) = ~C(E1,6) [ TS L S2 ) SLein e 467
B2 ) =66 (BT - 2 ) el el
We have to prove that similarly
(3.5.27) 1008 [, 8] et sy S [l

Notice that on the support of

<§1+§2 _§2>
161+ & &
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we have |&1] > |&]. Introduce now YT € C*(R?\ {0}), to be chosen later on, such that
T(gl,gg) =1 for |£1| > |£2| and T(gl,fg) =0 for |£1| < ‘£2| /2 Then

<§1+€2_€2):<§1+§2 §2> T(6, &)
G+l el  \a+el el
and we can decompose [ as
f= fﬁfﬁﬁ Flet &l B where
€1 + &2

_1 Lo d €T
pr = 5C(§1,§2) If | €1]7 [€2]% ( (51@2))

1|4

& & 1.1 |52|
P2 = C(fl 52)|5 Tl [STENISIE <’ 1| (51,52)>

Then Op?® [, 8] = H |Dx|% OpB[v', 1] + |Dx\% OpB[v', B2]. We claim that YT can be so
chosen that 81 € SR?/471/4 and similarly 8y € SR?/471/4 so the result (3.5.27) follows from
statement 4i) in Proposition 3.4.4. To do so we consider a function v € C*°(R) such that
v(t) =1 for |t] <1 and v(t) =0 for |t| > 2. Then we set T(&1,&2) = v(£2/&1) and it is easily
verified that

0&3'8 <’§2’ (51752)) < Caglar] ™16l
1
This concludes the proof of (3.5.27).
To prove (3.5.23) it remains only to prove that
B[.1 (7 _ a0 < |1
(3.5.28) H Op [U 7(< C) (0 b)} HC(HtgHuﬂ)ﬂ) ~ Hv HC”'

Here we use our assumption on the spectrum of v to write v = x(D,)v for some function x
in C§°(R). Then

pB[o!, (C-0) (53)] = 0 [t e (€ <) (59)]
Since 0(—£1,&2) = 0(£1,&2) = 0(&1, —&2) we have
(€1, 69) = C(—E1, 61+ &) = C(61, & + &) = (&1, &) + &1.C (61, &),

where C’(§1,§2) = fol 0¢,C (&1, y&1 + &) dy is such that x(&)¢'(&1,&2) belongs to the symbol
class SR} introduced in the statement of Proposition 3.4.4 (in fact this symbol belongs to

reg

SR, 2° since it has compact support in (£1,&2), which also insures that (3.4.4) holds).

reg

Therefore directly from the definition (3.5.24) of a we have x(&1) (Z— C)E € SR?J. Statement
i1) in Proposition 3.4.4 then implies that

008 [0 (€0 €~ V) gy 1K e < 07l
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where ¥ € C§°(R) is equal to one on the support of x. Similarly

OpB[x(Da)v", (C = €)b] = | Da|7 OpP o, ¥]

with
1 1 1 & _
v ==y (66l + el 2 1)) @) (6.8 < SRy
Statement 4i) in Proposition 3.4.4 implies that HOpB [vl, b'] HE(HH Huto-1/2) < Hlecp. This

proves (3.5.28) and hence this completes the proof of (3.5.23).
To complete the proof of (3.5.22) it remains to prove that
OR[2 BE,€) + BE 61,61+ 07 iy S 1
In view of (3.5.21), to prove this estimate it is sufficient to prove that
(3.5.29) |Op® [v%, R¥2(—¢&1, &1 + &2)7 ] | e rno-2) S vl

Since

b2, r_ 1 &&> 0 |&|zl&l?
R ( 51761 +§2) - 92 (1 + 52 ‘§1| C(fbfl +§2) (0 0 )

and since y(&1)C (&1, & +&) has compact support, we have y (&) Rb2(—£1, & +6)T € SR(l)/m/2
so (3.5.29) follows from Proposition 3.4.4.

STEP 2: Analysis of E°(v)

Introduce
(35.30) mé@h&>=—§EﬁT§F(MHMﬂ+5g9<@h@x
1]2 [&2]2

so that S”(v) f = Op®[v?, M?] with M? = (0 02 )
0 my

We seek E°(v)f under the form OpB[v?, R*!f + Op®[v?, R*2]f satisfying (3.5.11). We still
denote by rfj the coefficients of the matrix R”*. Again, it follows from the proof of Proposi-
tion 3.5.1 that, to solve (3.5.10), it suffices to set 72, = ri, =l = r2, = 0 and to solve

—J&1+ &lErd, Gl + |&l3rd, =0,
&1 + 52’%7"%1 - |§1|%7“%1 + |52|%7“%2 =0,
€1+ &l3rh, +l613rE, —|&lirh =0,

—l&1 +&ol2rd, — &2l — al2rE = m,.
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As already seen in the proof of Proposition 3.5.1, we have

1 2 1
5 = — ’f2| m3y + — ’fl| |§2| m3y,

1 1
Ty = 5 [€1]2 m3, + 5 €112 |&2 m3,,

2 ].

Tig = — 7(’fl|”22+|§2‘2721+m22)7
&1+ 2|2
1 1
1= 7(‘51‘27”21 + ’§2|27'22)
131 52’2

where § := |& + &| — |&] — |&2] and D == 6% — 4[&] &)

Consequently,

o _Gr20alel

21 D 225
1 (0+2]&]) Ik
To9 = D 227

1
o 0]61 + &2
M= Ma

11

1 &l &2 26 + 2|6+ 26| 4

1 = 1 D Mag.
&1 + &2

On the support of m3, there holds 13 > 0 and we have § = 0 and D = —4 |¢1| |€2]. Therefore

1
&1 + &2 1
7"%1 =" 71 1 ;mgza 7”%2 = _ﬁmg%
21&1]2 €22 20612
1
7’%2 =0, T% = _ﬁmg%
2|&|2

We next give a simplified expression for m2, based on the identity

1] 162] + €12

&1 & > &+ &
€1/ |€2]

= (sign(&1) + sign(&2)) sign(&1 + &2) = (,g, + 1&l) &+ &

Then, by definition of m3, (cf. (3.5.30)), we have

myy = —- |§1 + &7 162 &) <|€| + é;)
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Therefore

rh== (€1 + 52) (&1 + &2)C,

B
1 1 & > H+ &
(35.31) 16+ 6l el (rm Gl T e
T%Q = 07
1
=+ 6l e (|s| n é;) éi ﬁ;c,
Then Op” [vl, val] f is given by
1 H|Dy| Rs(Ho', f1) + H |Dy| R (0, 1 fY)
4 \ 1 |D,|2 Rs(Ho', |Dy|? f2) + H |D.|? Rp(v!, 1 |Dy|? f2)

and Op® [112, Rb’2] f is given by

1

0
1 1 1 1 .
4 (H Dol R(H|Do|? v?, 1) +H |Da|? Rp(| Dol Uz,“rlfl)>
Then it follows from (A.1.17) and (A.2.5) that

1E (@) f || yesor < K (0llco + 1H0 ] go) I gz
IE" ) || isos < K (IFllco + 1l o) N0l g -

It remains to prove statement iv). As in the previous step, since D* = —D, (3.5.11)implies
that
E’(Dv)* + E’(v)*D — DE’(v)* = S°(v)*.

This and (3.5.11) implies that Re E’(v) satisfies (3.5.16). We now have to prove
[Re £ (0) ]| guspr < K N0l 11| e
Again, Lemma 3.4.7 implies that
Re E"(v) = Op®[v!, R (&1,&) + R (~&,& + &)7)

+ Op®[v?, R72(&1,&) + R (—&1,6 + &)

The L(H*, H***~1)-norm of Op® [v!, R*1(&1, &) + R (—&, & + &)T] is estimated from the
fact that

R (&, 6) + R (=6, 6 + &) = (3 2)
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with

1 1 &1 &1+ &
(3.5.32) =1 <’§1|+|§2\+§1|€ |> (C C)&’g | + Cf REYAk
1 §1+ & &
(3.5.33) =58+ (C+C)‘§ 66 ’|§2\ & + &2,

where 8 is given by (3.5.26). We estimate the L(H*, H**~1)-norms of Op®[v!,a] and
Op®[w!, b] separately.

Let us estimate the L(H*, H**P~1)-norm of Op®[v',a]. To do so it is convenient to rewrite
the third term in the right hand side of (3.5.32) as

G +8& _ ~ &1+ &2 §1+&
C&lf + & = O&\& + & +<§2!€1 + &
so that a = a1 + a9 with
1 &1+ &
"y <51’+'§2'+§1|5|+52|51+52|>
_ 1 51 §1+ &2
= (C )27~ & ’ (C ()& A

We begin by estimating the contribution due to a;. To do so we notice that

OpB[ <|£1|+\521+51|§waﬁﬂf

&1 + &2
= Rp(|Dz|v', ) + Ra(v', | Dy| f) + Re(Dov', 1 f) + HRp(v', Dy f),

where D, = —i0,, and then we use arguments similar to those used to prove (3.5.20). To
estimate the contribution due to as, notice that we have already seen that x(&1)(¢—¢) belongs
to SRi(l) so that

M) - e € SRT1, x(&)(C—¢)é € SRy}

|§\

and hence one may apply the arguments used to prove (3.5.28).

One can estimate the £(H*, H*tP~1)-norm of Op®[v!,b] in a similar way (using (3.5.27) to
estimate the contribution due to 13).

The L(H", H*P~")-norm of OpB[v?, R*2(£1, &) + R¥?(—&1, €1 + &) 7] is estimated by similar
arguments. O

We need also the following variant of Proposition 3.5.2.
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Proposition 3.5.3. Consider a real number [3 in [0,00[. There exist four matrices of symbols
R%’l, R%Q, R%’l, R;’Z mn SR&O such that the following properties hold.

i) Let (u,p) € R x Ry with p+ p > 1. The bilinear operators given by
(v, f) = E5(v)f = Op® [v!, RE'] £ + Op® [v?, RE’] £,
(v, f) = Ej(v)f = O’ [0, R3] £+ Op® [v*, R 1,
are well-defined for any (v, f) in (CP N L?(R)) x H*(R) or in H*(R) x CP(R).
i1) There holds
(3.5.34) E4(Dv) + Ef(v)D — DE}(v) = &5(v),
(3.5.35) E%(Dv) + Ej(v)D — DE}(v) = Gj(v),
where 6% and Gbﬂ are such that
(3.5.36) Re(S*(v)f = S5(0)f. ) uaxnn =0,
(3.5.37) Re(S"(v)f = &4(v)f, e xps =0,

for any f € H?(R)?, and satisfy

(3.5.38) 165 | 2z gy < K llollcn
(3.5.39) 1S5 £ sz srmro—ry < K loll o -

iii) The following estimates hold. For all (u,p) € R x Ry such that p+p > 1 and p & %N,
there exists a positive constant K such that

(3.5.40) 1B @)l msros < K ol 1
(3.5.41) IEZ () £|| o < K N0l 11l g -

Proof. We begin by studying Eg (v) under the additional assumption that v(§) = 0 for |£] > 1.

2
miy

We have Sf(v) = OpP[v?, M?|f with M? = < 0

0
0) where m?, is given by (3.5.18).

Introduce the following weight

(& + &)

Wik &) = (&1 +62)% + (£2)%

and set

M(&1, &) = w(&r, )M (&1, &) +w(—E1,& + &)M? (&1, & + &),
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so that 6%(1}) = OpB[v?, M| satisfies (3.5.36). Let us prove the estimate (3.5.38). To do so
introduce Ry, (v, f) = OpP[v, w¢]f where ¢ is the cut-off function 1—6(&1, &) —60(Ea,&1). Then
Proposition 3.4.4 implies that R, (v, f) satisfies the same estimates as Rp(v, f) does. Now
Op®[v?, wM?] is given by

(!Dlew(!DxWQ,fl) + 0y Ry (0, \Dxr%v%fl))
0

and hence OpP[v?, wM?] satisfies the same estimate as S(v) does. Proceeding similarly, one
estimates OpB[v2, w(—&1, &1 + &) M?(—£1, 6 + &)*] which completes the proof of (3.5.38).

Then to solve (3.5.34) it is sufficient to seek &(v) such that
(3.5.42) ¢(Dv) + €(v)D — DE(v) = Op® [v?, wM?]

and then to set Eg(v) = €(v) + (€(v))". Now we recall that E*(v) = OpP[v!, RA!] +
Op®[v?, R%?], as given by Proposition 3.5.2, solves

E*(Dv) + E*(v)D — DE*(v) = Op®[v?, M?).

Therefore
E(v) := Op? [vl,wRﬁ’l} + Op?® [UQ,ZURﬁ’Q} i

satisfies (3.5.34). Therefore one obtains the desired result with Eg(v) = Op® [vl,Rﬁﬁ’l] +
OpB[v?, R%’Q] where

R%’k(&,fz) = w(&, &R (&, &) + w(—&, & + &) R (&, 6 + &)

We have symbols of exactly the same form as those found in the proof of Proposition 3.5.2
except that the cut-off function ( is replaced with w(. Thus Eg(v) satisfies the same estimates
as Re E*(v) does. In particular, for any function y in C§°(R) such that x (&) = 0 for [¢] > 1/2,
there holds

15 (X(D2)0) £l o < K Mol 111 g -

This completes the analysis of Eg(v) in the case when the spectrum of v is contained in the
unit ball. Now consider a general function v € C?(R) N L?(R). Introduce a function x in
C3°(R) such that x(&§) = 0 for [{] > 1/2 and x(§) = 1 on a neighborhood of the origin. We
then set

B (v) = E*((1 = x(D2)v) + 5 (x(Da)v),

where Eg (X(Dw)v) is as given by the previous step and where E* is given by Proposition 3.5.2.
It follows from (3.5.10) and the previous analysis that (3.5.34) and (3.5.36) are satisfied. On
the other hand, (3.5.14) and the fact that the (1 — x(D;))H is bounded on Hélder spaces C”
(with p € N) imply that

15 ((1 = X(Da))0) £l jusos < K 0ll o 111z -
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We thus obtain (3.5.40) by combining the two previous inequalities.

The analysis of E% (v) is similar. O

3.6 System for the new unknown

Recall that
(3.6.1) U + DU + Q(u)U + C(u)U 4+ S(u)U =0 mod [H?].

As explained above, our first task is to prove that there exists an operator of order 0, denoted
B(v), such that

Re(Q(v)f — B(v)f, f)msxms =0,

where (-, ) prsx zrs denotes the scalar product in H*(R)2.

Lemma 3.6.1. There exists B! € Sg’o and B? € Sg}%

such that for allv = (v!,v?) € CP(R)?
B(v) := Op®[v!, B'] + Op®[v?, B,

satisfies B(v) = B(v)* and Re(Q(v)f — B(v)f, f)asxus = 0 for any f € HFL(R)2.

Proof. Write
2Re(Qv)f — B()f, [)msx s
=2Re(A°(Q(v)f — B(v)f), A°f) 1212
= (M(Qu)f = B()f), A°f)raxrz + (A F, A(Q(0) f — B(v)f)) 1212
= ((A*Q(v) + Q)*A®) [, f) 1212 — ((A*B(v) + B(v)*A®) f, f) 1212

where A = (Id — A)Y/2. Since we seek B(v) such that B(v) = B(v)*, this means that we have
to solve

(3.6.2) A% B(v) + B(v)A® = A%Q(v) + Q(v)* A%,

We first rewrite Q(v)f as Op®[v!, Q']f + Op®[v?, Q?]f. Recall from (3.2.7) that

11 1 L.
Q(U)U _ T81|Dz|7%u28mU o ijﬁ\Dz\%uQU o T_%|Dz|u1 ’Dw|2 U
- 1 1 .
|D, |2 Tam‘Dm‘,%u%_l/gaxU? + | D2 Tié‘Dz‘mUl
Then set
1
1 0 |€2]2
Q' = - |&4]0(¢1,&) 1 5
2 —[&1+&[2 0
(3.6.3) 1
1 —& — 561 0
Q? = &1 16| 2 0(&1,&) 2 1 1,
0 — €1+ 622 &2 || 2
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where 6 is given by Definition A.1.2. We have

32
PP, QY f = Y T 1ip, o |1Dal? f

_ Ox ! 0
OpB [1}2, Q2]f — 8z|D | 1/22% f 2 |D |§u2f 12 K
O ’D.Z’| T(ar|Dx|71/2U2)|£‘71/28xf

Then Q' € 511/2’0 and
A% 0pPlot, Q']+ (OpPl!, Q1)) A = Oplt, Q']
where Q' is given by (see Lemma 3.4.7)

Q1 (&1,&) = (&1 + &)¥QN (&, &) + (&)*Q' (&4, & + &)

— 1 2s 0 ‘§2|1/2

=5 &+ &)7 6] 0(&, &) (_ G tal”? o
1 2s 0 - ‘52‘%
- 0 .
+ (&) al0(=&, & + &) <|£1+£2|1/2 0 )

Since 6 is even in & (by assumption (A.1.2)) and since

L o9 00 _
0(&1,6 + &) :9(51752)+§1/0 0752(51,52+y51)d’y, and %6 S

we obtain that Q! € 5’22S_1/2’0.

Similarly Q2 € S©2 and A2 OpB[v?, Q2]+ (Op®[v?, 02])* A% = 0pB[v?, Q%] where Q% € S35

1/2 3/2
is given by
= (61 +&)PQ%(61,&) + (£2)BQ%(—&,6 + &)T
_1 —& - 14 0
= 2s 20 2 1 1
(&1 + &)™ 1&] 2 0(&1,62) ( 0 el ‘52’_2>
_1 i+ & 0
2s 2 0(— , 2 1 1.
+(&2)7 ¢ [&] 2 0(—& 514—52)( 0 Eal} (6 + &) |6 + &l 2)
Now set
1. 1 1 -1/2,0
(3.6.4) Bl= el €5
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and
2. 1 2 0,0
(3.6.5) B* = AL <§2>25Q € 53/

Then B(v) solves (3.6.2). Moreover, since QF(—&1,&; + &)T = QF(&1,£)T for k = 1,2 and
since (&1 + £)% + (&) = (&) + (&1 + &))* + (& + &)* we check that Op®[v!, BY]
and Op®[v?, B?] are self-adjoint, so is B(v). O

We next study the equation
Ea(Dv)+ Ea(v)D — DE4(v) = —B(v)
where B(v) is given by the previous lemma.

Lemma 3.6.2. There exist A', A? in S?’I/Q such that, for all v € C3 N L?(R) the operator
Ea(v) = OpF [Ul,Al] + Op® [Uz,Az] satisfies

(3.6.6) EA(Dv)+ Ea(v)D — DE4(v) = —B(v)
and such that the following properties hold.

i) Let p be a given real number. There exists K > 0 such that, for any scalar function
w € CLR), any v = (v!,v?) € C3 N L2(R) and any f = (f!, %) € H*(R),

17w Iz, EA)] f|| g < K llwllen vl s 1l

where I, = (§9).

ii) Let p be a given real number. There exists K > 0 such that, for any v = (v',v?) €
C¥ N I2(R) and any [ = (', f2) € H(R),

(3.6.7) [EA) | g < K N0l [1F ]l e

C S92 the fact that there exist A7 and A,

Proof. Since B! € Sg,o c S%Y?% and B2 € S%° 3/2

3/2 3/2
in 59’1/2 such that E4(v) satisfies (3.6.6) follows from Proposition 3.5.1. Now, Lemma 3.4.6
applied with p = 3 — ¢ (with € €]0,1/2[) implies that, if v € C?(R) N L*(R), modulo a
smoothing operator, E4(u) is a paradifferential operator whose matrix-valued symbol a, given
by (3.4.10), has semi-norms in F273/2 estimated by statement (i7) in Lemma 3.4.5: this means

that E4(v) can be written as E4(v) =T, + R with

swp (€7 0fa(- &), 4 < K lollca (&)77,
€1>1/2 o

IRII oy < K N0l s I n -

3 <
Since p—3/2 > 1, the statements ¢) and 7) now follow from Theorem A.1.7 in Appendix A.1.
O
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We next prove an analogous result for the quadratic term S(v).

Lemma 3.6.3. There exist two matrices of symbols R, R? in SR%),O such that Er(v) =
Op®w!, R'] + Op®[v?, R? satisfies the following properties.

i) There holds

(3.6.8) Er(Dv) + Er(v)D — DER(v) = &(v)
where & s such that

(3.6.9) Re(S()f = 6&()f, f)msxms =0,
for any f € H¥(R)?, and satisfies

(3.6.10) IS gepre a1y < K [[v]lco -

i1) For all (p,p) € R x Ry such that u+ p > 1 and p € N, there exists a positive constant K
such that

(3.6.11) BR[| gruos < K 0ll g 11 gz

Proof. Set Ep(v) = E%(v) + E’(v) where E%(v) and E(v) are as given by Proposition 3.5.3
with 8 = s. O

The main result of this chapter is the following proposition.

Proposition 3.6.4. Use Notation 3.1.7 and Assumptions 3.1.1 and 3.1.5. The new unknown
d=U+ EA(U)U — ER(U)U
satisfies

P+ DP + (Q(u) — B(u)® + (S(u) — 6(u))® + C(u)® =0 mod[H"].

Proof. Set E = E4 — FEg. Since

(“),@ = 8tU + E(@tu)U + E(u)@tU,
D® = DU + DE(u)U,

by using (3.6.6) and (3.6.8) we find that
8@ + D® = 8,U + DU + B(w)U + &(w)U + E(dyu+ Du)U + E(u)(8,U + DU).
Thus,
0® + DD + (Q(u) — B(1))® + (S(u) — S(u))® + C(u)® = F mod [H]
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with
F = (Qu) + S(u) + C(w)) E(w)U — B(u)E(w)U — &(u)E(u)U
+ E(0wu + Du)U + E(u)(0:U + DU).
Since ||E(uw)| zgs sy < C llullce it follows from (3.6.1) that
E(u)(0,U + DU) = —E(u)(Q(u)U + C(u)U + S(u)U) mod [H?]
and hence F = F; + F2 mod [H?] with
Fi1 = [A(u), E)|U + [S(w), E(u)|U — (B(u) + &(u)) E(w)U
Fa2 = E(Ou+ Du)U,
where recall that A(u) = Q(u) + C(u).

We now have to prove that 7, = 0 mod [H*] and F2 = 0 mod [H¥].

For this proof, we say that an operator f +— P(u)f is of order m if there exists py € R such
that for any real number p > pyg, it is bounded from H* to H*~™ together with the estimate

||P(U)HE(HH,H#7m) < Cllullce
for some constant C' depending only on ||u||-,. We shall use the fact that if P(u) is of order
m and L(u) is of order —m for some m € [0, 1], then

P(u)L(u)U =0 mod [H?],

provided that s is large enough (for our purposes, it is easily verified that the requirement that
s is large enough will hold true under our assumption on s imposed in Assumption 3.1.1).
With this definition, A(u) = Q(u) + C(u) is of order 1 (this is most easily seen by using
the expression (3.2.3) for A = A(u), the rule (A.1.5), the estimates (3.1.4) for ||V -0 and

(3.1.20) for ||af|0). Lemma 3.6.2 implies that E(u) is of order 0 (see (3.6.7)). Similarly,
since B(u) = OpP[ul, B+ 0pP[u?, B2 with B!, B? in sg;;/ ?, Lemma 3.4.6, Lemma 3.4.5 (sce
statement (47)) and (A.1.5) imply that B(u) is of order 0. The estimate (A.1.17) implies that

S(u) is of order 3/2 — p provided that g is large enough. Similarly, (3.6.10) and (3.6.11) imply
that & and Fr(u) are of order 1 — p. We shall only use the fact that, with our assumption
on 9, S(u) and &(u) are of order 0 while Er(u) is of order —1.

Since E(u), B(u), &(u) and S(u) are of order 0, we obtain that
S(u)E(u)U =0 mod[H?, E(u)S(u)U =0 mod[H?],
Bw)E(u)U =0 mod[H®], 6&(u)E(u)U=0 mod][H?].
Now we claim that [A(u), E(u)]U = 0 mod [H®]. To prove this result we estimate separately

the contribution due to E4 and the contribution due to Eg. Firstly, notice that since Er(u)
is of order —1 and since A(u) is of order 1 we have

A(uw)Eg(uw)U =0 mod [H?,
Er(u)A(uw)U =0 mod [H?,
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which imply that [A(u), Er(u)]U = 0 mod [H®]. Now we claim that similarly
(3.6.12) A(w)Es(u)U — Eao(u)A(uw)U =0 mod [H?).

This we prove by using symbolic calculus. We need some preparation and introduce g(u)
defined by
A(u) = A(u) — Ty 0y — Ty D.

Directly from the definition of A(u), one can check that A(u) is an operator of order 0, so
that

A(w)Ez(w)U =0 mod [HY),

Ea(w)A(uw)U =0 mod[H).

It remains to estimate the commutators of E4(u) with Ty 0, and T, D. Since Ty 0, has a
scalar symbol, it follows from statement ¢) in Lemma 3.6.2 that

Ty O, (Ea(u)U) = Ez(u)Ty0, U mod [H?].
To estimate [ToD, E4(u)], we use instead the equation (3.6.6) satisfied by E4 to obtain:
T.DE4(u)U = T, (EA(u)DU + E4(Du)U + B(u)U).
Since Ty, Ea(Du) and B(u) are of order 0 we directly find that
ToEA(Du)U +ToB(w)U =0 mod [H®].
Since « is a scalar function, we can apply statement ¢) in Lemma 3.6.2 to obtain
ToEA(u)DU = Es(u)T, DU  mod [H?].

This proves the claim (3.6.12) which completes the proof of F; = 0 mod [H*].

It remains to prove that Fo = 0 mod [H®] where Fo = E(9yu + Du)U. This will follow from
the operator norm estimate of E(v) (see (3.6.7) and (3.6.11)) and the estimate of the C3-norm
of dyu + Du. The key point is that, since

0im — | Dy
8tu+DU—< = | |¢>

D2 (94 + 1)

directly from (3.1.1) and the definition of B(n)y we have

1 G(n)¢ — | Dy ¥ )
1De|? (—5(8:9)? + 5(1 + (8m)®)(B(n)¥)?) )

Then (2.0.4), (2.6.12) and (A.2.4) imply that

(3.6.13) Byu + Du = (

(3.6.14) 10+ Dulles < Cllullo) llullés
As above mentioned, (3.6.7) and (3.6.11) then imply that F» = 0 mod [H*®].

This completes the proof of Proposition 3.6.4. O
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3.7 Energy estimate

Proposition 3.7.1. Let T' > Ty > 0 and fiz (s,vy) such that
1 1
s>’y+§>14, ’y¢§N.

There exists a constant C' > 0 such that for any § > 0, for any N1, there exists €y such that for
all € €]0,¢e¢], for all My > 0, if a solution (n,) to (3.1.1) satisfy the following assumptions

i) (n,9) € C°([To, T); HS(R) x H2°"2(R)) and w € CO([Th, T); H2*(R)),

.. 1 _1
i) for any t € [T0. ], [n(®)llgs + 1Dl (D) .y < Mret3,

1
i) 10(To) g + [\ Dl (T < M,
then for any t € [Ty, T,
1
(37.1) 0O+ [ 1D2l} O] < CMLE

Proof. By using mollifiers and standard arguments, it is sufficient to prove this result under
the additional assumptions that n € C*([Ty, T); H¥T1(R)) and w € C1([Ty, T7; H%’SH(R)).

Set o =y — 1/2. Then it is obvious that
1
No(t) = lIn)llce + [[IDa]2 ¥ (t)[| o = Nul)ll ce

< n®lles + [1D:]2 ()] -3

As already mentioned in the remark made after the statement of Assumption 3.1.1, it follows

from the assumptions 4i) and éii) above that, if € is small enough, then for any ¢ in [Tp, T,

10:7(8) | s + 110en ()12, | (B)][32) <

Therefore Assumptions 3.1.1 and 3.1.5 are satisfied (we can replace the time interval [0, T
by [To,T] without causing confusion since the equation (3.1.1) is invariant by translation in
time). Thus we may apply Proposition 3.6.4 which implies that ® = U + F4(u)U — Eg(u)U
satisfies

0@+ DP+ (Q(u) — B(u)® + (S(u) — 6(u)® + C(u)® =T

for some source term I' such that ||| 5. < C(|Jul|qe) ||u||209 Ul ggs- If ||u|| e is small enough,
it follows from (3.6.7) and (3.6.11) that

1 3
(3.7.2) SN0l < 19 e < S 10

Similarly as already seen (cf. (2.1.6)) we have

1 1
(3.7.3) o 100 < e+ [[1Da]* . <
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Therefore,

(3.7.4) 1T« < Cllullce) lulle 191155 -

We want to estimate ||n|| s + H\Dx|% w‘ s+ In view of (3.7.2) and (3.7.3) it is sufficient to
estimate the L2-norm of ® = AS® where A = (Id — A)/2. This unknown satisfies

(3.7.5) ,® + D® + L(u)® + C(u)d =T
where

L(u) = A*(Q(u) — B(w))A™® + A%(S(u) — & (u)) A,
I' = AT + [C(u), A°]®.

To estimate the L2-norm of ® we take the L?-scalar product of (3.7.5) with ®. The key point
is that, by definition of B(u) and &(u), we have Re(L(u)®, ®) = 0 where (-, -) is the L?-scalar
product.

We need also to estimate the L?-norm of the term [C(u), A%]® as well as Re(C(u)®, ®). Both
estimates rely on the fact that, directly from the definition (3.2.6) of C(u), the estimates
(2.6.22) and (3.1.10) imply that C'(u) is a matrix of paradifferential operators whose symbols

are estimated in the symbol class I'l by C(||ull ) HUH%Q Therefore it follows from (A.1.8)
that H [C’(u),AS]@HL2 is bounded by C(|u||) ||u|%g 1P| -

On the other hand, it follows from Lemma A.4.6 in Appendix A.4 that
. . . 2
(3.7.6) | Re(C(w)d, ®)] < C(|Jullco) lullge || ][]

Therefore, it follows from (3.7.4) and (3.7.6) that

(3.7.7) Hmw;smmw;+écwmmmwm%mﬂwmwv

and hence

. . t 2 .
S5 < 0@+ K [ =60 ar
0

for some constant K depending on the constant N7 which appears in assumption 7). The
Gronwall lemma then yields H(I)(t)HiZ’ < Hd)(TO)HiQtEZK.

Since H@HLQ ~ 0l s + H\Dx]% w|| ., this gives the asserted estimate (3.7.1). O

Remark. Notice that (3.7.7) implies the estimate (1.5) asserted in the introduction, as ex-
plained at the end of Section 3 of the introduction.
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Chapter 4

Commutation of the Z-field with
the equations

We begin the analysis of the Sobolev estimates for Z*U by establishing some identities which
allow us to commute Z* with the equations (recall that Z = t0; + 220,). This problem
has already been obtained by Wu [54] and Germain-Masmoudi-Shatah in [23]. We shall
prove sharp tame estimates tailored to our purposes. To find the quadratic terms in the
equations satisfied by Z*U, the main difficulty consists in estimating Z*F(n)y—Z kF(Sg) (n),
ZFG () — ZF | Dyl v, Z*V () — ZF0up, Z¥B(n) — ZF|Dy| b and ZF(a — 1). These will
be the main goals of this chapter.

The plan of this chapter is as follows. In section 4.1 we compute ZG(n)y. We then establish
some identities which allow us to commute the Z field with B(n)y, V(n)y and F(n)i. Next
we estimate the cubic terms.

4.1 Action of the Z-field on the Dirichlet-Neumann operator

The goal of this section is to compute the action of the vector field Z on G(n)y. We use the
abbreviated notation

)Y + 0x10z
L+ (0sm)?

G
B =By = ( V =V )y =0 — B

We notice also that the time ¢ plays here the role of a parameter (as soon as we assume we
may take derivatives relatively to it) that will not be written explicitly.

Proposition 4.1.1. Let (n,) be in C7 x H2 | with v in ]2, +oo[\3N. Assume that ||| <
0, where § is the constant in i) of Proposition 1.1.6, that Z1) € e, 0,05, Z(0%n) € L™ for
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0<a<1l, and that Zn is in C7" L. Then

(4.1.1) ZG(n)p = Gn)(Z¢ — (Bn))Zn) — x((Zn)V (n)¥)) + Re(n)y

where

Ra(n)y = 2[G(n)(nBn)y) — nG(n)Bn)y] + 2(V (n))0xn — 2G(n)Y.

Let us introduce the following notation, where 1’ stands for 9,17,

P=1+7n%)024 0%~ 0,00, — 0.0,
(4.1.2) p i ") 7 7

Oy + 220, + (22 4+ 2n — (Zn))0..

The operator P is the Laplace operator 92 + 85 written in (z, z)-coordinates (see (1.1.1)).
In the same way, Z is the vector field t0; + 2(x0, + y0,) written in (x, z)-coordinates. As
(A, t0; + 2(20, + ydy)] = 4A, we have

(4.1.3) [P, Z] = AP.

To prove Proposition 4.1.1, we shall show that, under its assumptions, if ¢ is the unique
solution in E to Py = 0, ¢|,—0 = % provided by ) of Proposition 1.1.6, then Zy, which
according to (4.1.3) solves P(Zy) = 0, belongs to E, so is the unique solution of that elliptic
equation in E with boundary data (Z¢)|.—o. It follows then from the definition (1.1.41) of
G(n) that

Gn)((Z9)le=0) = [ (1 +02)0: = /8,) Z¢]

z=0 '

Computing explicitly both sides from 1, G(n)y, B, V, we shall get (4.1.1).
We start proving the regularity properties if Z¢ indicated above.

Lemma 4.1.2. Let (n,v¢) be in C7 X Jigt (at fized t), with v in ]2, +oo[\3N and |01
small enough. Assume moreover that Zn, o', Zn' are in L and that Oyp, Zv are in
H%(R) Then the unique solution ¢ in the space E of Pp = 0, ¢|.—9 = ¥ provided by i) of
Proposition 1.1.6 satisfies V.o € E, Zp € E (at fized t).

Proof. Assume given an action (A, f) — M, f of some abelian group A on the space of real
valued functions defined on {(t,z,z2); z < 0}, sending E into E. Assume also that there is
some continuous function A — m(X\), R* -valued, such that

Oy [M)\f] = m<)\)M)\(8zf)7 0. [M)\f] = m(/\)M)\(azf)

and that
My(f1f2) = (Mxf1)(Mrf2), (Mxf)l.=0 = Ma(f]z=0)-
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Let ¢ be a solution in E of Py = 0. Then, using the preceding properties of M),
P(Myg) = m(N)My [(1+ (M ')?) 02 + 02
= 0, (M5 ') 0.ip)w — 0- (M) D) |.
If, in the right hand side, we substitute 7’ to M/\_ln’ (resp. n'? to (M/\_ln/)z), we make appear
Py = 0. Consequently, we may rewrite the preceding relation as
P(Myp) = 0.ht + 0:h3.

with

ht = m(\)* M) [((M;ln’)2 —1%)0p — (M3 ') — 77/)85090}7

By = —mO)?My (M) = ') -0,
Using again that Py = 0 and that M) commutes to restriction to z = 0, we obtain finally

P(Myp — @) = 9.h7 + 9,03,
(Mxp — @) | 220 = My — 4.

Since ¢ is in E, hy, h} are in L?(] — 00, 0[xR). Since 7/’ is in C7~! and since by the equation
0?pisin L%(]—oo,0[; H~1(R)), the same is true for 9,h7. Since moreover, at fixed A\, My —¢
is in E, we may apply inequality (1.1.11) which implies that

(4.1.4) 1V0.: (Mg = 9) | oz < ClIDal? (Mago = ) | o + 1P| o

with a constant C' independent of A staying in a compact subset of A. We apply this inequality
first with A = R, M) being the action by translation relatively to the z-variable, so that
m(A) = 1. Then My = Id and we get

11Dz|2 (Mo = )| 12 < [[1Dal? ¥ 1AL
Hh)\HHL? <C HVQOHL%? W )

where, for the second estimate, we used that 7’ is lipschitz relatively to . We deduce from
(4.1.4)

va,z(‘{?(t’fﬁ + A z) - (p(t,x,z)) HL%LE < C|A| [H|Dm‘% d)HHl + va,zSO||L2L2 .

It follows that V. . (0,¢) is in L?L2. Using the equation Py = 0, we obtain as well 92¢ € L?L?
so that V; .¢ is in E.

Applying the same reasoning to time translations, we get that d,p is in E.

Let us prove now that Zy belongs to E. Denote Zy = t0; + (220, +220,) so that (Z — Zy)p =
(27— (Zn))0.p is in L?(] — o0, 0[xR) (at fixed t) as well as its (z, z)-gradient by what we just
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saw. This shows that (Z — Zp)¢ is in E, so that we just need to check that Zyp is in E, so
that V,.Zop is in L?(] — 0o, 0[xR). We use estimate (4.1.4) where M), is the action of R

on functions given by Myp(t, z,2) = (M, A2z, A22) and where m()\) = A\2. Then V(%)
converges in the sense of distributions to VZye when A\ goes to 1, and the assumptions
Zy € H%, Zn' € L*®, Vo € L?L? show that, when \ stays in a compact neighborhood of
1, the right hand side of (4.1.4) is bounded from above by C' |\ — 1| (Notice that the action
by M) on functions of (¢,x) has Z as infinitesimal generator). Dividing (4.1.4) by A — 1, we
conclude that V. ,(Zoy) is in L?(] — 0o, 0[xR) as wanted. O

Proof of Proposition 4.1.1. We notice first that by the definition (1.1.41) of G(n) and the one
of Ba aZQD|Z:0 = B(n)d}? so that

Zp|.=0 = Zy + (20 — (Zn))(B(n)).

As G(n)v is in H'/? as a function of 2 by Proposition 2.3.1, we see that under the assumptions
of the statement, B belongs to H'/2(R), so that Zp|.—¢ is in H'/2. Moreover, by Lemma 4.1.2,
Zp is in E. By uniqueness of solutions in E to P(Zy) = 0, Zy|.—0 € H/? given by
Proposition 1.1.6, we deduce that

(415)  G)[Ze+ @n—(Zn)B] = [(1+17)0:(Z¢) —1/0:(20)] | 0.

Let us deduce (4.1.1) from this equality. From the definition (4.1.2) of Z we get
0:(Zp) = Z(0:¢) + 20.9 + (22 + 20 — (Zn))0Z¢p.
Multiplying by (1 4+ 7?) and using that Py = 0 to express the 92¢ term, we get
(1 +12)0:(Zp) = L+ 1) Z(0:) +2(1 +1%)D:0

(22 + 20— (20) |07/ 0:p — 0uip) + 0.1/ 0up) -

We compute from that expression the right hand side of (4.1.5) remembering that 0,¢|.—0 = B
and that V = (9, — 7/ 0,¢)|.=0-

We obtain

Gn)[Z¢ + (20— (Zn)B] = 1 +1*)ZB +2(1+1"*)B
(4.1.6) + (20— (Zn))[~0,V + /0, B]
— 0/ 0x[Z4 + (20 — (Zn))B].

We are left with transforming this expression into (4.1.1). We notice first that 0,¢ satisfies
P(0,p) = 0, 0,¢|,—0 = B and that by Lemma 4.1.2, 0,¢ is in F, while B has been seen
to belong to H 3. We may thus apply again the uniqueness result of Proposition 1.1.6 to
conclude that

G)B = [((1+12)0. —10,) (0:9)]

z=0-
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Expressing in the right hand side of this equality (1 +7'2)02¢ from the equation Py = 0, we
get

(4.1.7) G(n)B = —0,V.
Using that formula, and, by definition of B
(L +4%)B = Gy + 1 (0:9)

we rewrite (4.1.6) after simplifications as

G(n)[Z2¢ — B(Zn)| = Z[G(n)¢] +2[nG(n)B — G(n)(nB)]
+2G(n) Y + (Zn)(0:V) + (Z1)(9xp — ' B).

Expressing in the last term 0, from V + B(9,n), by definition of V', we get (4.1.1). This
concludes the proof. O

4.2 Other identities

Next we notice that properties of ZB(n)y and ZV(n)y can be deduced using B(n)y —
(V(n)y)ozn = G(n)y and the previous calculation result for ZG(n)y. The conclusion is
given by the following lemma.

Lemma 4.2.1. Use the same notations and assumptions as in Proposition 4.1.1. Then

(4.2.1) ZB(n)y = B(n)(Z¢ — (B(n)y)Zn) + Re(n)y,

(4.2.2) ZV () =V (n)(Z¢y — (B(n)y)Zn) + Rv(n)y,

with

(423)  Re()) = |~ AV @0+ (@) O:B0)) - 05V (o))
+ H(l(WRG(U)¢,

and

(4.2.4) Ry (n)y = —(Rp(1n)Y)0:n + (0= B(n)y) Zn — 2V (n)ib,

where recall that Rg(n)y is given by (4.1.1).

Proof. We abbreviate B = B(n)y, V =V (n)Y and Rg = Ra(n).
Starting from B — V9,n = G(n)y, we have
ZB — (ZV)0yn — V Zdyn = ZG(n)h.
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Since ZV = Z(0,9 — Bdn), we have
ZB = (ZV)0un = (1+ (0en)*)ZB — (Z031))0um + B0 Z 0y,

SO
(14 (8:0)*)ZB = ZG(n)Y + (Z0:3))Du) — BOznZ0ym + V Z0y.

Now, according to the identity (4.1.1) for ZG(n)v, we obtain

(14 (0:n)*)ZB = G(n)(Z¢ — BZn) — 8.((Zn)V) + Re
+ (Zamw)amn — BOmZ0:m +V Z0:.

Then, it is a simple calculation using 20, = 0,2 — 20, to verify that
(1 + (9:m)*)ZB = G(n)(Z¢ — BZn) — Znd,V + Rg
+ V(_Za:vn) + 5a:773x2¢ - 2am778:v¢
— BOnd,Zn + 2B(9sm)>
SO
(L + (9:m)*)ZB = G(n)(Z¢ — BZn) — Znd,V + Ra
+ 8$778m<Z¢ - BZ??) + (8:677)(836B)Z77
— 2V pn — 20,00,m + 2B(0:n)>.
On the other hand, by definition of B(n), we have

B(n)(Z4 = BZn) = 5o (G(1) (20 — BZn) + 0m0s (24 = BZn).

Thus, we obtain that Rp(n) is given by

1
— | = Znd,V + Rg + 8,:m(0:B) Zn — 2V Oy — 20,00,m + 2B(9,n)?|.
H(aﬂl)g[ N9V + Ra + 0,1(9.B) Zn n Y0zn + 2B( 77)}

Since

—20,:10,m + 2B(6xn)2 = —2(0p00 — BOyn)0zn = —2V 01
by definition of V, this yields the desired result (4.2.1).

It remains to prove (4.2.2). Starting from V = 9,1 — B9,n, we have
ZV = Z@ﬂﬁ — Boyn)

= azZQ/J - 25:## - (ZB)azn - BZ(?I’I’}

= 0,2 — 20, — (ZB)0yn — B0, Zn + 2B,

= 0,(Z¢ — BZn) + (0:B)Zn — (ZB)0,n — 2V.
Since

V(n)(Z¢ — BZn) = 0:(Z¢ — BZn) — (B(n)(Zy — BZn))dun,

the desired result follows from (4.2.1).
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The previous identities have been stated in a way which is convenient to compute ZF(n).
Our last identity is about ZF(n)1 where recall that

F(WW = G(W)%Z) - (|Dx‘ (¢ - TB(n)wn) - ax(TV(n)wn)) .

Lemma 4.2.2. Use the same notations and assumptions as in Proposition 4.1.1. There holds

ZF(n)y = F(n)(Z¢ — (B(n)y)Zn) — 2F (n)y
— |De| TzyB(n)tp — 02 (T2 V (n)¥)
— | Da| Re(B(n)y, Zn) — 0:R5(Zn, V (n)y)
+2G(n)(nB(n)y) — 2nG(n)B(n)y
+ | De| Try (ywn + 20V (1)) 82 + 02 (Try, (nyy)
+2|Dg| Sp(B(n),n) + 2055V (n)¥,n),

where Sp is given by (3.4.14); Rp and Ry are given by (4.2.3) and (4.2.4) and Rp(a,b) =
ab — Tab — Tba.
Proof. We write simply A instead of A(n)y for A € {B,V, Rg, Rp, Ry }.

Recall that
ZGm)y = Gn)(Zy — BZn) — 0:((Zn)V) + R,

with
R =2[G(n)(nB) — nG(n)B] + 2V d.n — 2G(n)y.

Consequently,

ZF(n)y = G(n)(Zv — BZn) — 0:((Zn)V) + R — Z |Dy| (¥ — Tpn) + Z0,(Tvn).
We shall study the terms separately.
Start with Z |D,| (v — Tpn). Since Z |Dy| = |Dy| Z — 2|D,|, we have

Z|Dg| (v — Tpn) = |Ds| Z(¢ — Tpn) — 2|Ds| (v — Tsn),

By using the following consequence of (3.4.14):
(4.2.5) Z(Tyb) = Tzeb+ Ty Zb+ 2Sp(a,b),
we find that

Z|Dy| (v — Tpn) = |Da| (Z¢ — TpZn) — |Da| Tzn — 2|Ds| (v — Tn)

Now set
C:=Bn)(Z¢y — BZn), W :=V(n)(Zy - BZn),
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to obtain, by definition of F'(n),
Gn)(Z¢ — BZn) = |Da| (Z¢ — BZn — Tem) — 0:(Twn) + F(n)(Z4 — BZn).
Writing |Dy| (Zv — BZn) under the form
|Da| (2 — BZn) = |Da| (Z3p — TpZn) — | Da| (TznB) — |Dz| Ra(B, Zn),
and combining the previous identities, we conclude

ZFn)Y = — |Da| (TzyB) — 0:((Zn)V)
+2|Ds| (¢ — Tpn) — 2G(n)Y
(4.2.6) +2[G(n)(nB) —nG(n)B]
+ [De| Tzpn + 2V 0un — |Dx| Ton — 0x(Twn) + Z0:(Tvn)
— |Ds| R(B, Zn) 4 2 |D.| Sp(B,n) + F(n)(Zy — BZn).

To simplify this expression, we use three facts. Firstly, by definition of F'(n), we have
2|Da| (¥ — Tn) — 2G ()Y = 20,(Tvn) — 2F(n)y.
Secondly, we paralinearize the product (Zn)V to obtain

9z ((Zn)V) = 02(Tz,V + Tv Zn + Rp(Zn, V)
= TZnaa:V + TazZnV + 890(TVZ77) + amRB(va V)

Thirdly, since Z0, — 0,Z = —20,, (4.2.5) implies that
Z0:(Tvn) + 205(Tyn) — 0:(Tv Zn) = 0x(Tzvn) + 20,S8(V, ).
Now substitute the above relations into (4.2.6) and simplify. We conclude that

ZF(m = — ’Dx’ TZnB - a:c(TZnV)
+2G(n)(nB) — 2nG(n)B + |Dy| Tzp—cn + 2V 0xn + 0:(Tzv-wn)
— |D.| Rp(B, Zn) — 0, Rg(Zn, V') + 2|D,| Sg(B,n) + 20,55(V,n)
—2F(n)y + F(n)(Zy — BZn).

The desired result then follows from (4.2.1) and (4.2.2). O

4.3 Estimates for the action of iterated vector fields

In this section, we shall estimate the action of iterated vector fields Z on the Dirichlet-
Neumann operator G(n), and on related operators. We shall express these actions in terms
of convenient classes of multilinear operators.
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We denote by £ the algebra of operators generated by the operators of multiplication by
analytic functions (n,7') — a(n,n’) (defined on a neighborhood of zero), by the operators

(43.1)  G()|D.| (D)2, Bm)|Du|2 (D)2, V(n)|Dal 2 (D2)"2, bo(Dy)

where by(D,) is any Fourier multiplier, continuous, smooth outside zero, and satisfying esti-
mates ‘8%0 )| = O(|¢]“*(¢)~¢) for some ¢ > 0 or 080 (§)] = O((£)~). Notice that all
these operators are of order zero i.e. if n is in C” and if 4 > 0 is such that v > p+ 3 3 the first
of these operators acts from H* to H* by Proposition 1.1.6. By the definition (2.0.1) of B(n)
and V' (n), the same holds true for the second and third one. By Corollary 1.1.8 we have also
boundedness from C7~! to itself.

We denote by & the right ideal of £ given by these elements of £ that may be written as linear
1

combinations of G(n) |Dy|™ 2 (Dz)_%E and byo(D;)E where FE is in £ and by(D,,) is a Fourier

multiplier as above, with ¢ > 1/2.

Definition 4.3.1. Let p e N, g € Z, p+q > 0, N € N. One denotes by C [N] the vector
space generated by operators of the form

(4.3.2) Epo [(Zplbql(Dz)al)El} o [(ZPquQ(Dx)aQ)EQ} 00 [(ZPN’qu, (Dr)aN/)EN/}

where N' > N, bj(Dy), j =1,...,N’, is a smooth Fourier multiplier of order q;, E; is in €
for 1 < j < N', aj is some analytic function of (n,n') vanishing at (n,n') = (0,0), and the
integers p;, q; satisfy the inequalities

N’ N’
(4.3.3) > rta)<pta, Y pe<p, prte->=0, ¢ =-1,r=1...,N.
r=1 r=1

We set C¥ for CY[0]. We denote by 5?; [N] the subspace of Ci [N] generated by operators of
the form (4.3.2) where Ey is in £.

We study first the composition of an element of C; [N] and of (9, Z)-derivatives.

Proposition 4.3.2. Let C be an element of C¥ [N], ¢, k be in N. There are elements C;,h of

CPHEI N fori+j <k, h < ijhinN such that
(4.3.4) oLzkCc = > Clhoith .
i+i<k
h<t
Moreover, if C is in 55[ |, then C 5 isin Cgif }t - [N].

‘We consider first the case when / +k =1 and C'isin &.
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Lemma 4.3.3. Let E be in £. Then

ZE = EZ + C} + CL,0,,

4.3.5
(4.3.5) 0, FE = Ed, + CY

where C¥ are in Cy. If E is in €~, the first equality holds with C¥ in 55.

Proof. Consider the case when E = G(n) |Dx\7% <Dx>*% € €. Writing G(n) = E \Dx]% <DI>%
1

and decomposing |D,|2 <Dx>% = by(Dy) + b((D5)0, where by, by are symbols satisfying the

same conditions as by in (4.3.1), with b = 0 close to zero, we may write

(4.3.6) G(n)=E +E"9,
with E’, E” in €. Write
(4.3.7) 2, E] = [Z,G(n)] |D,| "% (D,) "% + Ebo(D,)

for some Fourier multiplier bo(D;) as in (4.3.1), and express [Z,G(n)] using (4.1.1) and the
fact that G(n)B = —0,V i.e.

[Z2,G)] b = —G(n)((Zn)Bn)) — 0= ((Zn)V (n))

(4.3.8)
+2G(n) (nBn)v) + 205 (nV (n)v) — 2G(n)i.

If we express ) = ]Dx|7% <Dx>7%¢ and use (4.3.6), (4.3.7), we see finally that [Z, E]y) may
be written from expression
Eod: ((Zn)Eo).  Eo((Zn)Eoy),

(4.3.9) _ _
anm(Eow)a Eﬂwv

where Eo is in € and Eyisin &.

Since, on the other hand

[02,G(n)] =2n'n"B(n) — "0,

B 2" 71— 77/2) 1
(4.3.10) [0z, B(n)] = —mG(U) + TETEE Oz + 15172 02, G(n)],

[0z, V(n)] = —n[0x, B(n)] — 1" B(n),

we see that, if Ey is in &, [0,, Eo] may be written as a linear combination of quantities
By, Ox(a(n,n')) Ey
with Ej in &, so that the second equality in (4.3.5) holds.
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Plugging this information in (4.3.9), we see finally that [Z, E]¢) is a linear combination of
quantities of the following type

Eo((Zn)E\op),  Eo(0:v),
(4.3.11) Eo((0:2n)Ey),  Eo((Zn)(8,a)Ey),
Eo((Zn)Eyy), Eo((0z0)Ey),  Eot,

where a is some analytic function of (1,7'), Eg is in € and E{ is in £. We may write 7 in the
above formulas as n = by(Dz)n + bj(Dy)n’ where bj, bj; are Fourier multipliers of order —1.
It follows then from Definition 4.3.1 that the quantities on the first line of (4.3.11) may be
written Cllam@z; with C’ll in Cll. Those one the second and third lines are of the form C’é

with C} in C}. This gives the first formula in (4.3.5) when E = G() |D,| "2 (D,)"3. If E is
the operator by(D,) in (4.3.1), the same conclusion holds.

Consider next the case when E = B(n) \Dm\_% <D$>_% or E=V(n) \Da;]_% <Dx>_%. We may
express B(n), V(n) from G(n) and explicit quantities, which shows that [Z, E] may still be

written from expressions (4.3.11), but with EO in € instead of €. We thus get an expression
Cs + C*,0,, with CF in CJ.

We have thus shown both equalities (4.3.5) when E is any of the expressions (4.3.1). If E is
a general element of £, the conclusion follows by composition. O

Remark. If E is in &, the expressions obtained above for [0, G(n)], [0, B(n)], [0x, V(n)]
show that [9;, E] will not be in CJ in general. Nevertheless we may write

8xE = an(Da:)E + (1 - X)(Dr)Eam + (1 - X)(Dx)[ama E]
which shows that
(4.3.12) 0,FE =FE0,+E"

with E', E" in €.

Proof of Proposition 4.3.2. We notice first that it follows from Definition 4.3.1 that, by con-
catenation of expressions (4.3.2), Cg [N]o C}, [N'] C Cgié’/ [N + N']. Let us prove that

(4.3.13) [02,€7 IN1] € € INT,

1
[Z,CE[N]] C CPH[N] +CP [N] 0 0,
It is enough to consider operators of the form (4.3.2) and to argue by induction on N’. If
N’ = 0, we just get an element Fy of £, with p = ¢ = 0, and the conclusion follows from
(4.3.5). Assume that the conclusion has been proved with N’ replaced by N’ — 1 in (4.3.2)
and for any p,q with p + ¢ > 0. We may write (4.3.2) as Egy o ((Zplbql(Dx)al) o C’) where
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C is an element of Cf;:f;ll which is the product of N’ — 1 factors, so to which the induction
assumption applies. We write

|2, By 0 (276, (Da)ar) 0 C| = [Z, By] o (27b, (Da)ar) o C
+ Ego (2P by, (Dy)ar) o C + Eg o (ZP by, (Dy)ar) o [Z,C).

The assumption of induction implies that the last two terms belong to Cf;“ + Cgfll 0 0. By
(4.3.5), the first term in the right hand side may be written

Cp 0 (ZP'bg, (Dy)ar) o C + CLy 0 (8,271 by, (Dy)ar) o C
+ (ZP bg, (Dz)ay) © [0y, C] + (27 bg, (Dg)ar) o C 0 0.

By the assumption of induction, the composition rule and (4.3.5), the first three terms belong
to CP*!. The last term is in C% 0 8, C Cé’fll 0 d,. This gives the second inclusion in (4.3.13).
The proof of the first inclusion (4.3.13) is similar. Formula (4.3.4) follows then by induction,
using (4.3.13) and the fact that [Z,0,] = —20,. O

We shall use the preceding results to obtain bounds for the action of vector fields on operator
of the form G(n), B(n), ...Let us define some norms.

Definition 4.3.4. Given T'> 0, n € N and o € [0,+00[, one denotes by C™?([0,T] x R)
(resp. H™?([0,T] x R)) the space of functions f: [0,T] x R — C such that for any integer
p in [0,n], one has ZPf € CO([0,T); C°*"=P(R)) (resp. ZPf € C°([0,T]; H*T"P(R))). One
uses the notations

1 Ollo =D 122 Ollcosn—s@y s M lno = sup_ |F Ol

=0 t€[0,T]

|f(t)‘n,a = Z Hpr(t)”H"+"*p(R) ) |f’n,a = sup ‘f(t)’n,a :

=0 t€[0,T

We shall use the variants C%’"’U([O, T| xR) (resp. H%’n’g([O, T xR)) for the spaces defined as

above, but with C7T"~P(R) (resp. HT""P(R)) replaced by C'%’UJF”*”(]R) (resp. H%’UJF”*p(R)).
1 1

The norms on these spaces are H|Dm]§ anU (resp. ’|]_)x|§ f’ng)

We gather here some elementary estimates which follow from the definition of [|-[|,, .-

Lemma 4.3.5. Consider (n,01) € N? and o € [0, +o0].
i) For any f € C"T747([0,T] x R),

(4314) Han,al—',-o S Hf||n+a'1,0' :

i1) There exists a constant ¢ such that for any f,g in C™°([0,T] x R),
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iii) For any F € C®(RYN) satisfying F'(0) = 0, there exists a nondecreasing function C: R —
Ry such that for any f € C™7([0,T] x R)Y, one has

(4.3.16) E (e < CULF o) 171

n,o *

The bounds involving the preceding norms that we shall obtain below will be deduced from
estimates for the action of an element of C} on a function given in the following lemma.

Lemma 4.3.6. Let v €]2,+0o[\3N, 1/ € [0,1[.

i) Take ¢,k',p,N in N, q in Z with p+q > 0 and C an element of C{[N]. For any N' > N,
any integer h with 0 < h < £, any ', j" with i’ + j' <k’ define,

I(N/,h,i/,j/) = {(pl,... ,pN/,ql,...,qN/) S NN/ X ZN,;

N/

Y pr+a)+ @+ +h) <ptqt+k+e
r=1

N/

 prti <ptk

r=1

(4.3.17)

pr+qr >0, g > —1, rzl,...,N’}.

For I an element of Z(N', h,i',j") and (n,v) two functions, smooth enough so that the norms
below are finite, set My a(n,v) for the minimum of the following quantities

03727

N/
L1127 D2y nlc|
r=1

(4.3.18)
( 111127 (Dz)n \cv) 127 D) 0 s |02 27| a1 < <
r#r!
Then
(4.3.19) |02 Cl| g <C) D Do D Mra(n, )

N'>N  h<l  I€I(N',hi',j")
finite i'+j5' <k’

where the first sum is finite and where C(n) depends only on ||n||oy. If o is a real number
with 0 < o’ <1, o/ # %, if we define My (n,%) by the minimum of the quantities obtained
replacing H* by C° and H**! by C7'* in (4.3.18) we have also

(4.3.20) 10527 Y| por < Cm) > Y > Mise(n,v).

N'>N k<t I€I(N',hi'.j")
finite i'+5' <k’
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ii) Assume that C is in CE [N]. Then Haﬁzk’ |Dx|7% CJHHM—l is bounded from above by the

right hand side of (4.3.19) and, for any 6 > 0,
above by the right hand side of (4.3.20).

o zr ]ny_%‘*'e C{/;HCUL%M is bounded from

Proof. i) Apply (4.3.4) to write

(4.3.21) oazZFCp= N CL,oI Tz
i/+j’§]€,
h<t

with C% , € CE7, 7 [N]. Let us bound

N
1C5 105" 27| g

By Definition 4.3.1, C;i ,, may be written from expressions of the form (4.3.2) with N’ > N

and with the indices (p1,...,pN7; 1, - - -, qn7) satisfying inequalities (4.3.17). Since v > p/+ %,

the operators Ey,..., En/ in (4.3.2) are bounded in H* and in C7! (see Proposition 1.1.6

and Corollary 1.1.8). Moreover, by property (A.1.21) of the appendix, we have the estimate
00| s S 110l =1 [[0]| s - We apply this to bound the action of (4.3.2) on 9% Thzip. If we

estimate the ZPrb,, (D;)a, terms in C7~! and 8%,“122'/15 in H" | we get a bound by

N/
(4.3.22) Cn) [ 11127 ba. (D) ar|| s 03274 -
r=1

On the other hand, if we estimate the ZP»' (D)% a,/-factor in H* and the other ones in C7~1,

we get as well a bound

(4.3.23) Cm) T[ 1127 be, (Da)ar|| -1 || 2P bg,, (Da )y
1§;§N’
rr!

HY 8%/+hzi/w”c~/ﬂ

with a constant C(n) depending only on |||~ . Let us remark that we have the estimates

l
1276y, (Da)ar|l g s €O >0 [TIZ279 (D) ]l
pT1+“'+pr2§pr Jj=1
22(prj+ar;)<prtar
p7'j +QW'j 207 QT‘]‘ 2_1

|1 277 bg, (Dz)ar|| gy < C(n) Z min H 12773 (D)3 ]| o
pr1+"'+pr(g§p7‘ N b L.
Z(prj+QTj)§pr+Q7‘ j#]l
Pr; +QT‘7- >0, qr; >-1

(4.3.24)

% HZprj/ <Dm>Q7‘j/ nHHu’Jrl .

Actually, we notice first that [Z,b,, (Dy)] = l;qu(Dx) for another symbol of the same order
as by,.. Consequently, we may as well estimate the norm of qu(Dx)Zp,rar for p.. < p,. if
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qr > 0, we are reduced to estimating HE);I’/"ZP'TCLTHCW_I and H@g;Zp/rarHHH/ for q. < qr, p. < py.
Since a, is an analytic function of 7,7/, we express the quantities inside the norm as a
sum of expressions a,(n,1n’) (8;1i ZPm ﬁ) . (&Z/W 7P ﬁ) where @, is some new analytic function,
@+ +d., < q. pi+--+p,, <), and 7 = nor . Using that C7~! is an algebra, we obtain
the first estimate. The second one follows from the inequality ||abl| . < C ||lalloy-1 [|b]] .
which holds since v — 1 > p’ > 0.

Consider now the case ¢, = —1, so that p, > 1 and we have to estimate HZPTaer_2 and
HZpTaTHH#,_l. As 0772 is also an algebra, the first estimate (4.3.24) follows. The second is a
consequence of the inclusions C7~1 . H¥'~1 ¢ H#¥~=1 and C72. H* < H*~! which are true
since v > 2 > ' + 1.

We plug estimates (4.3.24) in (4.3.22), (4.3.23) and obtain the bound (4.3.18). The inequalities
(4.3.17) follow from (4.3.3), where we replace (p,q) by (p+ k& —i',q+ ¢ —h — j') and from
the conditions on the indices in the right hand side of (4.3.24). Estimate (4.3.20) is obtained
in the same way.

i7) If we cut-off C' for non zero frequencies, then the estimate follows from ¢). Consequently,
/ _1 -~ / _1 -~

we have to study ||Z* |D|2 x(D2)C4|| ., and ||Z¥ | D, 210 X(Dz)CY|| ;o> Where x is in
CP(R), x = 1 close to zero. By (4.3.21), and the fact that [Z, x(Dy)] = x1(D5) for some
C°(R\ {0}) function x;, we are reduced to the study of |Dx|7%+0 X(DI)C;E{Z",J, where
according to the last statement in Proposition 4.3.2, we may assume that C;i belongs to
é?;fﬁl*i/ [N]. This means that this operator may be written as a linear combination of ex-
pressions (4.3.2), with N’ > N, indices (p1,...,pn',q1,---,qn’) satisfying (4.3.3) and Ej in
~ 1

E,ie. By =G(n) Dy 2 <Dz>_%E or Ey = bo(Dy)E, where E is in € and by(D,) is a Fourier
multiplier homogeneous of degree larger or equal to 1/2 close to zero. It follows from Propo-

1 1
sition 1.1.6 that |Dg| ™2 x(D,)Ep is bounded on L2 and |D,|~2"’ x(D,)Ey is bounded on
Holder spaces if @ > 0. Consequently, estimates (4.3.22), (4.3.23) still hold for the building
1 Al o~
blocks of |D,| ™2 X(D:C)C;-,Gg; Z" 1), which gives the wanted Sobolev estimate. The case of the

Holder bound is similar for \Dw]_%w X(Dz)Cjiangi/J, 6> 0. O

We may prove now the main result of this section, which gives estimates for the action of Z*

Proposition 4.3.7. Let v,y be given in ]0,—|—oo[\%N with v > ~v9 > 2 and let sy, s1,S be
integers satisfying

—_

528128025(84-2’7—1).

Let k be in N*, pin Ry with p+k <s—1. Let (1,n) be in &, and in Haknts x HFEw L
smooth enough so that the norms in the inequality below are all finite. Let A(n) be one of the
operators G(n), B(n), V(n). There is a non increasing function C(-) such that, for any (n,v)
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as above
1(ZFA(m) = Am)(Z = 2)F) ||
< g, (k=50 +90)C (0l o2 ) [1Dal 2 9l o || Z50] s
(4.3.25) 9l o) Nl & [1De1 % 0y 0

+CO(
1
+ C(HUH%,SO—]}) H ’D"E| 2 mein(u—i—k—So-‘rVo,k),’y ‘77|k_1:/l+2

+ 1R1 ([#] - (7 - 70))0(”"7”]5,50—15) H|D$’% w”min(#—i-k—so—i-fyo,k),'y |77 k,p

where we have denoted by ||, .. ||, . the norms defined in Definition 4.3.4, 1g, is the indi-

cator function of Ry, H |Dx|% wH should be understood as zero if p+k—so+v <0

pAk—so—y0,Y
and where k = min(k, sp).

Remark. The key properties in (4.3.25) is the fact that the terms involving kZ-derivatives
of 1 in the right hand side are multiplied by specific factors, well tailored for the induction
argument that will be used in section 4.5 and in Chapter 5.
Proof. Let us show first that
(4.3.26) (ZA) — Am)(Z = 2% = Y CIZ° | Dyl (Da)2y)
i<k—1
itj<k
where C; belongs to CE;Z [1].
Consider first the case k = 1, A(n) = G(n). Then
(2Gm) - G)(Z = 2)) = (12.G)] +26(n) )
may be computed from (4.3.8) as a sum of expressions of type
~ o 1 1 ~ o 1 1
Eod, | (2°n) o |Dal? (D2)34],  Eo[(2°0) Eo| D22 (D) 3y
with Fj, EO in £, @ =0, 1. This, together with the second1 commutation relatiorll (4.3.5) shows
that [ZG(n) — G(n)(Z — 2)]¢ may be written as Cf | Dy|? <D$>%¢ + Y0, | D, |2 (Dz)%w with
CYin C} [1], C¥ in C14 [1]. If now A(n) is equal to B(n) = (1+72)"1G(n)+n' (1+n?)710,, we

see that [ZA(n) — A(n)(Z — 2)]4 is the sum of the product of the right hand side of (4.3.26)
with & = 1 by (14 72)~!, which is still of the same form, and of the quantities

=214+ 720 (Z0)G)p,  Z(n'(1+n?) )0

which may be written as C{ ]Dx|% <Dx>%¢ for some Cf in C} [1]. Consequently, (4.3.26) with
k =1 holds as well when A(n) = B(n). The same conclusion holds for V(n) = 9, —n'B(n)
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since Z0y — 05(Z —2) = 0. We have thus proved (4.3.26) when k = 1. Let us prove that this
equality holds for any k& by induction. We write from (4.3.26)

i<k
+(ZAMm) — A)(Z - 2))(Z - 2)"4.

It follows from (4.3.4) with k = 1, ¢ = 0, that the first sum is of the form of the right hand
side of (4.3.26) with k replaced by (k + 1). Moreover, the last term may be written

(C0, + CQ) | D2 (Dy)2(Z — 2)%4p

1
with CY¥ in Ct,, CF in C}. Commuting | D |2 <DI>% to the powers of (Z — 2), we see that we
get again a contribution of the wanted form.

We may now prove (4.3.25). We write p = [u] + ¢/ with ¢/ € [0,1[. According to (4.3.26), we
have to bound for any £ =0,. .., [u],

(4.3.27) |04Ci01 27 |Da| 7 (D2) 39 0
where i < k—1,i+j <k, Cji- in Cﬁ;’ [1]. We apply estimate (4.3.19) with ~ replaced by 7o,

We obtain a bound in terms of a sum for N > 1, h < ¢ of the minimum of quantities (4.3.18)
where we set j' = =0 i.e.

N/
(4.3.28) [Tz 168+ 21| Dl (D2) 20| g,
r=1
s (Tllzw D122 D |05 2 Dl (D)0

r#r!
where the indices have to obey the restrictions deduced from (4.3.17), namely
N/

Y prta)+(i+j+h) <k+(
r=1

N/
Y p+i<k
r=1

pT+qT207 qTZ_l, Tzl,...,N/.

(4.3.30)

To finish the proof of estimate (4.3.25) we have to bound (4.3.27) by one of the four terms I,
I1, II1, IV of the right hand side of (4.3.25). We distinguish several cases.

Case 1: For any r =1,..., N, p» + ¢ < 5o — 0.
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In this case, we use (4.3.28). Since p, < k, we may bound HZPT<Dm>qT17HmO by [[7l5 s —&-
Moreover, since the exponent ¢ in (4.3.27) is smaller than k£ — 1, and since (4.3.30) implies
1
i+j+h<k+1<k+[u], the last factor in (4.3.28) is bounded by ||D,|? ¢‘k—1 8- We see
Mo

that we obtain a bound by I1.

From now on we may assume that there is some r, say r = 1, with p; + q1 > sp — 9. Notice
that (4.3.30) implies then that for r > 1

(4.3.31) prt+a <k+l—p—q <k+[u]—(30—’y())§30—’}/0

where the last inequality follows from the assumptions k + ¢ < s — 1 and the inequalities
between s and sg.

Case2: py=kand j+h <vy—", ¢ <v—",r>1.

Since p; = k, the second inequality (4.3.30) implies that ¢ = 0, p, = 0 for » > 1. We use
the bound (4.3.29) with #' = 1. For r > 1, we estimate || Z77(Dy)?1|| 1oy = [[(D2)% 1| 5y <

Inllc~ according to the assumption on g.. In the same way H(?%Hl ]Dx|% <DI>%¢Hmoﬂ is

bounded from H|Dx|%chw_%. If we notice that HZI"I<Dgc>ql77HHM,+1 < HanHHer’ using
that the first relation (4.3.30) implies g1 < ¢ < [u], we conclude that we obtain a bound by 1.
The cut-off for k£ 4+ p — sp + 70 > 0 comes from the fact that by (4.3.30) and our assumption
on pi1,q1, we have so — 0 <p1 +q < [u] + k.

Case 3: p1 = k and either j + h > v — g or there is r > 1 with p, + ¢ > v — 0.

We notice that, as p; = k, inequalities (4.3.30) implies ¢, < [u] for any r and j + h < [u].
The assumptions of this case imply that v — 79 < [u] so that the cut-off condition in the
term IV in the right hand side of (4.3.25) holds. We notice also that ¢; < [u]: if not, the
first inequality (4.3.30) and p; = k, would imply that j + h = 0 and ¢, = 0 for r > 1,
which would contradict the assumptions of this case. It follows that, in (4.3.29) with ' = 1,
HZpl(D:E>‘1117HHM,+1 < Inly,,- Moreover using (4.3.31), we estimate for r > 1 HZPT<D;B>‘1T77HCWO
by [[7lf —#- Finally, since (4.3.30) implies that

i+j+h<k+l—(p1+aq)<Ek+p—(s0—)

taking into account the assumption made after the conclusion of case 1, we may bound
hatd s 1 1 1 . . .
10277 Z% | Dy |2 (D2) 29| g1 by ||| Dal? 1/;Hmin(k+[u]_50+%7k) 1. We obtain a contribution

770_5
to the term I'V in (4.3.25).
Case 4: p1 < k.

We use (4.3.29) with 7/ = 1. As above, the last factor in this inequality is bounded from

1 .
above by [||D,|> w"min(k-i—[u]—so-i-’yo,k),'yo—% and for r > 1, || ZPr <D$>qrnHCWO S Iz sp—%- Since

(4.3.30) implies p1 + ¢1 < [u] + k and since p; < k, HZP1 (D;,;)‘H?]HHM/Jr1 is smaller than

M1 42 We thus get a contribution to term I17 in (4.3.25).

142



This concludes the proof. O

Corollary 4.3.8. Under the assumptions of Proposition 4.3.7 and if moreover v > 4
| (A(n) = A) )],
< C(llen) Il 1Da12 250 g
+ 1z (11 = (= 900)C (Inllgy0) Imll o0 10212 ¥,

(4.3.32) + 1k, (1 + k=50 +90)C (11l cr) 10212 9| o | 250 s

+C(lIn|

1
w00) 1llsy 0 [1D22 [y ps

+ O(Hn‘ so,O) H|Dx‘% w“yﬁ’k*So*F'YOv'Y m‘k_lvlﬁ‘?

+ Lz (1] = (v = 90)C (191l 0) 1Dl g Ml

Proof. We have to bound || Z¥(A(n) — A(O)W)HHW Since A(0) = |D,| if A = G or B and
V(0) = 0., we have ZFA(0) = A(0)(Z — 2)*. It follows that Z*¥(A(n) — A(0)) — (A(n) —
A(0))(Z — 2)F is estimated by (4.3.25). We just need to study

(4.3.33) [(A(m) = A0))(Z — 2)*3)|| -
Assume first that u > sy — v. When A(n) = G(n), apply (2.5.1) with (u,s) replaced by
(u+ 1,4+ 1) and ~ replaced by vy. We obtain a bound by
i k i k
CInllcoo ) 1012 (Z = 2Y4[| -y Wl g + Imllno (10212 (Z = 259,y .

The last term is bounded from above by the contributions I 4+ I of the right hand side of
(4.3.32). The first term may be controlled by V since k < u + k — sp + o because of our
assumption on p. When A(n) = B(n) or V(n), we argue in the same way applying (2.5.6)
with (u,s) replaced by (u+1/2, 1+ 1).

Assume now that < so — 7. Set ¥ = (Z — 2)¥4p. We want to estimate for 0 < £ < []

2 (A — A©) 8| e < [[(An) = A©) Dot e + (105, AT e

with ¢/ = p — [p]. The first term in the right hand side may be estimated when A(n) = G(n)
from (2.7.4) since i/ <~y —3fory>4,soby I +1V. If A= B or V, the bound follows from
the one of G, the expressions of B, V in terms of G and the law product C7~1 - H¥ ¢ HH.

Consider now the second term. According to (4.3.10), [9£, A(’I’])]lz is a linear combination of
quantities of the form
N
a(f ) L5, 00 ) A(m) 8™ )

where N € N*, /; e Nwith {1 +---+ln1 =0 < [p], &a+---+{n > 0, L is a multilinear form
in its arguments, A(n) is taken among G(n), B(n), 0, and a(n’) is some analytic functions
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of /. Using again the product law C7~1. H" ¢ H" we bound the H* -norm of the above
expression by

C(Hn/Hmoflﬂu]) Hn/HmoﬂHul Hﬁ(n)aﬁN“(z - 2)k¢“H#"

We use that {ny+1 < [u] — 1 and (1.1.16) to estimate the last factor by HDJC\% w‘ku—l' Since
M3

Yo + [i] < so, we see that we obtain finally a bound by term II in the right hand side of
(4.3.32) when [p] > v — 0. If [¢] < — 70, we use instead the bound provided by I and IV,
remembering that we are in the case y < sy — 7. This concludes the proof. O

Next we state a corollary of the previous estimate under a form which is convenient for later
purposes.

Proposition 4.3.9. i) Under the assumptions of Proposition 4.3.7 and if moreover v > 4

(Al < Cmlon) [1Dal? 25| ey
+ L (1] = (v = 90)C (Inllg0) Il 11Dl ¥, s
1
(1334) R el Ll L S P
+ C(HT/HS(),O) ‘ |D1‘|§ ¢‘k_17“+%
+ C (1l ) 11212 D] i 11l 1o

+ Lae (1] — (v = 90)C (11l 0) 1Dl g g [Pl

ii) Under the assumptions of Proposition 4.3.7 and if moreover v > 4
1 1
(4335) ‘A(Tl)w‘hu S CHD$|2 w‘k7u+% + CH‘DJI‘ 2 w”ﬂ'ﬁ‘k—s()"!"ﬂ)ﬁ ’n‘k,ml )

where C = C(||nll, o)-

Proof. The first inequality follows from (4.3.32) and the triangle inequality and the second
inequality follows from (4.3.34) and the definitions of the norms ||-[[,., and [-[, ,. O

Remark 4.3.10. The key point is that, in the right-hand side of (4.3.34), (4.3.35) when say
k ~ s, the factors estimated in Holder norms contain at most s/2 + Cst Z-derivatives.
The method of proof used above provides as well Holder estimates.

Proposition 4.3.11. Let v € N with v > 4. There exists €9 > 0 such that for all integer
k € [0,y — 4] and all numbers o in |3,v — k|, o & %N, there exists an increasing function
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C: Ry — Ry such that, for allT > 0, all ) in C"%’k"”%([O,T] xR) and alln in C*+1([0, T] x
R) N CO7+L([0,T] x R) satisfying supyep, 1) 1)l grer < €0, one has

(43.360) || ZFAm — AM(Z = 2] oo < Ol ggr) Il [1Da]2 0,y 8
and
(4.3.37) 1AMl o < C Il o) [1D:1 %] 1

for any A € {G,B,V}.

Proof. Write o0 = [0] + ¢’ with ¢’ €]0,1[. From expression (4.3.26), we see that it is enough
to bound for £ =0,...,[o]

|04CI01 27 | Dal (Da) 2|
withi <k—1,i+j <k, C’;- in CE;’ [1]. We apply estimate (4.3.20) with ~ replaced by 7o,

~ . 1
Yo >2closeto 2, K =0, p=k—i,q=—j, ¢ =0.2"|D,|2 (Dxﬁ@b. We obtain a bound in
terms of the minimum of the quantities

N/
TT127 D)0 oo |02+ 27 (D22 (D)2 o
(4.3.38) =t
(L1279l ) 122221 055921 D (D)
r#r!

where the exponents satisfy (4.3.30).

If for r =1,...,N" we have p, + ¢ + v < o + 1, we use the first bound. Since h + j + i <
k+/0<k+ o] and i <k — 1, we get the wanted inequality (4.3.36).

If for some 1/, for instance ' =1, p1 + g1 +70 > 0 + 1, then for all r > 2
or+q <k+l+y—0c—-1<k+v—-1<k+o+1—

since, taking vy close enough to 2, we may assume 2yy < ¢ + 2. Similarly, i + 7 + h <
k+o+1—~. We use the second bound (4.3.38) with 7" = 1. Since p1+¢1 < k+¢ < k+[o] and
i < k—1, we obtain (4.3.36). Estimate (4.3.37) follows from (4.3.36) and Corollary 1.1.8. [

The second objective of this section is to obtain estimates for the remainder in the Taylor
development at zero of n — G(7).

Let us introduce a notation: if Z denotes the couple (Z,d,), and if k is in N, we set Z* for
the family (Z* 05" u)p 4 pr<p.-
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Proposition 4.3.12. Let m be in N, m > 3. There is a positive constant o such that
the following holds: For any family (Aj(n))i<j<m of operators with As(n),..., Am(n) taken
among a(n,n)G(n), a(n,n)B(n), a(n,n)\V(n), a(n,n')d., where a is an analytic function of
(n,n") vamshmg at zero and such that Ai(n) = G( ) or Oy, for any k € N, any d € N, for
any u = |Dy \2 Y +in such that sup,ec(o 1 | ZFu(t Hcd+a and Sup;e(o 7] | ZFu(t HHd+a are

finite, the following estimates for Ro(n) := |Dy|™ 2 Ai(n)o--- 0 Ap(n) holds

3
1Z" Ry e < Clul > TINZ% ul| gara | 25| yasas
ki14-+ks<k j=1

(4.3.39) ko ks <y

4
12% Do’ Ro) | < Clul > [INZ% 0l e (0> 0)

kit +ka<k j=1

where Clu] depends only on |‘Z(k*1)+uHcd+a for the first estimate, and on “Z(k*1)+u‘}cd+a

1-26¢’ H ,HQG

and on a bound for Hn H _1 for some 0’ €]0,0[ for the second one.

S

Proof. We may write each of the operators A; under the form A;(n) = E;(n) \Dm|% (D)
with E; in £ and Ey in €. For j = 1,...,m — 1, we decompose A;(n) = Ei(n)d, + EJ(n),

with £, EY in £, and in £ if j = 1. Then

m—

Ay(m)o--- H M)0s + EL (1)) En(n) |Dy|? (D).

Using the second commutation relation (4.3.5) and the fact that E{, Ef are in 58 and E;, E;’ ,
j=2,...,m—1, Ey are in CJ [1], we see that A1(n)o---o A;,(n) may be written as a linear

combination of operators C/(n)d% ]D$|% (Dzﬁ where ¢/ <m —1 and C is in 521_1_@ [m —1].

We have to estimate, in order to study the first inequality (4.3.39), |D$\7% Ai(n)o---o
Am(n)@bHHdJrku for any decomposition k = k' + k", so to bound for £ =0,...,d + k",

/ 1 ~
182" | Da| ™2 Cn)¥]|
where ¢ = 9 \Dx\% (Dw)%w. By ii) of Lemma 4.3.6 (applied with x/ = 1), we may bound

this by the right hand side of (4.3.19) i.e. by a finite sum indexed by N’ > m —1 >3, ¢, j/
with ¢ + j* < k' and h < ¢, of the minimum between the quantities (4.3.18), namely

Ha] -‘rhzl 8("D ’2 wH

N(ERE
(TIz .

r#r!

(4.3.40)

HQ"8]+hZZaE/ |D ‘2 HC"/ 1

) HZPT (D)%
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where the exponents satisfy the following inequalities

N/
Drta)+ (@ +5+0+h)<m—1+k +¢

r=1
> pr il <K,

pr+aq >0, ¢ > —1.

(4.3.41)

Set pp=1i,qo=j +h+¢,and forr=0,...,N', k., =p, + (¢ —d—m —2)4. Then

HZPT<DI>QT77

‘C“f < szTuHchm
(43.42) |8 +h 278 1D, |7 (D)3 0],y < |1 2500y
- |2 (D)o

s < 12

| frata
|07 27 0% | Dl (D)5 | 1 < || 27| s

for some o depending only on v and m. We notice that if ¢, <d+m +2, k., =p, <k <k
andif ¢ >d+m+2, k. =p,+q¢ —d—m —2 <k —3 by (4.3.41). We check similarly that
ko < k. Moreover, there is at most one r for which k, = k. In the expressions (4.3.40), we use
(4.3.42) to bound N’ — 3 factors by HZkruHch, choosing those r for which k, < (k—1)4,
so by HZ(’“*I)JruHch. We use the first (resp. the second) estimate (4.3.40) when the largest
k, is obtained for r = 0 (resp. r = ). Taking (4.3.42) into account, we obtain in all cases a
bound

3
C(l125 ull guse) TTI1Z* 0

r=1

}c+a”Zk4“HHd+a

with ky, ko, k3 < k4, after renumbering of the k;’s. Tt follows from (4.3.41) that 3"} (p, +¢-) <
m—1+k+dand Zzllp,« < k. The last inequality implies 211 ke <kifqg—d—m—2<0
for r = 1,...,4. If there is at least one r for which ¢, —d —m — 2 > 0 we get Z%kr <
S 1(pr + @) —d — m +1 < k. We have obtained the conditions on the summation indices in

the first inequality. The second inequality is proved in the same way. O

Let us now state and prove corollaries of the preceding results that will be used in the rest of
this paper. We take for a the constant given by Proposition 4.3.12 when m = 3. We take sp
an integer. We assume that we are given (n,1) and d € R, with € H0-4+an %04+ and 1)
. . 1

in Fzs0dte q Cgsodte Then y = | Dy |2 9 + in will satisfy, on the interval [Ty, T] on which
it is defined, for any k < sp,

sup HZku(t, ~)HHd+Q < 400, sup HZku(t, -)Hcd+cx < +00.

[T07T[ [T07T}
Corollary 4.3.13. Assume that (n,1) is a solution of the water waves system (1.2.1), satis-

1

fying the above smoothness properties. Then u = |Dy|2 ¢ + in satisfies the equation

(4.3.43) Dyu = |Dy|? u+ QoU) + Co(Ud) + Ro(Ud)
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where U = (u, @) and
Goft) = ~ 1D 1% [(De Do (w4 @) + (IDal (4 )]
4 ADu] (u = )| Daf¥ (u+ 0)) — {Da((u— 0)De |Dal F (),

6’0(1/{) stands for the cubic contribution

CoUd) = % D, |3 [(|Dx|% (u+a)) | Dyl <(u—a) 1D,|2 (u+ﬂ>)]
— 1D [(1Daf* ot ) (= ) 1Dl 4 )
 1Dul [ =) 1] (= ) Dl )
+ % D, | [(u—ﬁ)le 2 (u+ 1)
4 e 1D [(u = ) D] (u+ 0)]

Morelover, the remainder ﬁo(b{) satisfies the following bounds: one may write ]TZO(L{) =
|D;|2 Ri(U), where for any k < sp

3
(4.3.44) 125 Ro@)llpa < Culud 3 TTIZ5 ull v |25

k1+-+ka<k j=1
k1,k2,ks<ky

with a constant Cy[u] depending only on HZ(k_l)*UHCnd Moreover, for 8 > 0 small, we get

also Hélder estimates
4
(4.3.45) 121D, Ry @)l o < Cilu] D~ TTIIZ%ul| gt
ki+-+ks<k j=1
1-20' 20

where Cilu] depends only on HZ(k_l)JruHCUH_Q and on a bound for Hn’HH_l HT]’HC_l for some
0 €0, 6.

Proof. We apply formula (2.6.11) with n = 2. We get

2
(4.3.46) Gy = %g(k)(O) + / TA-? g ) dx

2
k=0 0

where g(\) = G(M)¥. We have seen that g3 ()\) has the structure given by formula (2.6.9)
i.e. the structure of the expressions considered in Proposition 4.3.12 (up to an extra uniform
dependence on the parameter A € [0,1]). By Proposition 4.3.12 the integrated term in (4.3.46)
may thus be written é(l) U) = ]Dx|% EE}, with EE)I satisfying the inequalities of the statement.
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Let us study the Taylor expansion in (4.3.46). The expressions of ¢(0), ¢’(0), ¢”(0) obtained
page 68 show that

3#7 = G(UWJ = ‘Dac’ ¥ — ’Dx’ (77 ‘Dac’ ¢) - 5x(775x¢)
1 1
+ D] (| D] (1] D] ¥))) + 5 [Da (n*02¢) + 535(772 | Dz 1))
+1Da]? Ryl

The second equation in (1.2.1) implies, when combined with the above expansion of G(n)v,
that

0 = =1 — 5 (0u0)* + 5 (1Dl )7 — (1021 9)[ 1Dl (1 Del ) + 22y

+a(n)P i, G(n)w, 0 b, | Da| 1, | Dal (0 |Da| 1), 00245, Cs(n, ), | D2 Eél]

where P is a polynomial, sum of components that are homogeneous at least of degree 4 and
(3 is the cubic term in the expansion of G(n)1, and where a is some analytic function of 7.

Since we have seen that Rbl satisfies (4.3.44), (4.3.45), Leibniz formula shows that the last term
in the above equation satisfies similar bounds, replacing eventually « by some larger value.
Computing from the above expressions dyu, we get (4.3.43). This concludes the proof. O

4.4 Nonlinear estimates

Our next goal is to estimate the action of Z* on various remainder terms. This task is quite
technical and requires some preparation. We gather here various estimates which are exten-
sively used in the sequel. Namely, we estimate |[CF|y ,, [TcF|f ,» |TFC| g, and |R5(¢, F)|f -

Recall that, for any real number s > 0,

ICE N s S MICH zoo 1N s + E N oo 1€ zzs »
ICE N zzs S NSl oo B s -

We need similar estimates for [(F[ . We shall prove that, for any s > 2 and any (K,v) €
N x [0, +o0[ such that v + K < s — 2, there holds

(4.4.1) ICF

i SUClls ol + 11 0 Clic,

(4.4.2) ICF

Ko S IClls10 i -

These estimates can be deduced from the following result: for any real number m € [0, +o0]
and any (K,v) € N x [0, +o0],

(443) ‘<F|K,V S ||<||m,0 |F|K,V + ||F‘|V+K—m+2,0 ‘C|K,V’
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where we use the convention that [|F[, 400 = 0 for v+ K —m +2 < 0. Indeed, by
applying (4.4.3) with m = s/2 (resp. m = s+1) one recovers (4.4.1) (resp. (4.4.2)). Moreover,
(4.4.3) is convenient to prove estimate by induction on K since

1ZF Nyt k—mr2.0 < NF ot (ke t1)—mt2,0 -

We begin by proving estimates similar to (4.4.3) for [Tt F[ ., [Tr(|f, and [Rp((, F)|k, as
well as for Sp((, F') where Sp is defined by (3.4.14).

Recall that the notations ||-||,. , and ||, are defined for any real number 7 (see Notation 4.5.1)
so that |||, =0 and |-|, , = 0 for r <O0.

Proposition 4.4.1. Consider m € R, K € N and v €]0, +oo[. Below one uses the conven-
tions that

(4.4.4) 1< 1.0 =0 for m <0, 1Ny i —mi10 =0 forv+ K —m+1<0.

(i) There exists a positive constant ¢ such that,

(4.4.5) ’TCF|K,V sc HCHm,o |F‘KV tc ”FHerKme,o ‘C|K,O'

(ii) There exists a positive constant ¢ such that,

F

(4.4.6) |TFC|K,V <c ||C||m,0 KoT¢ HF||V+K—m+1,0 |C|K,u-

(17i) For any a in [0,4o00[ there exists a positive constant ¢ such that,

(4.4.7) |Rp((, F)

K,v+a <c HCHm,a ’F|K,1/ +c HFHKfm,a C’K,V .

(iv) Let Sg(a,b) = OpPla, R]b with R = —2¢ - VO where 0 is given by Definition A.1.2. Then

for any a in [0, 400] there exists a positive constant ¢ such that,

(448) |SB(C?F)|K,y+a <c ||C||m,a ‘F|K7V +c ||FHK—m,a ’C‘K,V :

Proof. Let us prove statement (7). By definition

K
TPl = D2 TCF | guss—re
=0

It follows from (3.4.14) that one can write Z*(T;F) as a linear combination of terms of the
form T("3)(Z”1C)Z”2F where ny + ns + ng < £ and where we used the following notation:
T (v) f = OpBlv, (—26-V)"6] f where 6 = (&1, &) is the cutoff function used in the definition
of paradifferential operators (see Definition A.1.2), -V = £10¢, +&20¢, and where Op®lv, Alf
is as defined in §3.4 (so that T (a)b is the paraproduct T,b).
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We thus have to prove that, for any £ < K and any (n1,n2,n3) € N3 such that ni+ng+nz < £,

(449) HT(nB)(ZTHC)ZTLQFHHquK—Z S HCHm,O ’F’K,V + CHFHV+K7m+1,O ’C’K,O .

Notice that, for any n € N, T(")(v)f satisfies the same estimates as T, f does. For n = 0
this is obvious since T (v) = T,. For n > 0, with the notation of Proposition 3.4.4, one
has (—2¢ - V)"0 € SRY,, (the condition (3.4.4) is satisfied since (£1) ~ (&) on the support
of V¢#). Then Proposition 3.4.4 implies that, for any o €]0, +o0o[ and any real numbers p, p/
such that p/ > p >0,

(4.4.10) 17 @) £l 1o S 10l 1 e
(4.4.11) 1T @) £ o < K M0l 2 1| Fll o -
For n = 0, these estimates follow from the paraproduct rules (A.1.12) and (A.1.20).

We now prove (4.4.9). Either ny < m or n; > m. We first consider the case where ny < m.
Since v + K — ¢ > v > 0 we may use (4.4.10) to write

T2 )2 F | urerc—e SNZ"Cllgoe 1272 F | grovesc—e
Now write [|Z™C][ 100 < /¢l 0 < [I€]l0 and
127 Fllgrese—e < \F oy pirc—e < VFluny e < Flico
by definition of the norms HHnU and Hna This proves (4.4.9) for n; < m.
We next consider the case where n; > m. We apply (4.4.11) to obtain that
T2 ) 2" F | s SN2 ¢l g2 |1 27 F ll gusre—ra

Since ny < ¢ < K, notice that ||Z"(]|;2 < ||k - On the other hand

1z |

CrrE—t41 S HZmFHCqukfnrngﬂ since nqy +ng </

ng
<> ||2*F]

p=0

Cu+K—n1+l—p

n2
(4.4.12) <> |z°F|
p=0

CviK-—mi1-p SINCE N1 > m.

Now observe that, since n1 > m, nq + no < £ and £ < K, one has
m+ny—K—-1<m+4+{l—-n—-K—-1=m-n)+({(—-K)—-1<-1<v
and hence ng < v+ K —m+ 1. Setting this into (4.4.12) yields

v+K—m+1

PN S PO
p=0

12" |

COv+K—-m+1-p = ||F||1/+K—m+1,0’
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which completes the proof of statement ().

Statement (i7) is a corollary of statement (i). Indeed, (4.4.5) applied with (¢, F') replaced
with (F, () implies that

TrCli,, S NE o 1€k, + 1€+ 5 —mt10 [ F k0 -

By using this estimate with m replaced with v + K — m + 1 we obtain (4.4.6).

Finally we shall prove statement (i) by using arguments similar to those used in the proof
of statement (7).

Set x(&1,&2) :=1—0(&1,&) — 0(&2,&1) where 0 is the cutoff function given by (A.1.2). Then
R5(¢, F) = OpP[¢, x(&1,&)]F. Thus Z°Rp((, F) is a linear combination of terms of the
form R("3)(Z”1C, Z™F) where ni + ng + ng < £ and where we used the following notation:

RM (v, f) = OpPlv, (—2¢ - V)"x]f.

We thus have to prove that, for any ¢ < K and any (n,ng,n3) € N3 such that n;+ns+nz < ¢,

(4.4.13) |R")(Z2™ ¢, 2" F)|| yoiic—eva S WCllma [ Flicw + I ka1l -

For any n € N, R (v, f) satisfies the same estimates as Rg(v, f) does. Indeed, with the
notations of Proposition 3.4.4, one has (—2¢-V)"y € SR, for any n > 0. Consequently, for

reg
any real numbers o, a in [0, 400 such that o + a > 0, there holds

(4.4.14) IR (0, )| gosa S N0l l1£1 o »
(4.4.15) IR, A)]| jrosa S W0llge (1l -

We now prove (4.4.13). Either n; < m or ny > m. We first consider the case where n; < m.
Then we use (4.4.14), no < ¢ < K and n; < m to write

HR(ns)(ZmC’ ZnQF)HHquKJM < HR(ns)(ZmC’ ZTZQF)HerKanqLa
S 12" Clga 1272 F | ot ic-n

Sj ”CHm,a |F|K,V .
On the other hand, if n; > m then

[R™ (2 22 F) || oo S IIBTD(Z7C 272 F)| o ony
SN2 oo 1272 F

rs |C|K7V ||F||n27a S |<|K,l/ HFHK—m,a

where we used in the last inequality that ny + ne < £ < K and hence ny < K — m since
ni > m. This proves (4.4.13) and hence completes the proof of statement (i7).
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The proof of statement (iv) is analogous to the proof of statement (iii). Indeed, by definition
Sp(¢, F) = OpPlv, (=€ - V)]F and hence Z/Sp(¢, F) is a linear combination of terms of the
form OpP[Z"2¢, (€ - V)™0)|Z™ F with ny + no 4+ n3 < £ and n3 > 1. As already mentioned,
one has (—2¢ - V)"0 € SRY__ for n > 0, so Proposition 3.4.4 implies that Op®[v, (€ - V)"0]f

reg

satisfies the same estimates (4.4.14) and (4.4.15) as R™ (v, f) does. O

Remark. For further references, let us state and prove an estimate analogous to (4.4.10)-
(4.4.11) in Holder spaces. Consider a positive real number o with o ¢ N. Then

(4.4.16) ITeF 1,y S 0l I, -

To see this, using elementary arguments similar to those used in the proof of statement ) of
Proposition 4.4.1, one needs only to prove that, for any n € N and for any real number ¢ in
[0, 400, one has

(4.4.17) 1T @) f|| o < K 0l 1l o -

For n = 0, this follows from the paraproduct rule (A.1.13). For n > 0, using the notations
and the observations made in the proof of Proposition 4.4.1, notice that 7™ (v) = Op?B [v, R]
where R = (—2£ - V)"0 belongs to SR%,,. Now the wanted estimate follows easily from the

reg*
estimate of the kernel K}y made in the proof of Proposition 3.4.4.

The previous proposition has the following corollary.

Corollary 4.4.2. Consider m € R, K € N and v €]0,+o00[. There exists a positive constant
c such that,

(4418) |<F‘K,y <c ||C”m,0 ‘F’K,I/ tc HFHZJ+K7’ITL+1,O ‘C‘K,V )

where (||, 0 =0 form <0 and [|F||,, x_,110=0 forv+ K —m+1<0, by convention.
Proof. Write (F' = T¢F + Tr( + Rp(¢, F') and apply Proposition 4.4.1. O

For further references, we shall also need more precise estimates.

Proposition 4.4.3. Consider m € R, K € N and v €]0,+00[. One uses the conventions in
(4.4.4) and denotes by 1g, the indicator function of R, .

(i) There exists a positive constant ¢ such that,

|T<F’K,V <c HCHm,O ’F’Kfl,zﬂrl +c HF”quKme,o C’Kfl,o

(4.4.19)
+clr, (M) [Cll oo |25 F|| o + el (K = m) [ Fllgus || 27¢]| 1

(i7) For any real number a in [0,4o00[ there exists a positive constant ¢ such that,

[RE(C ) pra < € NCllma | Fli—1,041 + ey (m) [Cll e |27 F|

e Fl g, (€l o141 + vy (B = m) |

(4.4.20)
25| -
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(731) There exists a positive constant ¢ such that,

ICF g < ellllmo 1 F k1001 Tl F s e—mar0lCle1041
m) [l |25 F | .

m—v—1)[Cllovss | 25F|

K —m)[|F| cv HZKCHB

+clp, (v + K —m+1)[|F||x HZKCHH,,

(
(4.4.21) + clg, (
(
(

Remark. Assume m > 1. By using in addition the obvious inequalities
L, (m) [Cller 125 F |y < UCHmo [Flic,
I, (m —v =D |[(llcvrr < Tr, (M) [[Cllgm
it follows from (4.4.21) that
CF ke < eliCllmo [F i + <l E

+elp, (K —m) |Fll e [|Z25¢)) L
g, (v+ K —m+1)[|Flen | 25¢]| .-

Let b > 1 be any fixed real number. Using the obvious inequalities

[Ellgver < [1Fllco + vy (v +1 = 0) | Fllgusr s
(4.4.22) 1k, (K = m) [ Fllguss < [Fllgwsscme
+
1R+(K—m) < 1R+(V+K—m+ 1),

one has the following corollary

ICF g, < ellCllmo | Fly + N —mi20
(4.4.23) telp, (v + K —m+ 1) ||F|o | 25¢]] 0
+elr, (v + 1= b) [|Fll gvircmer | 27C] 2

Similarly, by using (4.4.22), we deduce from (4.4.19) that
ITeF gy S UClmo Flge— 141 + 1o (m) Il oo (|25 F |

(4.4.24) + Ny —mt1.0 1€ 10
+1p, (v+ K —m+1)|Flle | Z5¢]|,5
+1g, (v + 1= ) | Fllgvirc-ms [ 25¢]| o

Proof. Let us prove (4.4.19). Write [T¢F|, , = || Z5(T¢F)| ;0 + | TcFlj_y oy~ 1t follows
from (4.4.5) that

TeF |11 < o [k 1,00+l E
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which is smaller than the right hand side of (4.4.19). To estimate the H”-norm of Z¥ (TCF)
we write, using the notations introduced in the proof of Proposition 4.4.1, that

|1Z5(TF) | o & Y. I(na,mg,ng) with I(ny,ng,ng) = ||[T")(Z2™¢) 2" F|| ..
ni+n2+ng<K

We split the sum into two pieces, according to n; < m or n; > m. We further split the first
(resp. second) sum into two pieces, according to ng = 0 or 0 < ny < m (resp. n; = K or
m < nj < K). The same arguments used to prove (4.4.5) imply that

Z I(n1,n2,n3) S ”CHm,o ‘F‘K—l,wrl )

ni+n2+n3<K
0<ni1<m

and

Z I(nl,nz, ns) 5 HF|’1/+K—m+1,O

n1+nz+n3<K
m<ni <K

Clg—1,0-

Moreover, the paraproduct rules (A.1.12) and (A.1.20) imply that

I(K,0,0) = || TzucF|| o S 1 27¢]] 12 [ Fll s
100, K,0) = | 7. 25 F| ;1o S 1€l | Z5F 0

The first (resp. second) of the two previous inequalities is to be taken into account only for
K > m (resp. m > 0), we obtain the desired result (4.4.19); indeed for K < m (resp. m < 0,

the sum > I(n1,n2,n3) (resp. ), ., vanishes).

The proof of (4.4.20) is similar.

To prove (4.4.21) we write (F' = T F 4+ Tp( + Rp((, F). The first (resp. third) term is
estimated by means of (4.4.19) (resp. (4.4.20)). The second term is estimated by means of
(4.4.19) applied with (¢, F, m) replaced with (F,(,v + K —m + 1). O

We shall also need the following estimates.

Lemma 4.4.4. Consider an integer n in N* and a positive real number . Then, for any
integer m such that m > 2 and 2m > n + p+ 2, there exists a positive constant ¢ such that

12"(TaTy = Tan) f | s
< cllalce [bloe 127 F -
(4.4.25) +ctg, (n—m) (]| 2"all 5 18l e + Nl [|Z278]] 2 ) 1 e
+ e llally 1600 111

+ etz (n=m) ([l 18l—1.0 + |l 1.0 1Bl ) £l
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Proof. Using the notations introduced in this section, Z"(T,T, — Typ)f can be written as
Zn(TaTb — Tab)f = Ry + R1 + Ry + R3 + R4 where

Ry = (T.Ty — Tw)Z" 1,

Ry = (TZaTb +TaTzo — T(za), — Ta(Zb))Zn_lf7

Ry = (TW(@)T, + T.TD (6) — TW (ab) ) 277
R3 is a linear combination of terms of the form

T (Zzma)TU) (ZM26) 275 f, b+ Lla+n1+na+n3<n, ng<n-—2
and R4 is a linear combination of terms of the form
TO(Z™a)(Z™b))Z™5 f, £+mi+ma+mg<n, mz<n-—2.

e The terms Ry and R; are estimated by means of the symbolic calculus rule (A.1.14) which
yields

(TaTy — Tap) Z" fll gy S Nlall g 10l || 27 ]| s
(T2aTy — T(zay) 2" f || e S 1Zallca [bller | 2771 F || s
(TaTzo = Taize) 2" £ | gy S Nallor 1200101 [| 277 £ g
So || Rol| 7w is controlled by the first term in the right hand side of (4.4.25). Since || Za||q1 <

lalln0 and (| Z0]cr < 6], ¢ for m > 2, and since HZ"_U”HW_1 <|fl
R; is controlled by the third term in the right hand side of (4.4.25).

ne1u—1> We verify that

e Let us estimate the H*-norm of Ry. Since T (a) = OpPla, (—2¢ - V)] with (—2¢ - V)0 €
SR?

reg» s already seen, Proposition 3.4.4 implies that

ITO@TZ" 7 | g S Nlallen [TZ27 7 || s S Nallon 18l zoe 11277 F || s

By applying the same estimates for the two other terms which enter in the definition of Ro,
we conclude that the H*-norm of R is controlled by the third term in the right hand side of
(4.4.25).

e Let us estimate R3. Set A = T1)(Z™Ma)T(*2)(Z"2b)Z"s f. We shall split the analysis in
several cases.

If ny < m and no < m, we write
Al g < HZmaHLooHZanHLoo”ZMfHHH
N ”aHm,O Hme,O ‘f|n72,,u'

since n3 < n — 2. Since |f|n_27u <|fl-1 1 this proves that the H*-norm of A is controlled
by the third term in the right hand side of (4.4.25).
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If m < n; <n, then we notice that the assumption 2m > n + p + 2 implies that
m>2m—ny>2n+p+2-n>np+(n3+p+1)+1

sonz <m —1and ng+ pu+1 < m— 1. Consequently, the estimates (4.4.10)—(4.4.11) and
(4.4.17) imply that
Al S 112 al| 212720 o 27 £ | v
Sl 101100 1 £l

so the H#-norm of A is controlled by the fourth term in the right hand side of (4.4.25). The
analysis of the case m < ng < n is similar.

Assume that n > m and n; = n. Then #; = 5 = no = n3 and hence the paraproduct rules
(A.1.12) and (A.1.20) imply that

1Al e S 127l 2 1181 oo [1f | gt

so the H#-norm of A is controlled by the second term in the right hand side of (4.4.25).

This proves that the H#-norm of R3 is controlled by the right hand side of (4.4.25). The
analysis of Ry is similar. O

4.5 Estimate of the remainder terms

The goal to this section is to prove various estimates required when estimating the remainder
terms.

To estimate the remainder terms, we shall need to exploit repeatedly the fact that the com-
mutator [G(n),n] is of order 0. Similarly, when studying the linearization estimates, we have
seen that G(n) — |D,| is of order 0 (while B(n) — |D,| and V(n) — 0, are of order 1). We shall
need to exploit this fact too.

We need to estimate Z¥[G(n),n] and Z¥(G(n) — |D|). The analysis of both Z*[G(n), n] and
Z¥(G(n) — |D,|) will be by induction on k, using the fact that one can compute explicitly
Z|G(n),n] and Z(G(n) — |Dx|). In both formula we shall see that the commutator [G(n), Zn]
appears. More generally, to control Z[G(n), ZPn] for some integer p € N, one needs to control
[G(n), ZPT1n]. We thus begin by studying these operators. Below, for p € N, we denote by
J(n, ZPn) the commutator defined by

J(n, ZPn) f := G(n)((ZPn)f) — (ZPn)G(n) f.

In this section, we use various inequalities in some Holder spaces C'?(R). We shall freely use
the fact that, for our purposes, one can assume that ¢ ¢ %N up to replacing o with ¢ + § for
some § < 1.
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Notation 4.5.1. The notation [|f[,, has been introduced for r € N and v € [0, +oo[. For
the purpose of the next results, it is convenient to extend it to the case when r is any real
number. This is done as follows: (i) for r < 0 one sets | f[|,, = 0 for any f and any v, and
(i1) for r > 0, one sets || f[|, ., := [|f[[j,;, Where [r] is the largest integer smaller or equal to r.
One defines similarly [f|, , for any real number r € N.

Proposition 4.5.2. There exists €9 > 0 small enough and there exist vy with vy & %N and
Ny large enough such that, for any (s,s1,s0) € N® satisfying

—_

s> 81 >80 > §(s+270),

for any integer p in [0, s1], any integer K in [0, s1 —p| and any real number p in [4,s— K —p—1]
there exists a mondecreasing function C such that, for any T > 0 and any smooth functions
(n, f) such that sup,co 1y [n(8) |05 < €0,

(4.5.1) T (n, an)f’K“u <C ”UHSO,O ‘f|K,,u +C Hf”,u+K+pfso+N0,70 W}Hp,uﬂ )
where C = C(||nllg, o)-
Remark. This estimate is not optimal with respect to the factors estimated in Holder norms.

The key point is that it is optimal with respect to the factors estimated in Sobolev norms.

Proof. For technical reasons, instead of proving (4.5.1), it is convenient to prove that, for N’
large enough,

(452) "](?77 Zp/rl)f|K”u, S C ||T]||So,0 ’f‘Ky/j, + C HfH,u,+K+ﬁfso+N/;yO ‘77|K+p,u+1 )
where p = max(p, 1). It is clear that this estimate is equivalent to (4.5.1).

Hereafter, we freely use the following estimates

||Zpu||n7o' S ||u||n+p7o" Hu1u2||n,o' SJ ”’U’lHn,o' ||u2”n7a'7

(4.5.3)

Hu”n,aer S Haner,a7 |u’n,o'+m S ‘u’ner,a :
The proof is by induction on K.
STEP 1: Initialization

We first prove (4.5.2) for K = 0. We prove that, with N’ = 5 and ~ large enough, for any
p € [0,s1] and any p € [—-1/2,s — p — 1], there holds

(4.5.4) |7(n, Z"0) flou < Clinllgy 0 |f

where C = C(HUHSO,O)'

0, +C Hf|’u+ﬁfso+N’;m ‘n‘p,;ﬂrl )
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To prove (4.5.4) it is sufficient to prove that J(n,7)f := [G(n),n]f satisfies

(455) D f e < Cllillcsov [l + C N lmr—sornrsno (1] gruss + Ill gues)

where C = C(||nlcso » |7l cso-») and where it is understood that ||7|| . if @ < 0.
It follows from Proposition 2.7.1 and the product estimate (A.1.21) that, for any pu > —1/2,

IGE) @) e < CInllguss) 1f | gguer < C(lnllcues) 17l e 1l -

Similarly, by using (A.1.21), (2.0.4) and (A.2.4), we obtain that for any pu > —1/2,

1FGO) f gz < Nl e IG)F N iy < C (Il s ) 17l e 1 s -

This implies that
1T, 2) fll e < C(Inll s ) 17l g 1Fll e s

which in turn implies (4.5.5) provided that sy —p < N’ and ~ is large enough (indeed, we
then have p+5<s—p+4<s—p+5<s—sy+ N +5 < sy for 79 large enough).

It remains to prove (4.5.5) for s9 — p > N’. We further split the analysis into two parts.
Consider first the case where p + p — sg + N’ > 0. Write

(4.5.6) J(n,0)f = [Da| (0f) = 71| Da| f +(G(n) = (D)) (1f) = (G () f = [Dal f)-
The first term is estimated by means of (A.1.25) in Lemma A.1.12 which yields that

I1D] (7.f) = 0 De| fll g S Wllea 1 g+ 1 F o 11l g -

The second term in the right-hand side of (4.5.6) is estimated by means of the tame product
rule (A.1.18) and the estimate (2.5.1) (applied with (s, v, ) replaced with (u+1,3+¢€,u+1),
recalling that 4 > 4 by assumption) for the operator norm of G(n) — |Dz|. It is found that

1(G) = 1D < CUllon) {1 s Wl + Il 17150

SO

G ) = 1D ) M gy < C(H(%ﬁ)”m){ I e 1l g =+ 110 oo NN e

o il 110 -

The third term in the right-hand side of (4.5.6) is estimated by means of the tame product
rule (A.1.18)and the estimates (2.5.1) (applied with (s, ~y, 1) replaced with (u+1,3+€, u+1)).
It is found that

(G m)f = Dzl Pl gu
<Nl poe 1GO)S = 1Dl fll i + 11l g 1G0) f = [Dal £l

< C(lnllea) Wil e {1 N Il s + Il 1}

+ C (Il ea) lll g 1 lles
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where we estimated ||G(n)f — |Dz| f||;« by means of the triangle inequality and (2.0.4) and
(A.2.3).

Since s) —p > N’ by assumption, for N’ > 5 we have so —p > 4 and hence ||7]|ca < ||| cso—»-
Since sp > 5 by assumption we have ||7]|ca < ||7]| o - Eventually, for pn+p —so+ N’ > 0, we
have ||fllca < [|fllgutp—sorn'1qo @and hence the desired result (4.5.5) follows from (4.5.6) and
the previous estimates.

We now consider the last case where s) —p > N and u+p —sp + N’ < 0. We use again
the decomposition (4.5.6). However, we now estimate the first term in the right-hand side of
(4.5.6) by means of (A.1.26). This yields

I1Dz| (1f) = 1\ De| fll g < ill gz 11 | g -

We now estimate the second term in the right-hand side of (4.5.6) by means of the product
rule (A.1.21) and the estimate (2.7.4) (applied with v = p + 5) for the operator norm of
G(n) — |Dz|. It is found that

G ) = D) (@) g < CIInll gss) 171 g2
< C(lnlluss) lllor 1l pzrso -
Similarly,
17(G)f = D ll g < 11l 1G0).f = [Dal £l e
< C(lnllcwrs) Nall guser 11l

For N" >5and p+p—sp+ N <0 we have u+5 < 59 — p < sp so that (4.5.5) follows from
(4.5.6) and the previous estimates.

STEP 2: Holder estimates

We shall need to estimate [|./(n,n)f|,,, and [[J(n, Zn)f||, ,- For our purpose, it is sufficient

to have a non optimal estimate in Holder spaces, that is an estimate which involves || f|,, ;.

(which amounts to lose one derivative, while J(n,n) and J(n, Zn) are expected to be of
order 0). We claim that for p = 0 or p = 1 and for any integer n in [0,sy) — p — 5] and any
real number o in |3,50 —p —n — 1]\ 3N,

(4.5.7) 172, ZP1) £l < C (Il g1) 10t prn [l -

Directly from the definition of J(n, ZPn), it follows from the triangle inequality, the product
rule (4.3.15) and the estimate (4.3.37) for ||G(n)f||,,, that

1700, ZP0) f o < GO (ZP) ), + 1(ZPMG ) [,
S C(H”Hn,(r—&-l) H(an)an,a—‘rl
+ HanHn,o C(Hﬂ”n,o‘—i—l) ”f”n,a—i—l

S C(Han,o’—‘rl) ||an‘|n,o'+1 Hf||n7o'+1
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which implies the desired result (4.5.7).
STEP 3: Induction

So far we have proved that (4.5.2) holds for K = 0. To prove (4.5.2) for K > 0 we proceed
by induction on K. Assuming that (4.5.2) holds at rank K, we want to prove that,

(4.5.8) [T Z2"0) Flicr 0 < Cllnllsg 0 1 s sr o+ C Il re s 1ap—sor v o 11 K prt

where p = max(p, 1). Notice that

(4.5.9) 1T, ZP0) Flic i1 < N0 ZP0) fll s sesen + 12T (0, ZP0) flic -

The first term in the right hand side of (4.5.9) is estimated by (4.5.4). To estimate the
second term, again, the key point is that one can express ZJ(n, ZPn)f as a sum of terms
which are estimated either by the induction hypothesis of by a previous estimate. By us-
ing the operators J(n,n) = [G(n),n] and J(n,Zn) = [G(n), Zn] and by using the identity
G(n)B(n)Y = —0;V(n)y (see Remark A.3.3), notice that one can rewrite the identity (4.1.1)
for ZG(n) f under the form

ZG ()Y = Gn)(Zy — 2¢) — J(n, Zn)B(n) + 2J(n,m)B(n)Y

(4.5.10)
= (0 Zm)V ()Y + 2(0n)V (n)t.

Then it is easily verified that

ZJ(n, ZPn)f =T 4+ T
= J(n, ZPn)(Zf = 2f) + J(n, Z°*'n) f
— J(n, Zn)Bn)((ZPn) f) + (Z¥n)J (n, Zn)B(n) f
+2J(n,m)B(n)((ZPn) f) — 2(ZPn)J (n,n)B(n) f
— (0Zn)V(n)((ZPn) ) + (ZPn) (0 Zn)V (n) f
+2(0:m)V (n)((ZPn) f) — 2(Z%n)(0zn)V (n) f-

(4.5.11)

We now consider an integer K in [0,s; — 1] and assume that (4.5.2) holds for any integer p
in [0,s; — K] and any real number p in [4,s — K — p — 1]. Our goal is to prove that (4.5.8)
holds for any p in [0,s; — K — 1] and any real number p in [4,s — K — p — 2]. To do so, in
view of (4.5.9), it is sufficient to prove that, for any i = 1,..., 10,

(4.5.12) ‘jZ‘K# < Clinllsg0 a1 T CNAl s r1ap—sot o M actpat s

for any p in [0,s; — K — 1] and any real number p in [4,s — K — p — 2].

Given (4.5.2), it is clear that (4.5.12) holds for ¢ = 1 or ¢ = 2. To estimate the other terms,
we need some further preliminary estimates.

Preliminary estimates
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In order to estimate J3, 7%, J" and J° (see (4.5.11)), we have to estimate A ((ZP0) ),
for A € {B,V}. We claim that

1AM (ZPm) Nl < Clinllsg 0 1 1re

+C ”f”,u,+K+pfso+N’,'yo ’T,‘K+P7H+1 .

(4.5.13)

To prove (4.5.13), use (4.3.35) to obtain that

1AM ZP0) Pl ke < CHUZ"N) Flic i

FCZP 1 —so 4.0 Mg -

(4.5.14)

Firstly, notice that (4.4.18) applied with m = sy — p implies that

‘(an)‘ﬂK,;H-l S ||an||so—p,0 ’f‘K,M—i—l + HfH,u—i—K—i—p—so—‘r?),O ‘an‘K,u—‘rl

S ||77||so,o \f|K,u+1 + Hf||p+K+p—so+3,0 |77|K+p,,u,+1 )

and hence [(ZPn) f|f 1 is bounded by the right-hand side of (4.5.13). Secondly, observe
that

”(an)fH,quKfso#»él,fyo 5 HanH;H»KfsoJr&fyo |’f”u+Kfso+4,70

S llso.0 1N s & —so+ 37 70

since u+ K +p—sg+4+7 <s—5)+4+v < sp and since 4 < N’ by assumptions. This
completes the proof of (4.5.13).

We need also to estimate [|A(7)((Z0) )|l 14 r+1-sp+ N7 7o fOr A € {B,V}. To do so, write

BAMZ70) )l 164103770

SO(HTIH K+1— N’ 1) ”(an)fH K+1— N/ 1
(4515) ptE+1=s0+N"v0+ ptK+1—s0+N’ yo+

< C(Inlls,0) 1 k150437 701

< C(HUHSU,O) Hf||u+(K+l)+]3—S()+N/,’yo

where we used (4.3.37), (4.5.3), p > 1l and p+ K +p—so+N'+~0+2 < 50 for s) > 1/2(s+270)
with vg large enough.

Similarly we have that
(4.5.16) 1A (ZP M) )|t 16 —s0+20 < C ll0,0) 1tk —sosv7.0
for N’ > 9, where we used (4.3.37) and p+ K +p — 59 + 9 < s (for 7y large enough).
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Estimate of J3 and J°. By the induction hypothesis one can apply (4.5.2) with p = 1 and f
replaced with B(n)((ZPn)f) to obtain that

(4.5.17) | J(n, Zn)Bm)((Z°n) )l 0 < Clnllsy,0 1B((ZP0) )l +
C ”B(n)((an)f)||H+K+i—so+N’,70 ’n’K—l—l“u—I—l .

The first (resp. second) term in the right-hand side of (4.5.17) is estimated by means of
(4.5.13) (resp. (4.5.15)). This gives

(4.5.18)  [J(n, Zn)Bm)((Z°m) ) g0 < C 1l g0 1f |51,

+ C N it 14 5—s0+-N7 0 M K prt ot -

Thus we verify that (4.5.12) holds for ¢ = 3. The proof for ¢ = 5 is similar.

Estimate of J* and J%. The product rule (4.4.18) (applied with m = sy — p) implies that

(4.5.19)  |[(ZPn)J(n, Zn)B() [k, S Clinllsyo 1T (0, Zm)B0) k.,
+ C HJ(% ZU)B(n)fH,u+K+pfso+2,O ’n‘K+p,,u+l :

The first term in the right-hand side of (4.5.19) is estimated by means of (4.5.17) (with ZPn
replaced with 1). With regards to the second term, using (4.5.7) and (4.3.37), we obtain for
any € €]0,1],

[T, Zn) B f1l sk 4p—sot2.0 < 1T, Z0) B f1l 4t ke 4p—so2,4—e
S CIBO SN g kg p—so+2,5—e
S CU Mt K +p—so+2,6
< C Syt ke pmsot 7 o0 -
This proves that (4.5.12) holds for ¢ = 4. The proof for i = 6 is similar.

Estimate of J” and J?. The product rule (4.4.18) implies that

1(0:Zm)V () ((ZP) )|k S N02Z0ll gy 2.0 V(M) (ZP0) )| ¢
IV (ZP) ) g k=40 102270 g, -

Since [|0xZ1||sy—2,0 < 1Nllsy,0 and [02Z0|k ,, < Ml g1, in view of (4.5.13) and (4.5.16) we
verify that (4.5.12) holds for ¢ = 7. The proof for i = 9 is similar.

The estimates for ¢ = 8 and 7 = 10 are simpler. This completes the proof. O

Corollary 4.5.3. There exists g > 0 small enough and there exist v, with y1 & %N and Ny
large enough such that, for any (s, s1,s0) € N3 satisfying

s> 81> 50> =(s+271),

N
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for any integer K in [0,s1] and any real number p in [4,s — K — 1] there exists a nonde-
creasing function C such that, for any T > 0 and any smooth functions (n, f) such that
supye(o.7) 7(8)llcso < €0,

(4.5.20) (G S = Dl flie < Clinllsgo 1 1r e+ C It s —so- 3190 1756 it »

where C = C(|nll4,0)-
Proof. Again, the proof proceeds by induction on K. It follows from Proposition 2.5.1 and
Proposition 2.7.1 that (4.5.20) is true for K = 0.
Since [Z,|Dy|] = —2|D,|, it follows from (4.5.10) that

Z(Gn)f = Dol f) = (G(n) — D) (Zf = 2f) = T(n, Zn)B(n) f

+2J(n,m)Bn).f = (=Zn)V(n)f +2(9n)V (n) f-

So the desired result follows from the estimates already established in the last step of the
proof of Proposition 4.5.2. 0
We are now in position to estimate ZF(n)i) — ZFi<2)(n)¥.

Proposition 4.5.4. There exists ¢g > 0 small enough and there exist ~h, 2 with vo & %N,
y2 > 7% and No large enough such that, for any (s, s1,s0) € N3 satisfying

(4.5.21) §2> 81> 50 > 5(5+ 27),

N

for k in [0,s1] and any real number p in [4,s — k] there exists a nondecreasing function C
such that, for any T > 0 and any smooth functions (1, f) such that supscjo 71 11(t)||cs0 < €05

|F(n)v — Fi<s (UW‘,W
< Coy nllEa 10212 25|,y
T+ 1r, (1t k= 50+ No)Cog Il coms [[1D512 9] s | 250
(4.5.22) +Coo 11112, 0 |1 Dsl 2 -
+ 1r (1= 5)Co0 113, |1Dal2 ¥, s
+ Coo 1Ml g0 11D 12 1] o 170

1
+1r, (n— 75)650 ”77”50,0 H|Dm’2 ¢H/L+k750+N2,'Y2 |17’k7u—1 )

where Cy, = C([nllcrz) Cso = C(lInllgy 0): and 1r, is the indicator function of R.
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Proof. Let « be large enough, (Ny, 7o) and (N1,71) be as given by the statements of Proposi-
tion 4.3.9, Proposition 4.5.2 and Corollary 4.5.3, respectively. Then Na, 2,75 will be chosen
so that

¥ =72 —1, Nz >max(N, Ny, N1,5), 72 > max(y+7/2,7,7v1,Na2+1)

(with 72 & IN).

The proof proceeds by induction. Notice first that (4.5.22) holds for k£ = 0: if yu—syp+ N2 > 0,
we apply (2.6.3) with (y, s) replaced by (1—1, u—1) and get that the left hand side is bounded
by the first and second terms in the right hand side. If u — sy + N2 < 0, we use Corollary
2.7.6 with v = p + 4. If moreover, 4 < 9 — 4 we obtain a bound by the first term in the
right hand side of (4.5.22). If u > 9 — 4, we use the fourth term in that right hand side to
get that bound (taking v > 4 + 4).

Hereafter we fix an integer & in [0, s; — 1] and we assume that for any real number p in [4, s— k|
the estimate (4.5.22) holds. Our goal is to prove that (4.5.22) holds at rank k£ + 1. Since
‘F ) — Fi<a)( )Mk“ p is smaller than

HF ) = F<a)(n wHHwkH""Z( MY — Flao)( W’)‘k,y’

this reduces to proving that, for any u € [4,s — k — 1],

|Z(F(n)¢ = Faay ()],

<Cy H77Hcvz H‘DHQ ZkHl/JHHH 1

+ 1gr, (b+k+1—s0+ N2)C'yz ”77”Cvz H|Dm‘% wHC’W HZk—HnHHu

D,|?

(4.5.23) +Cso 1113, 0 Vlppirs

2 1
+ 1 (1= 72)Coq [Inl50 1212 ¥y s

1
+ CSO HnHSO,U “DIP 77Z)HlHrk+1fso+N2,'Y2 ’mkvlﬁ'l

1
+ 1R, (n— 75)650 H77H50,0 H|DI|2 w”u+k+1fso+N2,’Yz |n‘k+11u‘_1 )

provided that Na, 72,74 are large enough.

To prove (4.5.23), we express Z(F (1) — Fi<2)(n))v as the sum of (F(n) — Fi<2)(n))(Z — 2)%,
which we are going to estimate by the induction hypothesis, and other terms which are
estimated either by the induction hypothesis or by means of the previous results.
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Recall that, by Lemma 4.2.2

ZF(m)y =F(n (Z¢—2¢) F(n)((Zn)Bn)y)
—|Da| Tzy B(n)Y (Tzn (M)
+2G(n)(nB(n)y) — 2nG(n)B(n)y + 2(V (1)) 0zn
= |Da| Rg(B(n)y, Zn) — 0:Re(Zn, V(n)y)
+ [ Dz| Try (g1 + Ox(Try (ye)
+2|Dg| Sg(B(n)¥,n) + 20:58(V (), n)

(4.5.24)

where Sg is given by (3.4.14); Rp and Ry are given by (4.2.3) and (4.2.4) and Rg(a,b) =
ab — Tab — Tba.

On the other hand, remembering that according to (2.6.1)

(4.5.25) Fleoy(m = = |Da| (| Dz ¥) + | Da| (Tip,yn) — 0x(n029)) + 0x(To,um),

by using [Z,|Dy|] = =2 |Ds|, [Z,0:] = —20, and (3.4.14) one gets that

ZF <oy = F<oy)(Zn)Y + F<2y(n) Zy — 4F (<) (n)
+ 2| Dy| S5(|Dz| %, 1) + 20,S5(0x, ),

which is better written under the form

(4.5.26) ZF<o)(n)Y — F<o)(n)(Z9 — 2¢)
= Fl<2)(Zn)Y — 2F(<2)(n)Y + 2| Dy | SB(|1Dz| ¥, 1) + 20,58(8:¢, 1),

We have already seen (see (2.6.30)) that one can either write F<)(n)y under the form (4.5.25)
or under the form

(4'5'27) F(§2) (ﬁ)w - = ’D:v’ RB(% ’Dx’ ¢) - 8$RB(777 3x”¢)

In the right-hand side of (4.5.26) we use (4.5.27) to express F<9)(Zn)t and (4.5.25) to express
—2F(<9)(n)y. Tt is found that

ZF<2)(n)y
= Fleoy(n)(Z — 2¢)
(4.5.28) — |Da| Re(Zn, | Dy| %) — 0xRp(Zn, 0x¢))

= 2(= Dl (71D2] ) + D2 (Tip, ) — Ou(00ut) + D (T, )

+2 ’DI| SB(’DZ‘| 7/}777) + 289053(0:01/}777)‘

Now by combining (4.5.24) and (4.5.28), we conclude that
Z(F(n)y — Feg)(my) = FO + -+ F°
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where

FO = (F(n) — Fraoy(n)) (29 — 20),
Ft==F(n)((Zn)Bn)v),
F? = = |Dy| Ty Bt — 02 (T V()),
F?=2G(n)(nB(n)) — 2nG(n) B(n)t + 2(V (n)1)dan
— 2| Dy| (] Dl ) — 20, (10a1)),
F' = —|Dy| Re(B(n)¥, Zn) — 0. Ra(Zn, V (n)i)
+ | Da| Rp(Zn, |Da| ) + 02 R5(Zn, 0a1)),
F5 =2|Dq| Sp(B(n)t — | Da| ¥, m) + 20,58(V (n)t) — 0z, 1),
F® = |Da| Trymywn + 02(Try (yw) + 2Dl (Tip, 1) + 202(To,4m)-

To prove (4.5.23), we have to prove that, for any u € [4,s — k — 1] and any 0 < i < 6,

‘]:i‘lw Cys ”U”cw H|D |2 Zkﬂd’”
+ 1R+(N +k+1—s0+ NQ)C’YQ HUHm H‘Dxﬁ 1/’”0*@ HZkJrIWHHu

2 1
+ Can 1912, 01Dl 65

3

(4.5.29) / X .
Lo (1= 351 1 0 1021 s

1
+ CSO ”nHSO,O H’DHCP wHy+k+1—so+N2,72 |77’k,u+1
1
+ 1R+ (,U, - 7&)050 Hn”SO,O H ’D$’ 2 wHM"!‘k"i‘l—SO'FNm’)Q ‘77|k+1,u—1 :
The estimate (4.5.29) for ¢ = 0 follows from the induction hypothesis, by applying (4.5.22)
with v replaced with Zy — 2. We shall estimate the other terms separately.

STEP 0: Preliminary

We shall need to estimate ||G(n)f — o |B(n)f — |D.| f||ng and ||V(n)f — aa:anﬂ-
We claim that, for any integer n in [0,s) — 5] and any o in ]3,s9 — 1 — k] with o ¢ N,

(4530) ”G(n)f - ‘DCE‘ an,a' + HB(W)f - ‘Dx’ an,o‘ + HV(U)f - 8:Ean,0'

< C(HT]Hn,U-‘r2> n,o+2 H|D"L’|% an,UJr%'

(The key point is that the right-hand side is at least quadratic; there is a loss of one derivative

since we estimate the ||-||,, ,-norm of A(n)f — A(0) f by means of the [-[|,, , ,-norm of f while

n,o+

A(n) — A(0) is of order 1, but this loss is harmless for our purposes.)
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To fix matters, we prove (4.5.30) for G(n)f — |Dx| f only. Write
IG)f = 1Dsl fllo = DN Z5(G@)f = Dl )] cosns-
k=0

Now Z* |D,| = |D,| (Z — 2)* so
ZNGW)S = 1Dal ) = (Z°G ) f = Gu)(Z = 2)F) + (G(n) — |Da)(Z — 2)" .
It follows from (4.3.36) that
HZkG(ﬁ)T/} - G)(Z - 2)k¢Hca < C(||77||k,a+1) H77Hk,a+1 H|D:c|% %Z)Hk,lﬁg
On the other hand (2.6.12) implies that, for any ¢ > 3 with o ¢ N,

(G ) = 1D [)(Z = 2)" f| ot
1
S C(||n||Co'+’nfk+2) HnHCoJrnfk:JrQ H’Dz|2 (Z - Q)kaCO'Jr’VL*IWF%'
Since
1 k 1
e snsse < gz [1Del* (Z =2 Fll pnsg < 110217 £l s
this completes the proof of (4.5.30).

We shall also use the following corollary of (4.3.32): let A(n) be one of the operators G(n),
B(n), V(n), then

1
[(A(n) = A0)¥y,, < Cso [0l 0 |1 D] w\k,,ﬁé

(4.5.31) )
+ Cso ||| D |2 ||

pk+1—s0+N2,v2 |T7|k,#+1 )
STEP 1: Estimate of F1.
To estimate F! we first claim that (4.5.22) implies that,
~ e
[Emv],, < Caa lnllcm [| 250
+ Cs HanO,O ‘w|k_1,“+1

+1r, (0 — 72)Cso HTIHSO,O W]’k,,u—l

T CSO HJHMka*SOJerﬁer% |77 k-

To prove this estimate, using (4.5.22) and the triangle inequality, it is sufficient to prove that
‘F(S2) (n)¢’ » is bounded by the right-hand side of the above inequality. This in turn follows
from (4.5.27) and (4.4.20) applied with (m,a,v) = (so — 2,2, u — 1).
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To estimate }]: ! we now apply the previous estimate with ¢ replaced with (Zn)B(n)y.

This yields

}K,,u

|E) (Zm)Bm))l,,,, < Coz 10l [|2°(Zn) Bn)w) |
+ Cso M550 |(Z77)B(77)¢"k—1,u+1
+ 1, (1 = 72)Cs0 10l 0 [(ZM) B,

- Cop 1(ZMBONE sy 3 |7

(4.5.32)

LT
To estimate the first term in the right-hand side of the above inequality we use the product
rule (4.4.23) with m =sy — 1, b =2, ( = Zn and F = B(n)1, we find that

[(Zn) Bk, S 1nlls.0 1By,

+1g, (k= s0+3) |BO)W] o | 25| 4y
+ HB(n)w”u—&-k‘—So-i—&O |n‘k,u+1

+1r, (0 +1 =) BVl 4b—so+3.0 175411 -
Now [B(n)¢|y,,, is estimated by means of Proposition 4.3.9. On the other hand,
NZDBE, s S 120k so s s IBOY ko nmasd
If 49 > N5 + 1 then
(4.5.33) wt+k+1—5g+No+v9 <s—s9g+Nog+72 <59+ No— 73 <s9— 1.

Therefore | Zn]], o1 Ny o2 < [17llg,,0- Moreover (4.5.33) implies that we can apply Propo-
o, . ’ 2 ’ .
sition 4.3.11 to bound |]B(77)¢||M+kiso+N27,Y2+% (and hence [|B(n)¥ll,1f—sy+30)- This com-

pletes the estimate of the first and last term in the right hand side of (4.5.32).

It remains to estimate the second and third terms in the right hand side of (4.5.32). Both
terms are estimated similarly and we consider the third one only. To estimate this term we
use the product rule (4.4.18) (instead of the product rule (4.4.23) used above) applied with
m = sg — 1. This yields

[(Z) Bl 1 S 120Msg—1,0 1BODY 1 + 1B gr—so11,0

S H77Hs0,0 ’B(n)Wk,ufl + HB(U)QﬁHHJrka(ﬁLO \n\kﬂ,uq :

Z77|k;,u—1

Then we use (4.3.35) (resp. (4.3.37)) to estimate the ||, , ;-norm (resp. ||| ;g 41,0-00TM)

of B(n)y.

We conclude that (4.5.29) holds for i = 1.

STEP 2: Estimate of F2.
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Write

—F? = |Du| TgnB0)Y + 0: (T2, V (n)9)

= UDJ;’ 7TZ77]B -+ Tazznv + TZn ‘Dﬂ B+ Tznazv

= [‘Dw’ 7TZ77] ‘Dac‘ Y+ TBzZnaﬂﬂ/f + ]?27
with

F? =Ty (|De| B(n)y + 0.V (n)¥)
+ [|Da| s Trn| (B(n)th — | Da| %) + T, z0(V (0)th — 8200).
Since |D,|* = —8?2, it follows from identity (A.1.22) that
U-Dac’ 7TZ77] ‘Dac‘ w + TBzZnaacw = ‘Dm‘ TZn |Dac‘ 1/} + 8ac(TZ7]8x¢) =0.

It remains to estimate F2 (which is equal to —F?2 in view of the above cancellation). The
estimates for B(n)y and V(n)y would be insufficient to control |D,| B(n)y + 0,V (n)y. We
remedy this by using the identity 0,V (n)y = —G(n)B(n)y (see (4.1.7)) and hence

|Dz| B(n)y + 0.V (n)y = [Dg| B(n)Y — G(n)B(n)y.
Therefore, we conclude that
~F =T+ F +F;
= —T2zy(G(n) = Dz B(n)% + [|Da| s Tzy] (B(n) — |Da| )b
+ To,z9(V(n) — O)1b.

These three terms are estimated by similar arguments.

Let us estimate 72 = —Tz,(G(n) — |Dg|)B(n). Set A(n)y = (G(n) — |Dg|)B(n). We shall
use a corollary of the estimate (4.4.24) whose statement is recalled here

|T<F‘K,V 5 HCHm,O |F|K—1,V+1 + 1R+ (m) HCHLoo HZKFHHV

FNF Ny k1,0 1€k —1,0
+1r, (v + K —m+1) [ Flles |25¢]] 2

+1r, (v +1=0) | F|cvir—mir HZKCHL2'
By using the obvious inequalities

<

1r, (m) 1<)l oo HZKF‘ v > HCHm,o ‘F‘K,w ’F’K—l,zx+1 < ’F|K,z/7

this yields
TeFl g, S NS0 [Fl

T4 —mt1,0 [€l k10
+1g, (v + K —m+1)||F| e HZKCHH
+ 1, (v + 1= 0) | Fllovr-min [|25¢]| -
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By applying this estimate with (K, v, m,b) replaced by (k, i1, so — 1,72), we then obtain that

‘}—3‘;&“ S ”Z77||s0—170 ‘A(U)Mk,u

+ 1k, (n+k—s0+2) AP e || 25 0] 11
NAM Y yh—sor2,0 [ZN1k—10

+1r, (b =72+ DIAMDl ugh—sor2.0 M1 -

(4.5.34)

Now it follows from (4.5.20) that

(APl < Clnllsg 0 1B+ CUBIDV i rsor 3y kg

and (4.3.37) and (4.3.35) imply that

1
HB(n)w”MkstJer,ﬂﬂ < C(HT/H;Hrkfso+N1,’yl+l) H‘Dw’Q wH,H.k—so—&—Nh%-&-%’

By, < CIDel? ]y s + D0, 0

kpu+1>

Therefore

1 1
(4535) ‘A(n)d}’k,y S C ”77”5070 HDiIJ’2 w‘k7u+% + CH|D$‘2 QZJHM_HC_SO_FN%A/Q ‘n‘k“u,+1 .

On the other hand, it follows from (4.5.30) that

|’A(77)77/)Hu+k750+2,0
(4.5.36) < NAM VN gk—so+2,00

1
= C(HnH#Jrkfso+2,Uo+2) HnH/th*SOJrQ,UoJrQ H ’D‘B| 2 w“u+k—so+2,cro+%

where the index o appears in the first inequality because (4.5.30) is proved only for o larger
than some number o( large enough. Now, by assumption on p we have y < s—k — 1 and
by assumption on (s,sy) we have s < 25y — 2y9. Thus, if v, is large enough (namely for
279 > 09+ 4) we have p+ k < s < 25) — 272 < 25p — 09 — 4 and hence

HnH,u,+kfso+2,Uo+2 S ||n”5070 .

Thus (4.5.36) implies that

1
(4537) ||A(n)w”u+k—so+270 S C HTIHSO,O “DI| 2 ¢H,u,+k+1*so+N2,72’

Setting (4.5.35) and (4.5.37) into (4.5.34), we obtain that ‘fg‘ku is estimated by the right-
hand side of (4.5.29).

STEP 3: Analysis of F3.
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Write

G(n)(nB) —=nGn)B = Gn)(n|De|¥) —=nG(n) |De| ¢ + J(n,n)(B(n)¢ — | Dzl ),
where recall that by definition J(n,n)f = G(n)(nf) —nG(n)f. Then
G(n)(nB(n)) —nG(n)B(n)y
- |D;r‘ (77 |D$‘ 1/}) + 778:%1/}

+(G() = [Du]) (0] Dz ) — 0(G(1) = |Dal) | Da v
+J(n,m)(B(n) = [Da|)¥,

where we used |D,|? = —82. By replacing V() by V(1)1 — 8,1 + 31, we conclude that
F3 satisfies

F?=2(G(n) — |De|) (nDg| 1) = 20(G(n) — |De|) [ Dl 1 + 2(8:m)(V () — 82)0)
+2J(n,n)(B(n) — |Dx|)¥,

The first three terms in the right-hand side above are estimated as F2 (except that we use

Proposition 4.3.9 for estimating products instead of using (4.4.19) for estimating paraprod-
ucts).

To estimate |J(n,n)(B(n) — [Daz|)¥[y ,,, we first use (4.5.1) to obtain that

[T (n,m)(B(n) = (D)l < Clinllg, 0 [(B() = [Pl

+CNBM) = [DeDYll s k—sor Moo 1Mgutr »

The term |(B(n) — [Dz|)4|y, , is estimated by means of (4.5.31). Now notice that 7o > 3 and
pw+k—s0+Ng<s—1—59+ Nyg < sp— 3 (also, up to replacing v9 by 70 + 9, § < 1, one
can assume without loss of generality that 79 € N). So, we can apply (4.5.30) to estimate
1(B(1) = D)Vl yt—s9+No o

STEP 4: Analysis of F for 4 < i < 6.
By definition
F' = = Da| Rs(B)t — |De| v, Z0) — DR (2, V () — 0u0).
So (4.5.29) for ¢ = 4 follows from the estimate (4.4.7) and the estimates (4.5.30) and (4.5.31).

Similarly, (4.5.29) for i = 5 follows from the estimate (4.4.8) and the estimates (4.5.30) and
(4.5.31).

Finally, it remains to estimate F°. We estimate |D,| Try(myv+2|Dx w1 a0nd Oz (TR, (n)p+20,47)
separately. To fix matters we consider the first term only (the second term is estimated
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similarly). One has to take care of the fact that Rp(n)i involves one Z-derivative acting
on 7. We thus use the sharp product estimate (4.4.19) with m = pu+k — sp + 2 to obtain that
|1 D] Ty myoripatvnly,, < [TRomys+210 1070
S IRV + 2| Dal Yl g —sor2,0 1Mk—1 2

+ 17llsy.0 [ BBM)Y 4+ 2|Da| ¢l _q

+ [ RBM)Y + 21Dzl ] o || 2]

+ g, (50 = 1= 2) [nllguss [| 25 (BB ()% + 2D ) | -
It follows from the definition (4.2.3) of Rp(n)y and the definition (4.1.1) of Rg(n)y that

Re(my+2 Dyl =1+ 11+ 111
I= _2(G(77) - |Da:| )?/)

2 /
11 = oy (G By = (V()e)
II] = —1:17,2 (0(V(m))) = 1/ 0x(B(n)v)) Zn.

All the terms in the right hand side are quadratic and can be estimated as above; let us
mention that we do not need to use the fact that [G(n),n|B(n)¢ is a commutator (it is
sufficient to estimate G(n)(nB(n)y) and nG(n)B(n)y separately) and that

1] —s0+2,0 is estimated by (4.5.30)

I\ k—spr200 HII|| s p—goi20 @are estimated by (4.3.37) and (4.3.15)

k10 is estimated by (4.5.31)

1|, 1o, Il g, ||Z"11]|,, are estimated by (4.3.35), (4.4.18), (4.3.37)

1l ;oo is estimated by (2.6.12)

NIl joo, IMIT||} e is estimated by (2.0.4)

HZkIHB is estimated by (4.3.32)

|ZF111],, is estimated by (4.4.23) with ¢ = Zn), (4.3.35), (4.3.37).
Then (4.5.29) for ¢ = 6 follows from arguments similar to the observations made above
(4.4.23). This completes the proof. O
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Chapter 5

Energy estimates for the Z-field
system

Combining the results obtained so far, we prove in this chapter the Sobolev estimates for the
action of the Z-vector field on the solution we are looking for.

5.1 Notations

We start by recalling or fixing some notations.

We fix real numbers a and v with
1
(In particular, we assume that v is large relatively to the fixed positive constants ~5, Na given
by Proposition 4.5.4). Given these two numbers, we fix three integers s, sg, s; in N such that
S
s—azslzsozi—&-'y.

We also fix an integer p larger than sy. Our goal is to estimate the norm

S1

(5.1.1) MED () = Z(Hzpn(t)(

p=0

oo+ 12l 2700,

assuming some control of the Hélder norms

1D21% $(t)]| o + 1)l

and
S0

N0 =3 (1200 o + 11021 2200,

p=0
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We want to prove the following theorem.

Theorem 5.1.1. There is a constant By > 0 and for any constants By, > 0, B._ > 0, there
is g0 such that the following holds: Let T > Ty be a number such that equation (1.2.1) with
Cauchy data satisfying (1.2.9) has a solution satisfying the reqularity properties of Proposi-
tion 1.2.1 on [Ty, T] x R and such that

i) For any t € [Ty, T, and any ¢ €]0, 0],

(5.1.2) 1D21Z (8] o + IN(®) | < Booet™ 2.

i1) For any t € [To,T[, any € €]0, &)
(5.1.3) NEO(t) < Boet ™28

Then, there is an increasing sequence (O )o<k<s, depending only on BL_ and e with ds, < 1/32
such that for any t in [Ty, T, any € in |0, 0], any k < s1,

(5.1.4) M () < %Bﬂék.

S

Remark. This is Theorem 1.2.2 except that we replaced (1.2.10) by (5.1.2), which we can
freely do replacing v by v + %

Proof of Theorem 5.1.1. We fix an integer § such that

(5.1.5) vy —1>pB>4,

where 7} is a fixed large enough positive number given by Proposition 4.5.4. Since we assumed
that ~y is large relatively to 75, we can assume that v —4 > 3. Moreover, since s —s; > a > 7,
this yields that 8 < s — s;. Introduce the set

(5.1.6) P={(a,n) eNxN;0<n<s;, 0<a<s—n-—p}.

For any (a,n) in P we set

GAD Vi = 10227 s + 102 0227 o + [1D1E 02270,y
Since
k 1 1
> Yamw = 212l e+ N1Dal? 2] o+ 11D2 12 270y |
0<n<k n=0
0<a<s—n—p
we have
(5.1.8) MP < N Vi)
0<n<k
0<a<s—n—p



We shall proceed by induction. This requires to introduce a bijective map, denoted by A,
from P to {0,1,...,#P — 1}. For (a,n) € P, we set

n—1

Aa,n) =) (s+1—-B-p)+a,

p=0

with the convention that Z;zlo(s +1—038—p) =0 so that A(a,0) = a. Then we define the
following order on P:

(a/,n) < (a,n) & Ald/,n) < Ala, n).
So, there holds (o/,n’) < (a,n) if and only if either n’ < n or [0’ =n and o/ < a].
Given an integer K in {0,...,#P — 1} we set

Pr ={(a,n) e Nx N; Ala,n) < K}.
We also set P_; = () and we introduce, for K in {0, ..., #P},

(5.1.9) Mg:= > Y,

(a’,n’)E'PK,1
where, by convention, Mg = 0.

We use the forthcoming Corollary 5.2.2 that will be established in the next section. Since
assumption (5.1.3) shows that Néso)(t) stays uniformly bounded by 1 is € is small enough,
inequality (5.2.8) shows that

Miia(t) < Ck [M§Sl)(To) + (1 + Nk (1)) Mk(t)

t
(5.1.10) ]l M (¢ dt
0

o N ()2 Mg () dt’]

To

for some constant Cg. In the definition (5.2.5) of Nk, we shall relate v to the size £ of the
Cauchy data by v = y/e. We shall construct inductively an increasing sequence of constants
(B2,k )k and of small exponents (0 )i such that for any t in [Tp, 7]

(5.1.11) M (t) < eBa getx.

Since Mo = 0 by assumption, we may take By = 0, ;5\0 = 0. Assume that the estimate has
been obtained at rank K. This induction assumption, together with (5.1.3) implies that

(5.1.12) Nk (t) < e|Buo + lEK(V) ¢zt ()
14

177



where, if £ is small enough so that B/ g% < %, we may take

By (v) = BBy i
(5.1.13) 5 L, .
Vi (e, v) = 3 + (1 —v)B, e+ vik.

Our choice v = /¢ implies in particular that, by (5.1.12), Nk (t) is uniformly bounded so
that (5.1.10) may be rewritten, up to a modification of Cx, and making use of (5.1.2),

Miyii(t) < Ok [MSFSH(TD) + Mg(t)
t dt/
+&% [ Mgut)—
Ty t

t
[ Ne()2Mg () dt’} :
To

Using Gronwall inequality for a non decreasing function a(-) under the form

t

y(t) <al) + [ BEy(r)dr = () Sa(t)GXp< 8(r) dr)
To To

we get

MK+1(t)§CK[Ms(Sl)(TO)+ sup My (t)
To<t'<t
(5.1.14)

t
+ [ N2 Mg (t')dt' |10
To

We may take a large enough constant A so that Ms(sl)(To) < Ae since the Cauchy data are
O(e). Using the induction assumption (5.1.11), we deduce from (5.1.14) and (5.1.12)

M i1(t) < eCxte"Ox [A + Bz,thK
(5.1.15)

1R 2 N
+ 32 ng (BOO + ;BK(Z/)) t2’yK(s,V)+5K] )

2k (e,v) + ZS\K

Our choice v = /2 implies that vk (¢, v) given by (5.1.13) is bounded from below by 3/, so
that the last coefficient in the above inequality is uniformly bounded.

We find a new constant Bs 11 > B i such that

(5.1.16) Mpgia(t) < €B2’K+1th+1

if we define
Ok+1 = 27K (e,v) + 0k + 2Ck.
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The expression (5.1.13) of vy shows that SK41 = O(v/€). We have obtained the bound
(5.1.11) at rank K + 1.

To finish the proof of Theorem 5.1.1, we are left with deducing from the above estimates
inequality (5.1.4). For k < s1, we define K = A(s—k—5,k), 6 = 8k+1. Then by (5.1.8) and
(5.1.9), Ms(k)(t) < Mpgy1(t). Estimate (5.1.4) thus follows from (5.1.16) if we take Bs larger
than 2By gy for any K < #P — 1. Notice that this constant is independent of By, Bl
if € is small enough: actually the only dependence of By i1 on By could come only from

the coefficient of ¢27x (G#)F3x in the right hand side of (5.1.15). But taking € small enough in
function of By, we may assume that this coefficient is smaller than a power of By i. This
concludes the proof of the theorem, assuming that Corollary 5.2.2 holds. The rest of this
chapter will be devoted to the proof of that corollary (actually of the proposition that will
imply it) using a normal forms method. O

5.2 Normal form for the Z-systems

From now on, we fix K in {0,...,#P — 1} and denote by («,n) is the unique couple in P
such that A(a,n) = K. Then by the definition (5.1.9)

(521) MK—H = Y(a,n) + Mk

We keep the notations introduced in section 3.2. In particular,

1 1 T
u = uz = T]l , U= U2 = e \/E*ln 5
u D |2 9 U |Dz|? w

where a is the Taylor coefficient given by (3.1.5).

As already mentioned in the remark made after the statement of Assumption 3.1.1, it follows
from the assumptions of Theorem 5.1.1 that, if € is small enough, then the condition (1.1.17)
is satisfied uniformly in time. The other smallness conditions which appear in the previous
chapters are trivially satisfied under the only assumption (5.1.2): namely, the smallness con-
dition in Assumption 3.1.5 which insures that the Taylor coefficient is bounded from below
by 1/2 and the smallness condition that ||n/||z~ is small enough which was used to justify the
identity (4.1.1) as well as its corollaries. Thus we may apply the previous results.

Proposition 5.2.1. There exists a function ® of the form

(5.2.2) =7+ D> D DY Eunsman (05 2 0)03 Z™U

0<ni+n2<n, 0<aitaz<a

where En noaia, are bilinear operators, explicitly defined in the proof, such that the following
properties hold
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i) ® satisfies an equation of the form
(5.2.3) h® + DP+ L(u)® + C(u)® =T,
where L(u) and T satisfy the following properties:

o (v,f) = L(v)f is a bilinear mapping well defined for any (v, f) in C*(R) x H?(R) with
values in HP~1(R). Moreover, for any v in C*(R), L(v) satisfies Re(L(v)f, f) oy = 0 for
any f € HAH(R).

o ' is a cubic term satisfying the following property: there exists a non decreasing function
Cx such that, for any v €]0,1],

(5.2 10 s < Colllullen) 1l Yiam) + CreNa AN M,
where

1 -y v
(5.2.5) Nk = N + ;(Np(SO))l (Mi)".

it) There exists ko > 0 and a non decreasing function Ck(-) such that, if ||ul|oy < Ko then

Yiam) < 5@l s + Cx (NE) (1 + N ) M,

(5.2.6)
12 o < 2¥(an) + Cic (NS )N M.

There exist kg > 0 and Ky > 0 such that if N,SSO)(TO) < kg then
(5.2.7) 10l (To) < KoME(Ty).

Let us deduce from the above estimates the inequality that has been used in the previous
section to prove Theorem 5.1.1.

Corollary 5.2.2. Under the assumptions of the proposition, for any K =0,...,#P —1 there
is a non-decreasing function Ck(-) such that for any v in ]0,1], any t in [Ty, T,

M1 (t) < BEoME) (Th) + Cre (NSO (1)) (1 + N () Mk (t)
(5.2 [ ) [t ), Micoatt)

+ / t Cr (NFO(t)) Nk (¢')° Mg () dt!

To

(setting No =0, Mo =0 when K =0).

Proof. By assumption Re(D® + L(u)®,®) s, s = 0. Moreover, by Lemma A.4.6 in Ap-
pendix A.4,
Re(C(w)@, @) o < Collluller ) llullés 121175 -
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We may therefore compute % |®(t,-)|| 35 using (5.2.3) and conclude, integrating the resulting
expression from 7Ty to t, that

t
190t < N T, Mo + [ Col e, ) e e 100

b [ IRl e o

We deduce from this inequality

t
1@(t, M gs < 12(To, ) s +/T Co( [|ut', )| o ) [t e |2 )]] o
(5.2.9) ’

/

t
HI‘(t’, ')”Hﬁ dt

By (5.2.4)and the bound Y, ) < M1 provided by (5.2.1), we get

I < Col e N ) ) oy M€
+ CK(NK( /))NK(t/)2MK(t’).
If follows from the inequalities (5.2.6) and from (5.2.1) that
Micir1(t) < 511D, s + Cre (NS (1)) (1 + N (1)) M (1),
H(I)(t/7 )HHB < 2MK+1(t/) + Ck (Néso)(t/))NK(t/)MK(t/)

for new values of Ck(-). We bound in the first inequality above || ®(t,-)|| ;s from (5.2.9),
where we control in the right hand side ||®(¢', )| ys and |[|[T'(',-)|| ;s using the estimates just
obtained. We get

Mgs1(t) < 5[1®(To, )l s + Cre (NS (1)) (1 + Nic () Mk (2)

+ el i) e o, Moo )

(using that ||ul|, may be estimated from N, and changing again the value of the constants).
Combining this and (5.2.7), we get (5.2.8). O

We now have to prove Proposition 5.2.1. Let us describe the strategy of the proof. The proof
is divided into four steps. We first write the equation for 0% Z"U under the form

(5.2.10) (0 + D+ Qu) + S(u) + C(u)0eZ"U =G + F,
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where G is a cubic term, F is a quadratic term and where Q(u), S(u) and C(u) are as defined
in Section 3.2. As a preparation for the next step, we rewrite this equation under the form

(5.2.11) (O + D+ Q(u) + S*(u) + 25" (u) + C(u)) 9 Z2"U = G' + F,

where, again, G’ is a cubic term, F” is a quadratic term and where S*(u) and S°(u) are as
defined in (3.5.9), so that S(u) = S*(u) + S°(u). The main difference between the quadratic
terms F (which appears in (5.2.10)) and F” (which appears in (5.2.11)) is that we shall show
in the second step that one can eliminate F” by a bilinear normal form which produces cubic
terms satisfying (5.2.4)—whereas eliminating F would produce a cubic term whose L?-norm
is estimated by

Clllull ) (lull g + 1Hullcs)? 105 Z2MU| 2 + C(NKNE M.

In the third step we follow the strategy already explained in §3.3. We shall prove that one
can add a quadratic term in the equation which compensates for the most singular quadratic
term. Eventually, in the fourth step we estimate various terms.

Proof. The proof is divided into four steps. Let us mention that, for this proof, we write
simply C(-) instead of Ck(-).

STEP 1: Equation for 03 Z"U
Using the notations of §3.2 for the operators Q(u), S(u) and C(u), we have
0U + DU + Q(u)U + S(u)U + C(u)U = G,

where G = (G, G?) is given by (see (3.2.9))
G' = (Id+To)F(n) — F(gz) (M + Tata_aacv+%ag¢77
1
(5.2.12) + {—TQTQZV + TVTQIO/U + [TV, Ta] - §T|Dz|%u2Ta}777

+ |D$’ RB(|D$| ¢7 Toﬂ?) =+ aﬂvRB(a’va Tan)v

and
G* = ID,|} (3Rs(B.B) ~ SRs(1D] :1Da] )
Eg 9 ) 9 x ) T
11 1
— 1Dl (5R5(V,V) = S Ri(00,0,) )
(5.2.13)

1
+ D, |2 (TvTo,n — Tva,n) B+ (Tva,8 — TvTo,B)n)
+ D4|2 Ty Re(B, 0,1) — | Dal? Re(B, Vun)

1
+ |D:Jc|2 (TaTa - Ta2)77,
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where we still denote by « the coefficient \/a — 1 where a is the Taylor coefficient.
To compute the equations satisfied by Z™U we use two calculus results. Firstly,
(5.2.14) 20y =072 -0, ZD=DZ—-D,

and secondly, given A(v) = OpP[v', A'] + OpP[v?, A?] for some matrix-valued symbol A', A2
in some class S,"7 we have (see (3.4.13))

ZAW)f =AW)Zf+ A(Zv)f+ A (v)f

where A'(v)f = OpB[v!, A f + OpB[v?, A 2] with A" = —2¢ . VeA" for r = 1,2. Notice
that A1, A2 belong to S)"7 if A', A% belongs to Si*7.

In particular it follows from (3.6.3) that
Z2Q(u) = Q(Zu) + Q) Z + Q'(u)  where Q'(u) = Op°[v,Q"], @ € Sy},

Similarly, ZS(u) = S(Zu) + S(u)Z + S'(u) where S'(u) = OpP[u, R'] with R’ = —2¢ - V(R
where R (resp. R') is given by (5.2.35) below with £ =0 (resp. £ = 1).

Consequently, by induction on n € N, we have
(5.2.15) oZ"U +DZ"U + Q(u)Z"U + S(u)Z"U + C(u) Z"U = G(ny + F(n),
where F{,,y (resp. G(y)) is a quadratic (resp. cubic) term defined by induction:

Gy = 2Gn-1) + Cu-1)
+ C(uw)Z"U — ZC(u)Z™" U — C(u) 2",
(5.2.16) Flpy = ZF 1)+ Flu_1y — Q(Zu) 2" 'U
—Qu)Z" WU - Q' (w)Zz" U
— S8(Zu)Z" U - S(u)Z" U — S (u) 2",

with, by definition, G ) = G and Fg) = 0.

Observe that one can write F,) under the form

F(n) = Z m(i)Q(”3) (Zmu)anU + Z m(i)S(n3) (anu)anU
i€l(n) I(n)

where m(i) € N and where we used the following notations :
I(n) = {z = (n1,n9,n3) € N%: ny 4+ ng +n3 <nand ng < n},
and Q") and S("3) are defined by
Q") (v) = OpPlt, QoM + OpB[e?, Q)2],
S(”3)(v) = OpB[vl, R("3)’1] + OpB[vz, R("3)’2],
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where for A= Q or A= R, and for k = 1,2, A"3)* is defined by induction:

A(O)’k _ Ak, A(a—l—l),k _ _25 . VfA(a)’k.

Applying 9% to (5.2.15) we conclude that
(5.2.17) (0 + D+ Q(u) + S(u) + C(u) 02 Z"U = G + F,
where F (resp. G) is a quadratic (resp. cubic) term defined by

G :=07G) +C(u)0; Z"U — 0;C(u)Z"U,

(5.2.18) F = 82 Flny + Q)2 Z™U — 32Q(w) Z"U
+ S(w)d2 2" — 8%S(u) Z"U.

Observe that one can write F under the form
F =Y m(j)Q")(0 zmu)oe> 2" U
JjeJ

+ > m(5)S") (08 2 u)0g2 2mU
JjeJ

(5.2.19)

where m(j) € N and J is the set of those (a1, ag,n1,n2,n3) € N° such that

(5.2.20) ol +as=a, ni+ny+nz3<n, as+ne <a+n.

There are two terms in the right hand side of (5.2.19) which involve 0% Z"u. Namely, when
(a1, a9,n1,n9,n3) = (0, 0,1n,0,0) we have

Q") (991 ZMu) 922 2" U = Q(92 Z"u)U,
Sa) (991 ZMu)922 22U = S(92 Z™u)U.

We shall see that one cannot eliminate these quadratic terms by the same method. So we
need to transform further the equation.

Notice that if j = (a1, a2,n1,n2,n3) = (@,0,n,0,0) then the coefficient m(j) in (5.2.19) is
equal to —1. Thus we may rewrite the equation (5.2.17) as

(5.2.21) (0 + D+ Q(u) + S(u) + C(u) 03 Z"U + S(93 Z"u)U = G + F/,
where

F =Y m(j)Q") (05 2" u)03 2" U
jeJ
+ > m(5)ST) (98 Zmru)0g 2mU
JjeJ’
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where m(j) € N and
(5.2.22) J ={(aq,a2,n1,n9,m3) € J;01+n <a+n}.
Eventually, we split S(u) as S(u) = S*(u)+5°(u) where these operators are defined by (3.5.9).
Since S°(v)f = S°(f)v, we have

S(w)d2Z"U + S(9%Z™u)U = S*(u)dSZ"U + S*(9% Z™u)U

+ S(w)d2Z"U + S°(U)d% Z™u.

Now we write the second and last terms in the right hand side above as

SHACZ MU = SH02Z"U)u + (SHO2Z™u)U — S (93 Z™U)u),

S (V)03 2™ = S (u)03 Z"U + (S*(U)9g Z™u — S’ (w)dg Z™U),
to obtain that
(5.2.23) (3 + D + Q(u) + S*(u) + 28 (u) + C(u))d2Z"U = G' + F"
where

G =G — (8403 Z™u)U — S*(05Z2"U)u)

(5.2.24) — (" (V)32 Z"u — S”(w) 02 Z"U),
F''=F — §40%Z2"U)u.

Hereafter, we use the notation

(5.2.25) N(u) = Q(u) + S*(u) + 25 (u) + C(u).
Then (5.2.23) reads

(5.2.26) (0 + D+ N(u)oszZ"U =G + F".
For further references, let us prove that, for any u € R,

(5.2.27) IN ()l gegmsr pmy < Cllullgr) uller -

Indeed, directly from the definition (3.2.7) (resp. (3.2.6)) for Q(u) (resp. C'(u)), and using the
rule (A.1.5), the estimates (3.1.4) for |V||0 and (3.1.20) for ||a||q0, we check that

1(Q(u) + Cu))wl g < K |ull g [l ot

provided that v is large enough. On the other hand, directly from the definition (3.5.9) of
S*(u) and S°(u), it follows from (A.1.17) that, for any p ¢ iN and any p € R such that
p+p>1,

(5.2.28) [(S%(w) + 28" (W)w|| s, < K [[ll [[w]

H#Jr% .

185



This proves (5.2.27). Similarly, for any positive real number p with p ¢ %N , we have

(5.2.29) ”N(U)HL(CM%’CP) < Cllullgy) llull v -
STEP 2: First normal form

We next seek a nonlinear change of unknown which removes the quadratic term F” in the
right-hand side of (5.2.26). To do so, we shall prove that for any ¢ € N there exist bilinear
transforms (v, f) — Pe(v) f and (v, f) — Re(v)f such that

DP(v)f = Po(Dv)f + Pe(v) Df + Q) (v)f,

DRy(v)f =Re(Dv)f + Re(v)Df + 59 (v)f.

We begin by studying the operators Q) (v)f and S © (v)f. For further references, we state
the following lemma.

Lemma 5.2.3. Let £ € N. For all p € R and all p € [4,+00] there exists a constant K such
that

(5.2.30) 1Q W) fl s < K l[vlla 1 F Il gz
(5.2:31) 10O F[0s < K 6] 1 Fllco
(5.2.32) SO @) |l gsa < B N0l 11 e
(5.2.33) 1S |l oz < K lvllg2 1o »

whenever these terms are well-defined.

Proof. For £ = 0 we have Q) (v)f = Q(v)f and the estimates (5.2.30)(5.2.31) follow from
the definition of Q(v)f (see (3.2.7)), the usual estimates for paraproducts (see (A.1.12) and
(A.1.20)) and the Holder estimates (A.2.3) and (A.2.4) proved in Appendix A.2.

2 l
For ¢ > 0, introduce 6 = (1 + gf . Vg) 0 where 6 is given by Definition A.1.2. We claim
that Q) (v) = Op? [vl,Q(Z)’l] + Op?® [UQ,Q(Z)Q} with

0.1 _ (3¢ e 90 7 o !€2|§> ’
Q (=3)"5 1] 07 (&1, &2) (_ Gralt o
(5.2.34)

Q92 = (3felal 00 6 0 Yoo
0 — 61+ &2l & 6|72

For ¢ = 0 this is true by definition of the symbols Q! and Q? as defined in (3.6.3). For £ > 0
this is proved by induction, since QU+1):F = —2§-V§Q(Z)’k for k = 1,2. It follows from (5.2.34)
that Q) (v) is a paradifferential operator of exactly the same form as Q(v), except that the
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cut-off function 6 is replaced with ). Since () is an admissible cut-off function (satisfying
similar assumptions to those imposed on 6, see Remark A.1.4), then QW (v)f satisfies the
same estimates as Q(v)f does. This proves (5.2.30)—(5.2.31).

The estimates (5.2.32)—(5.2.33)are proved by using similar arguments. Indeed, it follows from
(3.5.18), (3.5.9), and (3.5.30) that

where

m{Q? = (=3)¢O(&1,6) 161172 (|6 + &l [&1] - (61 + £)8)

(5.2.35) 02 avind) 1 1 11
mi)? = (=3)¢O(e &~ 16 + &I (16l &] + &) Il 72 16l ),

with ¢ = (1 n gg : vf)gg where C(€1, &) = 1—0(€1, &) —0(&s, £1). Notice that ¢O(&;, &) =

1— 00 (&, &) — 0O (&, &). Since A is an admissible cut-off function, we are in position to
apply the usual estimates for the remainders (see (A.1.17)). O

Next we notice that, for any ¢ € N, it follows from Proposition 3.5.1 and the structure of Q(®)
given in (5.2.34) that there exists a pair of matrix-valued symbols P, = (P}, P?) € Sé’o X Sé’o
such that, for all v = (v!,v%) € CP N L3(R) (with p large enough)

(5.2.36) Py(v) = OpB[vt, P} 4+ OpP[v?, P
satisfies
(5.2.37) DPy(v) = Py(Dv) + Pe(v)D + QY (v).

We gather the properties satisfied by Py(v) in the next lemma.
Lemma 5.2.4. Let ¢ € N.

i) Let p be a given real number. There exists K > 0 such that, for any scalar function
w € C*(R), any v = (v',v?) € C® N L3(R) and any f = (f', ) € H*(R), any v €)0, 1],

1 -V v
(5.2.38) |Tola, Pe)] Fllggn < K wllen {Iolles + 5 IollEs" 012 f 11

where I, = (}§9).

ii) Let pu be a given real number. There exists K > 0 such that, for any v = (v}, v?) in
CANL2R) and any f = (f', f?) in H*(R), any v €]0,1],

1 -V v
(5.2:39) [Pe)f [l ger < E{ W0l + 4 oG Hollza 1o
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iii) Let p € [3/2,400[. There exists K > 0 such that, for any v = (v,v?) in L?(R) and any
f=(f', %) in C*(R),

(5.2.40) [Pe()fIl -3 < KNl fllge V]l 2 -

Proof. We recall that Py(v) is given by (5.2.36) where P} and P}? belong to 5’3’0. It follows
from Lemma 3.4.6 that P,(v) is a paradifferential operator of order 1, modulo a smoothing
operator, whose symbol has semi-norms estimated by means of statement ¢) in Lemma 3.4.5.
The assertions in statements i) and i) thus follow from Theorem A.1.7. We shall give another
proof of these results which will also prove statement 7).

Let us introduce a class of symbols. Given (j1, jo, j3) € R?, one denotes by Sy(j1, j2,73) the
class of scalar symbols m(¢1, &2), C™ for (&1, &2) in (R\{0}) x R which are linear combinations
of symbols of the form

p1(E1)pa(E2)p3(€r + &2)00 (€1, &)

2 ¢ .
with 6 = (1 + §§ . Vg) 6 where 0 is given by Definition A.1.2, and p,(A§) = Mrp, (&) for
all € {1,2,3}, all A > 0 and all £ # 0.

Given two functions a = a(z) and b = b(z), one denotes by Tg)b the paraproduct given by
replacing the cut-off function # by #() in the definition (A.1.3) of Tub. If m € S¢(j1, 2, j3)

then
1

(2r)?

/ e ETERIG (€ )m (&1, £2)b(€2) d€1 d€a = pa(D2) T\ o P2(Da)b.
By virtue of the support properties of #(), we have

{4 ~ ¢
p3(D) T p2(Da) [ = pis( D) T

byl (Da)f,

where p2(€) and p3(§) vanish on a neighborhood of £ = 0 and are equal to pa(§) and ps3(§),
respectively, for |£| large enough. Consequently, it follows from (A.1.20) that, to prove state-
ment iii) of the lemma, it is sufficient to prove that the matrices P} = (af}1)1§¢7j§2 and
P} = (aff)lgmgg are such that, for all (4,7, k) € {1,2}3, the coefficient afj’-k belongs to some
class Sy(j1, j2, 73) with j1 > 0 and jo+j3 < 1 (the values of j1, jo, j3 might depend on (3, j, k)).

Consider the symbols Q! and Q)2 as defined in (5.2.34). They are of the form

o 0 mhl " mt2 0
Q( b= 2,1 012 ) Q( )2 = 011 2,2
Moy Moo

where, for any (4, , k) € {1,2}3,

1

. . o3
3 J2=0, 7320, j1i+j+i3=73.

(5.2.41) mi’ € Sy(jr, g2, js)  with ji > 5
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ij (resp. ae k) The symbols aU are

determined explicitly in the proof of Proposition 3.5.1: We have a%l =aly,=ay =a3, =0

Below we write simply mf] (resp. afj) instead of m

and
2 5 1 9 1 1 1 2
a1 = 5(|§1 + &]2miy — |€1]2 mayy + [&2]? m3,)
2 1 1 1 1 1
+ 5 lal? [&]7 (16 + GfZmiy + [&]? m3, — [&]? may),
1 0 11
(gg = *(|§1 +52\2m12 + |§1|2 m3y — &2 m21)
(5.2.42) L2 L L
|§1|2 &]2 (11 + &|rmdy — |61]2 mb, + |Gl m3y),
1
ajy = —7(]§1|2a22 + ]§2|2a21 + m22)
&1 f2|2
1 1 1
aj; = 7;(‘51’“‘%1 + &2 a3y — m%l)
&1 + &2
Recall also that
€152>0 = 6=0 and D:—4’€1H§2’,

§1&2<0and [&] < || = d=-2[&4] and D= —4[][& + &l

Denote by 14 the indicator function of the set A. Then

1) 1
) 1))
Dt9 1{§1£2<0}2|£1+€2|9 )
1 1
21&112 [&2]2 11 1 62
SISLI7 18217 p(f) — _ = - +1 _18217 O,
D 2|£1|§( {€1&>0 T 1 |£2| {€162<0} &1 +§2|)
Since
1 1 . . 1 . .
Loy = 5 + 5 S8(6) SiEn(©2),  Ligigpany = 5 — 5 SiEn(r) sian(),

and since sign is homogeneous of order 0, it follows that

|f1| |§2|2

%9“) € 54(0,0,—1), € Sy(—1/2,-1/2,0) + Sp(—1/2,1/2,-1).

Consequently, it follows from (5.2.41) and (5.2.42) that afj is a sum of terms which belong
to classes S¢(j1,72,73) with ji + jo +j3 = 3/2 —1/2 = 1 and j; > 0. This concludes the
proof. O

Lemma 5.2.5. For any ¢ € N there exist two matriz-valued symbols RZ’RK mn SRB/ such
that, for all v € C* N L%(R)

Re(v) = Op®[v', R}] + Op®[v?, R7]
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satisfies
(5.2.43) DRy(v) = Re(Dv) + Re(v)D + SO (v),

and such that the following estimates hold.

i) For all (u,p) € R x Ry such that i+ p > 1 and p ¢ 3N, there exists a positive constant K
such that, for any v = (v',v?) € C? N L3(R) and any f = (f*, f?) € H*(R),

(5.2.44) [Re() f|| prusos < (vl + 1H0ll o) 11l -

i1) For all (p,p) € R x Ry such that w+p > 1 and p & %N, there exists a positive constant
K such that, for any v = (v',v?) € HX(R) and any f = (f', f2) € C*(R) N L?(R),
(5.2.45) [Re@) || s < K Fllco + IHLllco) 0] -

Remark. We shall use later that (see (A.2.6)) for any p ¢ N, there exists K > 0 and for any
v>0,any veCPnL?

1 4
(5.2.46) 1#ollcr < K [ Ivllen + 3 olle” lol7s ).

Proof. For £ = 0 we have SO (v) f = S(v) f and hence Ro(v)f = Ef(v)f+ E’(v)f with the op-
erators given by Proposition 3.5.2. The asserted estimates thus follow from Proposition 3.5.2.

For ¢ > 0, we have seen in (5.2.35) that the symbols of S(©)(v) are obtained from the symbols
of S(v) by replacing 6 with #() (and multiplying by (—3)¢). Therefore, R} and R? are deduced
from R} := R®' + R*! and R? := R*»? + R"? (which are given by (3.5.19) and (3.5.31)) by
the same modifications. Since () is an admissible cut-off function (see Remark A.1.4), this
shows that R,(v)f satisfies the same estimates as Ro(v)f does. O

We shall use also the operator E*(v) introduced in Proposition 3.5.2. satisfying

(5.2.47) E*(Dv) + E*(v)D — DE*(v) = S¥(v)
and
(5.2.48) 1B ) f | givor < KM F e 0] g

for any (u1,p) € R x Ry such that g+ p >1and p € 3N.

Then (5.2.37), (5.2.43), and (5.2.47) imply that
8t+D (Zm n3 3G1Zn1 )8?2ZH2U>
+ (0 + D) (Zm Ry (021 Z™My )8§2Z7L2U>
+ (& + D) (B2 2")U) = F' + R
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where F” is as given by (5.2.24) and

R: Z () Pry ((8; + D)O Z™u) 922 22U
+ Z M(§) Py (091 2™ ) ((8; + D)3 Z"2U)
(5.2.49) + Z m(j ((0 + D)o Z™ )02 2" U
+ Z M (§) Ry (981 Z™M ) ((8; + D)OS2Z™2U )
+ Eﬁ((at + D)% Z"u)U + E*(9% Z™u)(0,U + DU).

This implies that

$:=9°2"U — Zm Pry (091 Z™M0)002 22U
(5.2.50) —Zm Rons (001 Z™M )02 22U

- Eﬂ(agznu)U

satisfies
0® + D® = 9,00 72"U + DOYZ"U — F" — R.

Therefore, (5.2.26) implies that
(5.2.51) (3 + D+ N(u))® =T,
where N (u) is given by (5.2.25) and

(5.2.52) I'=¢ —R+Nu)(®—a22"U).

We shall estimate I in the last step of the proof. This is the most technical part of the proof.
STEP 3: Second normal form

We start with the following result, which is analogous to Lemma 3.6.2.

Lemma 5.2.6. There exist A}, A3 in 59’1/2 such that, for allv € C3 N L?(R) the operator
E4,(v) = OpBvt, A}] 4+ OpB[v?, A3] satisfies

(5.2.53) DE4,(v) = Eay(Dv) + E4,(v)D + B(v),
where the operator B(v) satisfies B(v) = B(v)* and
(5.2.54) Re(Q(v)f = B()f, f)uoxms =0
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for any f € HP(R)?2, and such that the following properties hold.

i) Let p be a given real number. There exists K > 0 such that, for any scalar function
w € C*(R), any v = (v',v?) € C3 N L2(R) and any f = (f!, ) € H*(R),

(5.2.55) 1Tz Eag ()] fllguer < K [wlion [vllcs [ 1]
where I = (§9).

ii) Let p be a given real number. There exists K > 0 such that, for any v = (v',v?) €
C3 A L(R) and any f = (', f2) € H(R),

(5.2.56) [Eag () || g < K N[0l [1F ] e

Proof. This is Lemma 3.6.2 applied with s replaced by f. O

Consider now the operator Eg(v) and E%(v) as given by Proposition 3.5.3. It follows from
this proposition that

E%(Dv) + E5(v)D — DE}(v) = &*(v),
(5.2.57)
E%(Dv) + E}(v)D — DE}(v) = & (v),

where & and &° are such that
(5.2.58) Re(S*(v)f — &) f, [ o xus = 0,
(5'2'59) Re<5b(v)f - 6b(v)f> f>Hﬁ><H3 =0,

for any f € HP(R)?, and satisfies

HGﬁ(v)HL(Hu7Hu+p—l) S K HUHCP )
(5.2.60)

Heb(v)HL(Hu7Hu+p—l) S K HUHCP .

Moreover, for all (u,p) € R x R4 such that p+p > 1 and p ¢ %N, there exists a positive
constant K such that

IEL@) F]| yusos < K 0l o 11

(5.2.61)
1300l s < K ol 1

Set
E(v) = Ex,(v) — Ef(v) — 2E(v).

Then (5.2.53) and (5.2.57) imply that
(5.2.62) DE(v) — E(Dv) — E(v)D = B(v) + &*(v) + 26 (v).
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Moreover (5.2.56) and (5.2.61) imply that

(5.2.63) IE@) 2epm mmy < K [[vlles -
Now set
(5.2.64) ® =d+ E(u)dSZ"U.

It follows from (5.2.62) that
(8; + D)® = (8; + D)®
(5.2.65) + E(Owu + Du)03 Z"U + E(u)(0y + D)03 Z"U
+ (B(u) + &*(u) + 26" (u)) 92 Z"U.
Recall that ® satisfies
(8, + D)® = —N(u)® +1T.
Now write ® = & — E ()03 Z™U in the right hand side of the above identity and set the result
into (5.2.65), to obtain that
(8, + D)® = —N(u)® + T
+ N(u)E(u)oyZ™"U
(5.2.66)
+ E(Owu + Du)og Z"U + E(u) (0 + D)oy Z"U
+ (B(u) + &%(u) + 26° (1)) 02 Z"U.

Eventually we use (5.2.26) to substitute (0; + D)0¢Z"U, which appears in the fifth term of
the right hand side of (5.2.66), by

(0y + D)OSZ"U = —N(u)032Z2"U + G + F',

and we write 02 Z"U = ® + (99Z"U — ®) in the last term of the right hand side of (5.2.66).
By so doing it is found that

(5.2.67) 8% + D® + L(u)® + C(u)® =T,
where

(5.2.68) L(u) := Q(u) + S*(u) + 25" (u) — (B(u) + &*(u) + 2&°(u)),
and where

(5.2.69) I=T+1)+(2) +3)+(4)



with

(1) = N(u)E(u)0%Z"U — E(u)N(u)0>Z"U,
(2) = E(dyu + Du)d>Z"U,
(3) = E(w)G' + E(u)F",
(4) = (B(u) + &*(u) + 26" (u)) (052"U — ®).

It follows from (5.2.54), (5.2.58), and (5.2.59) that the operator L(v) defined by (5.2.68)
satisfies Re(L(v)f, f) yox s = 0 for any f in H#T'(R). Consequently, to complete the proof
of the proposition, it remains only to prove the estimates (5.2.4) and (5.2.6)—(5.2.7).

STEP 4: Proof of the estimates (5.2.4) and (5.2.6)—(5.2.7)

We begin by estimating the term (1) which appears in (5.2.69).
Lemma 5.2.7. There holds

1Dllzs < Cllullc) Vulle 110527 Ul

Remark. We shall later estimate [0y Z"U|| s in terms of Y, ) and M.

Proof. This is proved by means of the arguments used in the proof of Proposition 3.6.4. For
the sake of clarity we recall the proof.

Recall from (5.2.63) that | E(u)|| z(gs gey < C'llullc-- Also, directly from the definition (3.5.9)
of S*(u) and S”(u) we have

HSﬁ(U)H[;(H&Hﬁ) + HSb(u)H[;(H&Hﬁ) < Cllulley -

Therefore
(5% (w) + 28 () E@)| o gy gy < C ullZn
and similarly

HE(U)( ( )+25b )Hg HB HB) < CH“HC“W

It remains to estimate the operator norm of the commutator [A(u), E(u)] where we recall that
A(u) = Q(u) + C(u) where Q(u) (resp. C(u)) is given by (3.2.7) (resp. (3.2.6)). We claim
that

(5.2.70) I[A@w), Bl oo oy < Cllullgn -

By definition E(u) = E4,(u) + Er(u) with Er(u) = —Eg(v) — QE%('U). To prove (5.2.70), we
first observe that,

VA sz asy < Cllllen s 1ERG) | cgara sy S Nl
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where C depends only on ||ul|,,. This implies that HER(U)A(U)HL:(HB’HB) <C ||u|]2w Sim-

ilarly, one has [[A(u)Er(u) z(ps ey < C’HUH%w This obviously implies (5.2.70). Thus it
remains only to prove that

(5.2.71) 1A, Eag @)l 115y < C l1ulle

This we now prove by using the commutator estimate (5.2.55) together with the following
remark. Introduce

A(u) = A(u) — Ty 0y — TaD.

Directly from the definition of A(u) (recalling again that A(u) = Q(u) + C(u) where Q(u)

(resp. C(u)) is given by (3.2.7) (resp. (3.2.6))), one can check that A(u) is of order 0 and
satisfies

(5.2.72) | A < Clullgs

) HL(HB,HB)

for some constant C' depending only on ||u||,. By combining this estimate with (5.2.56) we
get

1Eao (@) A g o) + (A Eag(@)]] 15 g1y < C llullén

which obviously implies that H [Z(u),EAO(u)] HL:(HB ey < C ||u|]2m So to prove (5.2.71) it
remains only to estimate the commutators of E4,(u) with Ty 0, and T, D.

Since Ty 0, = Ty () is a paradifferential operator with a scalar symbol and since the C Lnorm
of V' is estimated by C'||u||~, for some constant C' depending only on |ul|o, (see (3.1.4)), it
follows from statement i) in Lemma 5.2.6 that

| (202, Bty ()] 03,13 < C 1l

for some constant C' depending only on ||ul|,. To estimate [T,D, E4,(u)], use instead the
equation (3.6.6) satisfied by Ey4, to obtain:

TuDE4, (w)U = Ty <EA0 (W)DU + Ea,(Du)U + B(u)U).
Notice that
(5.2.73) ”B(“)Hﬁ(Hﬁ,Hﬂ) < Cllulley -
Indeed, B(u) = Op®ul, BY] + Op®[u2, B?] where B! and B? are given by (3.6.4) and (3.6.5)
with s replaced by ; so assertion (i7) in Lemma 3.4.5, Lemma 3.4.6 and (A.1.5) imply the

wanted estimate. Also, (5.2.56) implies that |[Ea,(Du)||zpge gey < C |ul oy Consequently,
since [|allcr < C'llullgy (see (3.1.20)) we have || 10|l z(ps sy < C'llullcy and hence

1T By (D) g 105 g1y + I Ta B | iy gy < €l
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for some constant C' depending only on ||u||~,. Moreover, since « is a scalar function, it follows
from the above mentioned estimate ||| -1 < C'|lul|o and statement 7) in Lemma 5.2.6 that

1T, Eao ()] Dl g5 1y < Cllulien

for some constant C' depending only on |lu|/,. This proves (5.2.71) and hence completes the
proof of the lemma. O

Lemma 5.2.8. There holds

1)1 ze < Clllulles) lulle 1052Vl s

13)is < Clullem) Nl {16 1o+ 17170 }-

Proof. This follows from the estimates (5.2.63) and (3.6.14). O
Lemma 5.2.9. i) For any (/,n’) such that o/ +n’ < sy, there holds

|05 2" (Va—1) o < C(NG N,

it) If (o/,n') < (a,n) then
102" 2" (Va—1)|| ;» < C(NF) M.
iii) There holds
|02 2"(va = D]l 2 < Clllullen)Yiam + C(NS) M.

Remark. Here we use the assumption 5 > 2.

Proof. Recall that the Taylor coefficient a can be written under the form (see (A.3.9) in
Appendix A.3):

1 1 1
= ——— (14+V8:B-Bd,V - -G(n)V* - -G(n)B*> -G
0= 1 e (14 V0B = BOY — SG)V? - S6mB ~ Gl )
where we used the abbreviated notations B = B(n)i and V' = V(). The assertion in state-
ment ), which is equivalent to saying that |[v/a — 1[| ; is estimated by C(N, ;So))N,ESO), then
immediately follows from the estimates (4.3.15), (4.3.16) and from Proposition 4.3.11. The

assertions in statements i) and éii) follow from the product rule (4.4.21), Proposition 4.3.11
and Proposition 4.3.9. ]

Below we freely use the following lemma.
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Lemma 5.2.10. Recall that we fized (a,n) and K such that A(a,n) = K and recall that M
is defined by (5.1.9). There holds

(5.2.74) 107 2" ull sy S Yiam) + Mk,

1
-2
(5.2.75) 092" Ul s < C||ull ) Yiamy + C (NSO M.
If (¢/,n) < (a,n) then

(5.2.76) 102" 2" u < Mg,

’Hﬁ—%
(5.2.77) |05 27U s < C(NS) Mg

For any (o/,n') such that o/ +n' < sy, there holds

(5.2.78) 10 27U || g < C(NED) N0,

Proof. The estimates (5.2.74) and (5.2.76) follow directly from the definitions of Y, ,) and
My, and the fact that [Z,|Dy|?] = — |D,|?.

For further references, we shall prove (5.2.77) and the following estimate

7T Q r7n n
82 - 002 (D ;w) < C(llullgs) Il Yiam

(5.2.79)
+ O (NFYNEI M,

which immediately implies (5.2.75). We shall see that the estimates (5.2.79) and (5.2.77)
follow from the definition of U. Indeed,

U= nl + T\/&—ln .
Db 0

So, to prove (5.2.79) it is sufficient to estimate the H”-norm of 922" (Tﬁ_ln). To do so,
we write H(');%Z"(T\/E_W)HHB
(K,v,m,b) replaced by (n,a + ,s9,7), which gives (bounding all the indicator functions
by 1)

< ‘T\/E—ln‘n,m.g and use the estimate (4.4.24) applied with

‘T\/a’m’n,aﬂa < H\/ﬁ— 1H 0 ‘77|n71,a+5+1 + H\/ﬁ— 1HL°° HZnnHHa+ﬁ

S0,
=+ ||77||n+a+5—so+1,0 ‘\/E - 1‘71—1,0

+nller |12 (Va = 1)
+ |7l ca+s-so+1 HZ"(\/a— 1)HL2'

Since a + B+ n < s <25y — 1, we can use the inequality

1l ga+sn-sorr < M1l ats-sor1,0 < 1llsp0

197



in the third and last terms of the right hand side. On the other hand, since (a + 1,n — 1) <
(a,n) for n > 1 and since |n],,_4 4, 5,1 = 0 by convention for n = 0, we have

|77|n—1,a+ﬁ+1 < MK

Also, one has || Z™n]| yars < Yiam) + Mxk. The wanted estimate (5.2.79) thus follows from
statements ), i), and 4i7) in Lemma 5.2.9. The proof of (5.2.77) is similar: we estimate
vz (T\/aﬂ?) by means of the estimate (4.4.5) and statements 7) and i) in Lemma 5.2.9.

Let us prove (5.2.78). We shall prove a stronger result. Namely, we prove that

2
(5.2.80) U — UHSO,,B+3 < C(ngso)) (ngso)> )

We shall use the estimate (4.4.16) whose statement is recalled here

(5.2.81) 1TeF],, o S Sl 1] o -

We decompose U as

T
(5.2.82) U=u+ | V57 ).
- ’Dz| 2 TB”

So, to prove (5.2.80), it is sufficient to prove that
(s0)) (N (s0))
(5.2.83) Ve (Va—1,B}, |Tenlly, ggi1 < O(NS )(Np 0 ) .

This in turn follows from (5.2.81) and the estimate for B (resp. y/a — 1) given by Proposi-
tion 4.3.11 (resp. Lemma 5.2.9 7)). O

Remark. We also have the following estimate, analogous to (5.2.79)

o r7zn 7 77
AV ALTING LA <|DI‘§W>‘ < Cllullgr) luller Yiam)

o3

(5.2.84)
+ O (N NEI M,

0
The proof is similar to the proof of (5.2.79), using that u = n; + 1 .
|Dz|? w |Dz|2 Tgn

We next estimate the source terms F” and G’ given by (5.2.24).

Lemma 5.2.11. There holds

H]:HHHﬂ < C(llullgr) lull e Yian + C(N,SSO))NKMK‘
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Proof. By definition, one can write 7" under the form

F'="> " m(j)Q") (031 Z2Mu)03> 22U
jeJ’

+ > m(h)S (09 2 )9 ZmU
jeJ’

— Q(8%Z"™u)U — S¥(9% Z"u)U,
where m(j) € N and
J'={(a1,a2,n1,n2,n3) € J; a1 +n1 <a+n}.

Below we freely use the fact that, by definition of J (see (5.2.20)), if (a1, ag,m1,m2,n3) is in
J then ag +no < a+n.

Let us split J' into two parts: set J' = Jj U J, where
/ - / 1
J1 =147 =(ar,02,m1,m2,m3) € S5 an+m < Sla+n) o,

(5.2.85)

1
Jy = {j = (a1, ag,m1,n2,n3) € J'5 a1 +ny > 2(04+”)}-

We begin by estimating

> m(HQU@ 2 w)d 2" + Y m(§)S" (@ 2 w)9g 22U
JjeJq jed;

If j belongs to J! and A denotes Q) (resp. S()) then we use (5.2.30) (resp. (5.2.32)) to
obtain
A5 2™ )52 272U || o < K |05 2™ ul| g [|052 272U || s -

If j € J{ and (ag2,n2) # (a — 1,n) then one uses (5.2.77) to find that
1032 272U | gsn < 11052272 Ul gs + (|02 272U | < C(NS*) M,

where we used the fact that if j € J| C J then (ag,n2) < (o,n) and as < a, so that the
assumption that (g, n2) # (o — 1,n) implies that (a2 + 1,n) < (o, n). On the other hand

1021 Z™M ) . < ngso)7
since a; +n; +4 < %(a +n)+4 < 5 +4 <sp by assumption on sg.

If j € J{ and (a2,n2) = (a — 1,n) then (aq,n1) = (1,0) so |09 Z™ul|p2 < |Jul|oy. On the
other hand, (5.2.75) and (5.2.77) imply that

1092 272U || gras < |05 Z"U | ggs + |05 27U || s
< C(HU’HC"/)}/(O(,TL) + C(N;ESO))MK
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We now estimate

> mHQU (@ ZMu)ag 2" + Y m(j)S T (9 ZM )0 27U
JeJ; JEJTS

If j belongs to J5 and A denotes either Q("3) or S("3) then we use (5.2.31) or (5.2.33) to
obtain
[A0F 2" u) 072 2" U || s < K |07 2™ ul| 2 1052 272U | s -

For any j € Jj C J' we have a1 + n; < a+n and o3 < o, n1 < n so that (a,n1) < (o, n).
Since # > 1/2, (5.2.76) implies that

1081 ZMul|,, < HangmuHHﬁ,% < Mkg.
Since ag +no < (a+n) < 5o for j € J), (5.2.78) implies that

(5.2.86) 1092 272U || s < C(NS)) N0,

It remains to estimate Q(02Z"u)U and S*(0%Z"u)U. Using (5.2.31), we find that
HQ(@‘;Z”U)UHHﬂ S H@?Z"uHLZ ||U||CB+3 .

It follows from (5.2.74) and the assumption 8 > 1/2 that H(?;"Z”UHLQ S Yan + Mk. On
the other hand, we claim that

(5.2.87) 1Ullgs+s < Clllulln) llullen -

For further references, we shall prove a stronger estimate:
2
(5.2.88) 1U = ullgo+s < C(lluller) llulley -

To prove this claim, recall that

T
(5.2.89) U=u+ | V57 ).
- ’Dz’|2 TB”

So to prove (5.2.87) it is enough to prove that

(5.2.90) 1Tz 1nllgses + [1Del? Tonll goes < Clllullen) e

It follows from (A.1.13) that HT\/&lnHCﬁH S Wa = 1| oo |7l cpes- Similarly, for any r >
1/2, it follows from (A.2.4) and (A.1.13) that

11D21% Tonl| povs S | Tl gpaser S 1Bl [l cosatr

So (5.2.90) follows from the assumption v > 5+ 4 and the estimate (see (3.1.20) and (3.1.4))

1Va =1 o + 1Bl < Cllulles) s -

This completes the proof of (5.2.87).
The estimate for S*(9%Z™u)U is similar. O
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Lemma 5.2.12. There holds
(5.2.91) 16/ g5 < Cllullon) {1elE Yiomy + NEMc } -

Proof. 1t follows from (5.2.24) that

G' =G — (SHOYZ™u)(U — u) + S*(0%Z™(u — U))u)
(5.2.92)
— (S"(U = w)d2 Z"u + S"(w)3LZ"™ (u — U)).

To estimate the last two terms in the right hand side of (5.2.92), we use the estimates (for
p & 3N)
b
1S5 )| urp + 15”0 s < K Mol o N0l

Hﬂ+%7
158 @)w]| gy + |1S° @0 furp < K 0]l 101

which readily follow from the definition (3.5.9), and the estimates (5.2.79) and (5.2.88) for
u—U.

H#+% ’

Let us show that the estimate for G follows from the results proved in §4. The key point is
to estimate the ||, ,, g-norm of G' and G? given by (5.2.12)and (5.2.13).

Rewrite G (as given by (5.2.12)) as
G' = F(n)y — Fi<ay(n)y) + T, Ja—0,v+Lo27
+ T ar F(n)y
(5.2.93) )
+{~TaiTow + DTy, yan + [Tv. Tyaa] = 5T, 5 ,Ta s f

+ ’DZE| RB(|DIE‘ ¢’ T\/E—ln) + 8ZRB(093¢7 Tﬁ—lﬂ))

e The |-|n7a+ﬁ—n0rm of F(n)y — F(<2)(n)¥ is estimated by means of Proposition 4.5.4 applied
with (k, u) = (n,a + ) which yields

[ = Fepy(m], .4
< Coy [l 1D212 27| as s
+ g, (a+ B+ 1 — 50+ No)Coy 1l cos |[1Da]2 % o || 270 s
(5.2.94) +Cag 11112, 0 || Dal2 Ul st

1
1Dal? $, 0153

2
+1r, (a4 B8 —73)Cs [Ill5,.0
1
=+ CSO HUHS0,0 H‘Dw’Q wH@—i—B—&—n—so-l—NQ,’yz ‘mn*lvaJﬁBJrl
1
+ 1R+ (a + 6 - Pyg)CSO Hano,O H‘Dm‘Q wHa-‘,—/B-‘rTL—SO'FNZKYQ |n’n,a+ﬁfl ’
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where Cy, = C([[nllgz)s Cso = C([Inlls, 0), and 1r, is the indicator function of Ry. The first
four terms in the right hand side of (5.2.94) are clearly controlled by the right hand side of
(5.2.91). To estimate the last but one term in the right hand side of (5.2.94), notice that,
since - has been chosen large relatively to 72 and Na, since a4+ 5+n < s and since s < 259 —"y,
we have a + 3 +n — 59 + Na + 2 < sg and hence H]Dw]% wHa—f—,@—f—n—so—l—Ng,'yQ < N,SSO) for any
p > 7. It remains to estimate the last term in the right hand side of (5.2.94). Notice that,
because of the indicator function, it is non zero only for o+ 5 > ~4. Since f < 74 — 1 by
assumption (5.1.5) on S, this means that the last term is non zero only for @ > 0. Now for
o > 0 we have |n], .. 5 1 < Mg and hence the last term in the right hand side of (5.2.94) is

also controlled by the right hand side of (5.2.91).

e We now estimate the |-|, atp-norm of Ty, Ja—o.v+1o24M- To do so, we first check that one
) x 27T
has the following estimates

2
[ora =820, < CNS) (M),

so,1 —

(5.2.95) 102" 2™ (9va — 0249) || ;» < C(NEYNEIMye for (o, n') < (a,n),

022" (9ra — 820) || 12 < Cll[ullcn) lull e Yiam) + C (NS ) NI Mg

To prove these estimates, we use the arguments used in the proof of (3.1.9): we differentiate
in time the identity (A.3.9) for a (by using the rule (3.1.6)) and then we use Lemma A.3.1.
This gives that d;a — 921 is an explicit sum of quadratic terms which are estimated as in
Lemma 5.2.9. Next, (5.2.95) readily implies that d;v/a — 5824 satisfies

1 S S 2
lon/a = 502, , < CNE) (NS
(5.2.96) |02 Z" (8y/a — %agw) |2 < C(NFOYNFI My for (o ,n') < (a,n),

1
022" (0nv/a — 5020) 2 < Clllullen) ull o Yiam + C (N ) NS M.

On the other hand, the estimates (4.5.30) and (4.3.34) imply that 0,V — 92 satisfies

oV — 2w, < (NG (N§),

(5.2.97) 109 2" (9,V — 020) || 1o < C(NSO)NSIMyc  for (o, n') < (),

105 2™(9:V = 02)| 12 < Clllulle) ull o Yiam + C(NF)NEO M.

Set
¢ :=0a— 0,V + %aﬁw.
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Then, by using the triangle inequality, (5.2.96) and (5.2.97) imply that

2
¢l < CVE) (N),
(5.2.98) “8§/ang“L2 < C(N[ESO))N;ESO)MK for (a/,n/) < (a,n),
10527¢|l 1> < Clllullcn) lull e Yiam) + C (N NI Mg

Now, to estimate the \-]n,aJrﬂ—norm of T¢m, we apply the estimate (4.4.24) with m = s,
v=a+ f and b = . This yields

|TC77’n,a+/g S ||<||so,o |77‘n_17a+5+1 + ||C||Loo HZ"nHHaH;

+ HT/Ha-f—ﬁ-f—n—sO-i—LO |C|n—1,0

+1nllen 127¢] L2

+1g (a4 B+ 1 =) nllgarssn-son | 27¢]) 2.
In view of (5.2.98), the first four terms in the right hand side are clearly controlled by the
right hand side of (5.2.91). Again, to bound the last term, we notice that is non zero only

for a > 0 since f+ 1 —~ < 0 by assumption. Now, for a > 0, we have (0,n) < (o, n) and
hence HZ”C H 12 1s estimated by the second inequality in (5.2.98). On the other hand, again,

S .
we [|n]| gatstn—sor1 < N,E 0) by assumptions on a, 3,n, s, sg, p.

e Now we estimate the |-[, . gnorm of T, z_F(n)y. We apply the estimate (4.4.24) with
(K,v,m,b) replaced by (n,a + f,s0, 8+ 2). This gives

Tar 06| S IVa= 1 P01 s + VG~ 1 17 F 0]

+ ||F(n)¢||a+ﬁ+n—50+l70 |C’n—1,0

+IEm oo (|2 (Va=1)] 2

+ 1, (@ = 1) [F(m)dllgarsin-s [|[ 2" (Va —1)|| .
The first and second term in the right hand side are estimated by means of the previous
estimates for v/a — 1 (see Lemma 5.2.9) and F(n)y (see (4.5.23), which easily implies an

estimate for |F(n)y[; ,, using the triangle inequality and the fact that one can estimate
‘F(SQ)(n)zﬂ‘ku directly from (4.5.27) and (4.4.20)). Again, notice that the last term is non

zero only for v > 0. Then (0,n) < (a,n) and || Z"(y/a — 1)HL2 is controlled by Lemma 5.2.9
i7). On the other hand, by assumptions on «, 3,s,n,50 we have a +  +n —sp + 1 < sp.
Therefore, it remains only to bound ||F(n)v|,, o and [[F(n)i ge+2- Both estimates are easily
obtained writing

Fn)y = (G(n)w — | Dyl w) - (!Dxl TB(n)yn + 6xTV(n)w)-

The |||y, o-norm (resp. ||-||os+2) norm of the first term is estimated by (4.5.30) (resp. (2.6.12)).
The [|[|4, o-norm (resp. ||-[| gs+2) norm of the second term is estimated by (5.2.81) and (4.3.37)
(resp. (A.1.13) and (2.0.4)).
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The last terms in the third and fourth lines of the right hand side of (5.2.93) are estimated
by means of (4.4.19), (4.4.20), (4.4.25), and Lemma 5.2.9.

We now estimate G2 which is given by (5.2.13). To estimate the first and second terms in
the right hand side of (5.2.13), we use the estimates (4.5.30) and (4.3.34) for the ||-||,, , and
||, norms of B(n) — |Dy| and V(1) — 9;. Then the desired estimates follow from (4.4.20)
and (5.2.84).

The third and fifth terms in the right hand side of (5.2.13) are estimated by means of (4.4.25),
Proposition 4.3.11, Proposition 4.3.9 and Lemma 5.2.9. The fourth term is estimated by
means of (4.4.19), (4.4.20), Proposition 4.3.11, and Proposition 4.3.9.

To complete the study of G we have to study the terms involving the operator C'(u) in (5.2.16)
and (5.2.18). We obtain the wanted estimates by using the estimates (4.5.30) and (4.3.34)
for the estimates of the ||-||,, , and |-|x , norms of V(n) — 0;, statement 7v) in Lemma 5.2.9
(which implies similar estimates for (y/a — 1) + % |D,|n) and the rules (4.4.10), (4.4.11). O

It follows from Lemma 5.2.8, Lemma 5.2.11, and Lemma 5.2.12 that the H”-norm of the
terms (2) and (3) in (5.2.69) are controlled by the right hand side of (5.2.4). Since we have
already estimated the term (1) in Lemma 5.2.7, to complete the proof, it remains only to
prove the estimate (5.2.6)~(5.2.7) and to estimate the H?-norms of the term (4) and I’ which
appear in (5.2.69).

Lemma 5.2.13. i) There holds
19 + D)0 Z™ul| 12 < C(l[ull o) lull o Yiamy + C(NSO) NSO Mg,
10+ D)OSZ"U | 12 < Clllull o) el Yiamy + C (NS NSO M.
i) If (o/,n') < (c,n) then
10 + D)3 Z" u| » < C(NFD)NEI My,
10 + D)3 2" U|| ,» < C(NED) N0 My

i11) If o/ +n' < sy then
! / 2
H(at + D)aﬁ zZ" UHC4 < C’(N(So)) <N(so)> :
! / 2
|0+ D)o 2 U|| ou < C(NE) (N(so)> '
Proof. Notice that the third (resp. the fourth) estimate is an obvious consequence of the first
(resp. the second) estimate since |[lu|/oy < Np(SO) and since Yo vy < My for (of,n) < (a,n).

To prove the first estimate, recall that

(5.2.99) dyu + Du = ( Gy — [Dal ¥ > .

D27 (—1(0:0)2 + 31 + (0:m)2) (B(n)eh)?)
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Therefore, using (5.2.14) to commute 092" with 0; + D, the first estimate follows from
Corollary 4.3.8, Proposition 4.3.9, Proposition 4.3.11, and the product rule (4.4.23).

To prove the second estimate, we notice that for any (o, n) € P,
(5.2.100) (0 + D)3 Z"U = =N (w03 Z"U + G{oy ) + Flomy:

where gga,n) and ]:(’;’n) are given by (5.2.24). According to (5.2.27) applied with p = 0,
the first term in the right hand side clearly satisfies the wanted estimate. Thus the second
estimate in the lemma follows from Lemma 5.2.11 and Lemma 5.2.12.

Let us prove the estimates in statement 7). Using again (5.2.14) to commute 052" with
0y + D, notice that it is enough to prove that

2
(5.2.101) 10, + D)ull. , < C(N[gsw)(N/gso)) ,

s0,4 —

. y 2
(5.2.102) (0 + l))UHS074 < C(Néso)) (ngbo)> )

The estimate (5.2.101) follows from (5.2.99), Proposition 4.3.11 and the product rule (4.3.15).
To prove (5.2.102), we use the estimate (5.2.81) whose statement is recalled here:

(52103) HTCFHWU S HCHn,l ||FHn,o :

Remembering the decomposition (5.2.89) of U as u + U’ with U" = (T, z_47, ]Dx]% Tpn), and
using (5.2.101), it is enough to prove that

(52100 0+ D, < o) (v)’.

Since it is enough to prove that the right-hand side is quadratic in N, ,ESO), to prove (5.2.104),
it is sufficient to estimate separately 9;U’ and DU’. Thus, it is sufficient to prove that

§ 2
(5.2.105) V¢ € {Va —1,0va, B,0;B}, VF € {n,dm}, ||TCF||SO,4+% < C(Néso)) (N/gso)) _

In view of (5.2.103), this reduces to proving that

\V/C € {\/5 - 1,875\/&,37875.8}7 ||<||SO71 < C’(Np(SO))Np(SO)’

VE € {n,dm}, |F|| < (N NG,

So,4+% p

The second estimate is clear for F' = 7. Since 9yn = G(n)v, it follows from Proposition 4.3.11
for FF = 0yn. On the other hand, for ( = B (resp. ( = y/a — 1) the first estimate follows
from Proposition 4.3.11 (resp. Lemma 5.2.9). For { = 9;1/a, the first estimate follows from
(5.2.98) and Proposition 4.3.11 (to estimate ||9,V[, ;). Eventually, for ¢ = 8,B, we use that,
by definition of a, 0:B = —V0;B + a — 1 so that the wanted estimate follows from (4.3.15),
Proposition 4.3.11 and Lemma 5.2.9. O
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Introduce
(5.2.106) Xam) = 107270 || s + 102270 53,
and

MK = MK+ Z X(o/,n’)?
(5.2.107) (of ') =(em)
1 1-v
— nGso) 1 = ar(so) v
Ny = N + (Np ) MY

Recall that we want to prove that
(5.2.108) 100 < Cllullen) el Yiaum) + CONi AR M.
According to Lemma 5.2.10 and Lemma 5.2.13 we have

X(a,n) < C(HUHC“/ )Yv(oz,n) + C(NP(SO))MKa

(5.2.109)  ||(8; + D)OYZ"ul| 12 + [|(8: + D)OTZ"U | 12 < C(|[ull e ) Yiam) + C (NSO )Mk,
Mg < C(NP(SO))MK

and it follows from the third inequality above that
Nic = N& + T (N®) by
v
(5.2.110) < NG ¢ %(N,ESO)>1_V(C(N/§SO))MK)V
< (N[ )Nk
by definition (5.2.5) of N. Consequently, to prove (5.2.108) it is sufficient to prove that

T g7 < Clllell o) 1ellEn Xamy + C(NS) N My
(5.2.111)
+ Cllulle) ulles {101+ D)2 ul 2 + 10 + DY 27U ).

(Let us mention that the factor |u||,, multiplying the bracket in the second line is linear in

||lul| o instead of being quadratic since (9; + D)3 Z"U is at least quadratic, see (5.2.100).)

Next we prove that HfHHB is estimated by the right hand side of (5.2.111). Recall that T is
given by (see (5.2.52))

(5.2.112) I =G —R+N(u(®-922"U),

with N(u) = Q(u) + S*(u) 4+ 25°(u) + C(u) and where G’ is given by (5.2.24), R is given
by (5.2.49), and @ is given by (5.2.50). We shall use a cancellation between the second term
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in the right hand side of (5.2.49) and the last term in the right hand side of (5.2.112). To do
so we write according to (5.2.100)

(5.2.113) (00 + D)0322™U = —N(u)922 2"2U + G

(ov2,m2) ]:(OQ ng)’

where g’ and ]-'(’; »my) 8T obtained by replacing (a,n) by (ag,n2) in the definition

(a2,n2)

(5.2.24) of G’ and F”. We substitute (5.2.113) in the second term in the right hand side of

9
(5.2.49) to obtain, using the definition (5.2.50) of ®, T' = G’ + Z I'? with

q=1
Z M(5) Pag ((0¢ + D)OC Z™Mu) 02 22U
Z M (5)Rng ((0r + D)0 Z™10) 052 Z™2U

Zm R (92 2"u) (9 + D)2 2™ U)
I = —Eﬁ((at + D)% Z™u)U
I° = —EY0%Z™u)(0,U + DU)
_—l—Zm [ 1, (001 ZM10), N (u)] 992 Z2n20
I = —N(u)Eﬁ(aaZ”u)U

Zm Ry (091 ZM )02 ZM2U

Zm P (001 21 ){gg%@ﬁf(w n2)}

We shall further split the sum over J (resp. J’) into two pieces according to the splitting of
Jas J=Jy UJy (resp. J' = J; U Jj) where

1
Jp = {j = (aq,00,n1,n2,n3) € J; a1 +n1 < §(a+n) },
(5.2.114)

1
Jo = {] = (al,ag,nl,nz,ng) eJ;ar+n > 2(a+n)}

(resp. Jj and Jj are given by (5.2.85) so that J; = J; NJ" and Jj = Jo N J'). Notice that, if
(a,n) = (0,0) then J = () = J'. Therefore, if j € J; then (a1,n1) < (a,n).

Using obvious notations, we write ['1 = f? + fg for g € {1,2,3,6,8,9}.
We shall use the following notation: for r in [0, +oo[ we set

1, 0
(5.2.115) lollcrazz = Ioller + — llvller” lollzz »
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where recall that v is a fixed small positive number, and the constants involved are indepen-
dent of v.

Estimates of f%, f% and f{’

Let us prove that

(5.2.116) I+ 3 < Ol o) el Xy + CONE) N M

If A denotes P,, or R,, then the estimates (5.2.39) and (5.2.44) (together with (5.2.46))
imply that

|A((8; + D)2 2™ u) 022 272U | 1y

(5.2.117) <o D)o zm 92 72 ]
~ H( s + D)0, uHC4mL2H T HHB“‘

Remembering that, by definition, f%, f% and f:f are sums of terms indexed by either J; or
Ji, we are going to use a dichotomy already used in the proof of Lemma 5.2.11. Either
(g +1,n2) < (a,n) or @ > 1 and (a2,n2) = (a — 1,n).

If (g + 1,m2) < (a0, n), writing
10522720 | gor < 1022 272U || s + [|0327 272U || 6

we see that the second factor in the right hand side of (5.2.117) is bounded by Mg, by
definition (5.2.107) of Mg. To bound the first factor in the right hand side of (5.2.117), we
first recall from Lemma 5.2.13 that for any j in Ji,

52119 0+ D)o 27, < (0 (g)

where we used the fact that, for j € Ji, and our assumptions on «, n, s, sg, we have a;+n1 < sp.
Secondly, we have

(52119 (01 + D)0 2], < CANW) NG M,

where, to obtain (5.2.119), we used the above mentioned observation that (aq,n1) < (o, n)
for j € J;. By combining (5.2.118) and (5.2.119) we obtain

(2 + D)({)?lZ”luHC40m < C(Nfgso))NIQ(

by definition (5.2.107) of Ni and definition (5.2.115) of the norm ||| saqz2. This proves the
wanted estimate.

Consider now the case when (ag,n2) = (o — 1,n). Then (ai,n1) = (1,0) and we have to
estimate the H”-norms of

Po((0 + D)0,u) 021 Z"U,  Ro((0¢ + D)dpu)02~ 1 Z"U.
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Both terms are estimated similarly. Let us consider the first one. Using the estimate (5.2.131)
below, we have

(5.2.120) |Po (0 + D)) 05 Z"U|| o < ||(0r + D)ul| 5|05 Z7U || 1ypsa -

(The key difference with (5.2.117) is that the right hand side of the above inequality does not
involve the L?-norm of (8; + D)u.) As above, using the notations (5.2.106) and (5.2.107), one
has

(5.2.121) 1097 27U || yoss < |08 27U || s + 10271 27U || 4o < X(am) + Mk

On the other hand, according to (5.2.99), (2.6.12), (2.0.4) and the product rule in Hélder
spaces, we have

(5.2.122) 10 + D)ul| s < C(llulln) Nullz

provided that ~ is large enough. Plugging (5.2.121) and (5.2.122) in (5.2.120) we obtain that
the HP-norm of Py ((9; + D)dyu)02~1Z"U is bounded by the right hand side of (5.2.116).

The ||- -norm of I'3 is estimated by similar areuments.
HB 1 Y g

Estimates of f%, f%, f%, and I'

Consider j € J'. Let us estimate the H®-norms of
Py (B + D)O2 ZMu) 022 22U, Ry (04 + D) Z™0)0%2 27U,
If A denotes Py, (resp. Ry, ) then the estimate (5.2.40) (resp. (5.2.45)) implies that

|A((0; + D)2 2™ u) 022 272U |
S 1@+ D)o 2 || u[|052 272U | vy o

To estimate the right hand side of the above inequality, we recall that we consider the case
j € J' and notice that (a1,n1) < (a,n) when j € J' (since by definition (5.2.22) of J' we
have a1 +n1 < a+n, a1 < a, ny <n for j € J'). Then the second factor in the right hand
side above is estimated by means of (5.2.77) and (5.2.78), while the first factor is estimated
by Lemma 5.2.13 7). This proves that the right hand side of the above inequality is bounded
by C(NS) N2 My

This proves the desired estimate of the HP-norm of f% To estimate the H-norm of f%,
it remains to consider the case when j € J\ J', that the case j = (a1, a2,n1,n9,n3) =
(a,0,7n,0,0). Let us study this term, together with I'4. Here we notice that the H5-norm of
Po((0 + D)0SZ™u)U (resp. E*((9; + D)02Z™u)U) is estimated by means of (5.2.40) (resp.
(5.2.48)) and 7) in Lemma 5.2.13.

The HP-norm of f% is estimated by similar arguments.

Estimate of I
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We claim that
IT%(] ;s < Cllullen) 1ullZ Xam)-

To see this we use the estimate (5.2.48) which implies that

15| ,,5 S 10:U + DU| 3 |03 2"ul| -y -

Since HB@‘Z"UHHW% < X(a,n) by definition (5.2.106) of X(, ), it remains only to prove that
2
(5.2.123) 10:U + DU|| 3 < C(lJull) [[ulle -

Since [|Oyu + DuHC% < C(|lullgr) lullz, (as already seen in (3.6.14)), remembering (5.2.89),
to prove (5.2.123) it is sufficient to prove that

1
(5.2124) |oTaan| g + 0010212 Toml| g < Clllulle) e
and
1
(5.2125) 119212 T aynll g + 11D2A Tl g < Cllluls) luller -

The second estimate is obvious: For any r > 0, it follows from (A.2.4) and (A.2.3) that

D212 Taanll g S I Tyaanlloeer S llellpoe Il
11Dl Tonll g S 1Tnl g S 1Bllse lnll g

so (5.2.125) follows from the estimate || e + || Bl 10c < C(JJullon) [|ulloy (see (3.1.20) and
(3.1.4)).

Let us prove (5.2.124). In view of (A.1.12) we have

H&Tﬁ_mHC% + Hat |Dx|% TBUHCg
< (IVa =1l + 8@~ Dl o + 1Bl + 108l ) (nll s + @il ).

Since 0y = G(n)v, it follows from (2.0.4) that ||| s < C(||lulloy) |ullcr- On the other
hand, (3.1.20) and (2.0.4)imply that |[v/a — 1|/ + || B/ < C(||lullcy) [|ull - It remains
only to prove that

18sce]| oo + 110:Bll Lo < Cll[ull o) llull o -

Now notice that (3.1.9) immediately implies that ||0;al| ;o < C(||ulov) [|ullv, Which implies
the wanted estimate for dia since @ = y/a — 1 and since a is bounded from below by 1/2
by assumption (see (3.1.11)). Now, to estimate 0;B we use that 0;:B = —V0;B +a — 1 by
definition of a, so ||0;B||;ec < [|V || 100 [|02B] 0o +]l@ — 1|| ;. The first term in the right hand

side is estimated by (2.0.4) while |ja — 1||; « is estimated by means of (3.1.8). This completes
the proof of the claim.
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Estimate of I'6

We divide the analysis into two cases: either « = 0 or @ > 1. If a > 1, we decompose J as
JU JY U {j1, jo} where

le(Oé,O,n,0,0), j2:(17a_1>0>n70)7
U =T\ {j2}, 3 =T\ {ii}

If & = 0 we decompose J as J; U JJ U{j1}. Below we consider the case o > 1 and the proof

(5.2.126)

for the case a = 0 will be included in this analysis since we shall use the assumption o > 1
only to give sense to js.

The estimate for the sum over JJ is straightforward: It follows from (5.2.29) and (5.2.40)
that

“Pns(8312n1u)(N(u)axa2Zn2U)HHB
(5.2.127) S 051 2™ | || N (w)052 272U || oy
< C(HUHCV) HUHC’V HaglzmuuﬁHangnQUHCﬁH-
So (5.2.76) and (5.2.78) imply that
[Py (051 2™ w) N (w) 02 272U || < C(NFO) (NS))* Mg

Now N (u)092 Py, (091 Z™u)Z™U is estimated by parallel arguments. This obviously implies
the wanted estimate for the commutator.

If (a1, 2,m1,n9,n3) = j1 then (ag,n2) = (0,0). Thus, it follows from the first inequality in
(5.2.127), (5.2.29), (5.2.74) and the assumption 5 > 1/2 that

[Pas (952 2" u) N ()02 22U || 1
< C(llulon) el (Yiam + M)

We estimate N(u)032P, (021 Z™u)Z™U by similar arguments. This obviously implies the
wanted estimate for the commutator.

If « > 1 and (aq,@2,n1,n2,n3) = j2, we have to estimate H[Po((?zu),N(u)]@%le”UHHﬁ.
We claim that

(5.2.128) [ [Po(0w), N(W] || p 641 sy < C Il -
Let us assume this claim. Then
(5.2.129) | [Po(0zu), N (w)] 022U || ;5 < Cllullgn 057120 || ;o1 -
We then write that, obviously,
10271 20| yoss < (02270 | o + 10271 27U || o < Xiamy + Mk

The proof of the claim (5.2.128) is then based on the following lemma.
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Lemma 5.2.14. Let u be a given real number.

i) There exists K > 0 such that, for any scalar function w € C*(R), any v = (v',v?) €
CO N I2(R) and any f = (f*, /%) € H(R),

(5.2.130) T2 Po(0x0)] fll g < K [[wllca [0l s [1F ]| 1 »
where I = (7).

ii) There exists K > 0 such that, for any v = (v}, v?) in C° N L2(R) and any f = (f*, f?) in
H"(R),

(5.2.131) |Po(820) f] s < K [[0ll s £ | e -

Proof. We recall that Py(v) is given by OpB [1}1, Pﬂ + Op® [v2, PZQ] where P} and P} belong
to Sé’o (see (5.2.36)). Therefore

Po(9sv) = OpB[v!,ig1 P}] + OpB[v?, i P2].

Since i1 P} and i&; P? belong to Sll it follows from Lemma 3.4.6 that P (d,v) is a paradif-
ferential operator of order 1, whose symbol has semi-norms estimated by means of statement
i1) in Lemma 3.4.5. The assertions in the lemma then follows from Theorem A.1.7. O

Next we proceed as in the proof of Lemma 5.2.7. Firstly, we introduce
N(u) = N(u) — Ty 0, — T D.
Directly from the definition (5.2.25) of N(u), using (5.2.28) and (5.2.72), one can check that

IN @) g0 1oy < Clllle

for some constant C' depending only on ||u||,,. By combining this estimate with (5.2.131) we
get
v v 2
HPO(axu)N(“)Hg(Hﬁ+17Hﬁ) + HN(U)P{)(@xu)HK(HBH’H[;) <C ||U||Cv )

which obviously implies that

[N (), Po(w)]| s grass gy < C llullZs

So to prove (5.2.128) it remains only to estimate the commutators of Py(d,u) with Ty 0,
and T, D. The commutator with 7y 0, is estimated by means of statement ) in the above
lemma. To estimate the commutator with 7T, D we use again statement ) in the above lemma
to estimate the commutator [Ty, Py] and we use the equation (5.2.37) satisfied by Py(v) to
estimate [D, Py(0zu)]: Indeed, (5.2.37) implies that

[D, Poy(du)] = Po(DIyu) + QO (9,u)
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and hence [D,Py(0,u)] is an operator of order 1 which is estimated by means of the esti-
mate (5.2.30) and statement i) in the above lemma.

Now let us assume that j € J{'. Then we claim that
(5.2.132) | [P (09 Z™ 1), N (u)] Hc(mﬂ,m) < CN%.

This is proved exactly as we proved (5.2.128), excepted that we use Lemma 5.2.4 instead of
Lemma 5.2.14. Then (5.2.132) implies that

1[Prs (95 27 u), N ()] 052 272U ||

5.2.133
( ) < CNg 092 2™ U|| o -

We then write that, as already seen, if (a2, n2) < (a,n), as < «, and (az,n2) # (o — 1,n)
then (ag + 1,n2) < (a,n) so
1022 27U | o < [|052 272U |5 + |07 272U | 10 < M.
This completes the proof.
Estimate of I'7

Remembering the estimate (see (5.2.27)) HN(U)HL(HBJA’H[?) < C(|lulley) Jull o s we have

150 < Cllullon) s || B8 2m0)U| -
Now (5.2.48) implies that

15700 < Cllullen) el 1071 g 105270y

By definition of X, ,) there holds H@gZ"uHH&% < X(am)- So the estimate (5.2.87) for
HU||C% implies that

IT7|| ;16 < Clullon) I1ullZn X (am)-

The estimates for fg, and f‘i’ are obtained by similar arguments to those used previously.
Also, to estimate '), using (5.2.40), all we need to prove is that

Here one notices that, while it could be long to estimate these terms separately, one can

gl + /!

(a2,m2) (a2,n2)

< C(NE) N,

C4

readily estimate the sum writing that, by (5.2.113),

/ /!
g + F

(a2,n2) a2,n2

y = (0 + D)0 Z™U + N(u)0;* 2" U.

The first term in the right hand side is estimated by Lemma 5.2.13 since, as we study fg,
the condition ag + ny < sy holds. The second term is estimated by means of (5.2.29) and
(5.2.78). This completes the estimate of I'.
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To complete the proof of i) of Proposition 5.2.1, we still need to estimate the HPB-norm of the
term (4) in (5.2.69). Moreover, we have to prove the bounds (5.2.6), (5.2.7) of statement i)
of that proposition. These estimates will be deduced from the following result.

Lemma 5.2.15. There holds

(5.2.134) 102270 = ®||,5 < Cllullen) l1ull e X am) + CNED) Nic M.

Proof. Tt follows from the definition (5.2.64) of ® and the definition (5.2.50) of ® that

® — 9%Z"U = E(u)d2Z"U
= M) Py (051 2" u) 052 272U
(5.2.135) !
=Y M) Ry (052 2™ )02 272U
Jl
— EY02Z™u)U.

Then we use arguments similar to those used previously. The first (resp. last) term in the
right hand side of (5.2.135) is estimated by means of (5.2.63) (resp. (5.2.48)). To estimate
the second term in the right hand side of (5.2.135), we decompose J as Jy' U JJ U{j1,j2} (see
(5.2.126)) and then use the estimates (5.2.39) (for j € J{), (5.2.131) (for j = ja), (5.2.40) (for

€ JJU{j1}). The estimate of the third term in the right hand side of (5.2.135) is similar;
we decompose J' as J] UJ) where J| and J; are defined by (5.2.85) and we use the estimates
(5.2.44) and (5.2.45) (since j # ji for j € J' and since ag + ny < a+n for any j € J', the
terms ||[Hvl|o, and ||Hf||o, which appear in (5.2.44) and (5.2.45) lead to terms which are
estimated by means of Ng). O

This lemma and the estimates (5.2.60) (applied with some p > 1), the operator norm estimates
(5.2.73) (resp. (5.2.60)) for B(u) (resp. &(u) and &°(u)) readily imply the wanted estimate
of the HP-norm of the term (4) which appears in (5.2.69).

Let us prove (5.2.6)—(5.2.7). Recall that (see (5.1.7) and (5.2.106)), by notations,

Yiam) = 10020 o + || Dal? 02270 s + 1Dl 0270 54

Xiam) =107 2"U]| o + 107 27| o3
It is convenient to set

1
Aoy = ([|02 2] + [1D212 0227035 ).

Hereafter we denote by C (resp. Cy,) various constants depending only on ||u|| -, (resp. N, ,ESO)).
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It follows from (5.2.84) that

(5.2.136) 105 Z"u|| sy < Afam) + Cy llull o Yiamy + Coy NS M.
Using the obvious inequalities

(5.2.137) 102 Z70|| s + |1 D2l 0 27w| 1y < 2A1am)

and

D212 02270 oy S 110227 [Dal2 9] ooy + 110227 D2 0] oy
(5.2.138) n'<n
SN2 2"l pmy + M.

It follows from (5.2.136) that
(5.2.139) Yoy < 3Aqan) +Cy llull e Yiam + Co[1+ NS M.
Then for ||ul|,- small enough we have

(52140) }/(a,n) < 4A(a,n) + CSO [1 + NISSO)] M.

On the other hand (5.2.79) implies that

(5.2.141) Afan) < HaanUHHB +Cy [lull or Yiam) + CsoNp(SO)MK,

and using (5.2.134) to estimate HagZ"UHHﬁ by means of ||®| 5, we find that
(5.2.142) Alany <@l gs +Cy llulley (Yian) + Xan)) + Cso Nx Mg

Using the first bound in (5.2.109) to estimate X, ) in the right hand side of the previous
inequality, we find that

(5.2.143) Aty <@ s +Cy llullgr Yiam) + Cso N M-
Then (5.2.140) and (5.2.143) imply that

(5.2.144) Yian) <42l gs + Cyllullcny Yiam) + Cso [1 + Ni | Mk,
and hence, provided that C, ||ul|+ is small enough,

(5.2.145) Yian <59 gs +Cso[1 + Ni | Mk

Finally, it follows from (5.2.109) and (5.2.110) that the same inequality holds with Mg (resp.
Nk) replaced by My (resp. Nk):

(5.2.146) Yian) < 511®[lgs + Cso [1+ N M.

This establishes the first inequality of (5.2.6).
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Let us prove (5.2.7). The estimate (5.2.134) implies that

(5.2.147 @l < 922°0]| s + €l X + Coo Nic M
and the estimate (5.2.79) implies that

G208 082y < Ay + s ilen Yinm + Co NI M
Now (5.2.109) and (5.2.145) imply that

(5.2.149) Xiam) <Cy @]l gs + Co [1 + Ni | Mk

Then (5.2.146), (5.2.147), (5.2.148), and (5.2.149) imply that

(5.2.150) 1l < Agwmy +Co [l 191175 + Cog Nic M.
If C, ||u|| o~ is small enough, we conclude that

(5.2.151) 19 76 < 2A(an) + Cso N M,

so we have, according to (5.2.109) and (5.2.110),

(5.2.152) 1P| s < 2A¢0,n) + Cso Nk M.

Using the obvious inequality A, ) < Y{(a,n), this yields the second estimate of (5.2.7) and
hence completes the proof of (5.2.7).

Next, we shall use (5.2.152) at time 7. Our goal is to deduce from this estimate that

(5.2.153) 1015 (To) < MED(T)

provided that N,ESO)(TO) is small enough.

Plugging (5.2.140) into (5.2.136) we find that
(5.2.154) 102 2" || -y < (L+4Cy [lull ) Aany + Coo NI M.

Obviously, we have

(5.2.155) Aoy S Y Ay < MO
(o ,n)eP

by definition (5.1.1) of the norm MY (recall that P is defined by (5.1.6)). Similarly,

#P
M <3 Mpr<ME) + 37 ||IDal2 08 27|

K'=0 (o/ /)P

HP3
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1 1
Now, since |D,|2 Z™ 1) is a linear combination of terms of Z¥|D,|% ¢, 0 < k < n/, we have

S oDl 27l oy 5 D0 02T D]y < D 08270y

(a/,n')eP (o/,n))eP (a/,n')eP

since u = (1, |DI|% 1) by definition of u. So the previous bound for My implies that

(5.2.156) Mg SME)+ N [0 27|
(a/,n")eP

HP%

Plugging (5.2.155) and (5.2.156) into (5.2.154) we conclude that
H(’?ﬁZ”uHHﬁ_% = (1 +4C ||Uch)A(a7n) + CSON/SSO)MK

S (1 + 4CW HUHCW + CSONp(so))Ms(s1) + CSOngso) Z Haé,;’/ZWu
(o ,n)eP

‘H’B_% .

Since ||ul| oy < N,SSO), this simplifies to

105 Z7ul| 5y S 5= (14 CooNEW)MED 4 CuNSD D7 0y 2%l -y

1
1 1
(o ;n")eP

Taking the sum of the inequality thus obtained for («,n) € P, we conclude that

Yo ogzrull oy SHEPE S (14 Cou NI )ME) + €N S (|03 27|
(a,n)eP (a/,n")eP

=%

So a := Z(a,n)GPHa%ZnuHHﬁ—% satisfies
(5.2.157) a< (1 + CSON,gso))Ms(sﬂ + CSONp(SO)a“

For N, éso)(T 0) small enough, this yields that

> 107 2" u(Th)|[ 153 S MED(Tp).
(a,n)eP

Plugging this estimate in (5.2.156) and then (5.2.155) into (5.2.152) we obtain the wanted
estimate (5.2.153) and hence the desired result (5.2.7).

This concludes the proof of the proposition. O
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Chapter 6

Appendices

A.1 Paradifferential calculus

We recall here some definitions and results concerning Bony’s paradifferential calculus. We
refer to the original articles of Bony [10] and Meyer [39] as well as to the books of Hérmander
[25], Métivier [38] and Taylor [49].

We denote by C%(R) the space of bounded continuous functions. For any p € N, we denote
by C”(R) the space of C°(R) functions whose derivatives of order less or equal to p are in C°.
For any p €]0, +00[\N, we denote by C?(R) the space of bounded functions whose derivatives
of order [p] are uniformly Holder continuous with exponent p — [p].

Definition A.1.1. Consider p in [0, +oo[ and m in R. One denotes by I';'(R) the space of
locally bounded functions a(x,&) on Rx (R\0), which are C* functions of £ outside the origin
and such that, for any o € N and any § # 0, the function x — Oga(z,§) belongs to C*(R)
and there exists a constant Cy such that,

(A1) VI > 5 [l0gat, 6, < Cal+ gl

Given a symbol a, to define the paradifferential operator 7, we need to introduce a cutoff
function 6.

Definition A.1.2. Fiz 0 € C*°(R x R) satisfying the three following properties.

(i) There exists €1,e9 satisfying 0 < 2e1 < e9 < 1/2 such that

0(&1,&) =1 if |&] <er|] and ] > 2,
0(&1,82) =0 if &1 > e2|be| or & <1
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(ii) For all (o, 3) € N2, there is Cy g such that

V(£1,62) € R, }8?18?29(51,52)‘ < Co (14 |&o]) 1181,
(iii) 0 satisfies the following symmetry conditions:

(A.1.2) 0(&1, &) = 0(—=&1, —&) = 0(—=&1,62).

Remark. Notice that 0(&1,&) = 0 for |§2| small enough. This choice (different from [38])
plays a key role in our analysis since we have to handle symbols which are homogeneous in
&5 and hence not regular for & = 0.

As an example, fix £1,¢e2 such that 0 < 2e; < 9 < 1/2 and a function f in C3°(R) satisfying
f(t) = f(—=t), f(t) =1 for |[t| < 2e; and f(t) = 0 for |t| > 2. Then set

0(&1,62) = (1 — f(&))f (Z) -

Properties (i), (i) and (iii) are clearly satisfied.
The paradifferential operator T, with symbol « is defined by

—

(A13) Tou(6) = (2n) " [ 01— n.mjale — n.alo) d

where @(0,¢) = [e~®%(z,¢) dz is the Fourier transform of a with respect to x.
Remark A.1.3. It follows from (A.1.2) that, if a and u are real-valued functions, so is T,u.

Remark A.1.4. One says that © = ©(§1,&2) is an admissible cut-off function if © satisfies
the properties (i) and (ii) in Definition A.1.2. All the results given in this appendix remain
true for any admissible cut-off function (except Remark A.1.3).

We shall use quantitative results from [38]. To do so, we introduce the following semi-norms.

Definition A.1.5. Form € R, p > 0 and a € I'}'(R), we set

(A.1.4) Mp'(a) = sup  sup H(HKD‘O"*W?“("@’CP(R)

p
la|<2+p [€]>1/2

The main features of symbolic calculus for paradifferential operators are given by the following
theorem.

Definition A.1.6. Let m in R. An operator T is said of order m if, for any p € R, it is
bounded from H* to H*~™,
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Theorem A.1.7. Let m € R.

(7) If a € TGH(R), then T, is of order m. Moreover, for any p € R there exists K > 0 such
that

(A.1.5) HTch(HM,Hu—m) < KMy (a).

(ii) Let (m,m’) € R? and p € (0,+00). Ifa € T'(R),b € I‘ZT/(R) then ToTy, — Tog, is of
order m +m' — p where

1 o le%
a|<p

Moreover, for any p € R there exists K > 0 such that

(A.1.7) ITaTy — Tagpll £ (g pru—m—mr+oy < KMy (@) MG (b).
In particular, if p €]0,1], a € I'}(R),b € T}* (R) then
(A.1.8) NTaTy = Tabll o pru gy < KM (@) M (D).

(791) Let a € T'T"(R). Denote by (1,)* the adjoint operator of T, and by @ the complez-
congugated of a. Then (T,)* — Ty is of order m — 1. Moreover, for any p in R there exists a
constant K such that

(A.1.9) 1(Ta)" = Tall o gm prn-—mry < KM{"(a).

Remark A.1.8. One can improve (A.1.5) by noting that the estimates for T,u involves
only the norm of d,u and not w itself. Indeed, introduce & = £(§) such that &(§) = 1
for |£] > 1/3 and &(§) = 0 for || < 1/4. Then, by assumption on the cutoff function 0, we
have T, = T,R(D;) and hence (A.1.5) implies that

(A.1.10) [ Taull gu—m < KMg"(a) [|Ozul| g -
since ||R(Dg)ul| gp < ||0zu|| u—-1. Similarly, (A.1.7) implies that

(A.1.11) |TuTy — Tagpul| gy < KM (@) M (0) |00 s -

If a = a(x) is a function of = only, then T, is called a paraproduct. It follows from (A.1.5)
that if a € L>°(R) then T, is an operator of order 0, together with the estimate

(A.1.12) Vo e R, |[Toulgo S llallpe ullgo -
A paraproduct with an L*-function acts on any Hélder space: for any p in R \ N we have
(A.1.13) Vo R, |Taullge S llallpoe lullce -
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If @ = a(x) and b = b(z) are two functions then (A.1.6) simplifies to afb = ab and hence
(A.1.7) implies that, for any p > 0,

(A114) HTaTb - TabHE(Hu,Hufmfﬂl’ﬂLp) <K HG’HCP ||b||CP )
provided that a and b belong to C?(R).
Definition A.1.9. Given two functions a,b defined on R we define the remainder

(A.1.15) Rp(a,u) = au — Tyu — Tya.

We record here two estimates about the remainder Rg(a,b) (see chapter 2 in [9]).

Theorem A.1.10. Let o € Ry and B € R be such that oo+ 8 > 0. Then

(A.1.16) 1R, Wl jars-} gy < K llalgom el msw) »

(A.1.17) 1RB(a, u)|l garsm) < K lallgam) lull gom) -

We next recall a well-known property of products of functions in Sobolev spaces (see chapter

8 in [25]) that can be obtained from (A.1.12) and (A.1.17): If uy,ugs € H%(R) N L*°(R) and
s > 0 then

(A.1.18) Jurug|| s < K (| poo [luallgs + K fuzll oo luall s -

Similarly, recall that, for s > 0 and F € C*°(C") such that F(0) = 0, there exists a non-
decreasing function C': Ry — R, such that

(A.1.19) IF W) g < CUIU N oo ) 101
for any U € (HS(R) N L>®(R))N.

One has also the following result: for any (r,p,p’) € [0, +oo[® such that p' > p > r, there
exists a constant K > 0 such that

(A.1.20) [Taull go—r < K |lallg— lull o -

One can use this estimate to study the regularity of the product fg when g is in some Holder
space. Writing fg = Trg + Ty f + Rs(f,g), it follows from (A.1.12), (A.1.20) applied with
r = 0 and (A.1.17) that, for any real numbers p’ > p > 0, the product is continuous from
HP x C*" to HP. By duality, the estimate (A.1.21) is true for any (p,p’) € R x Ry such that
p' > |p|. Therefore,

(A.1.21) V(p. ) € R x Ry such that o' > o, [ £allzo S 1f1lpzo gl -
The estimate is obvious for p’ = p € N. When p’ € N one has to allow a small loss.

Here is a couple of identities which are used to simplify many expressions (see the proof of
(2.6.26), (2.6.27), the proof of Lemma 2.2.6 and the proof of Proposition 2.7.1).
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Lemma A.1.11. For any function a = a(z) in L°(R) and any function u in L*(R), one has

(A.1.22) |Dy| T | Da| 0+ 8, Tp0pu = 0,
(A.1.23) |D| TaOptt — 95T | Dy u = 0.

Proof. There holds

D) T | Dy | 4 + 85 Tudyu =

i [ GG () de dea

with
p(€1,6) = (|&1 + &l 6] — (&1 4 £)6)0(61, &),

where 0(£1,&2) is as given by Definition A.1.2. Now, on the support of § we have |[£;| < |&2]
and hence (&1 + &2)& > 0. As a result p = 0, which proves (A.1.22).

Set ¥ := |Dy| To0ru — 0, T, | D] u. Since 9,% = |D,| ((%Taﬁmu + |D,| T, | Dy | u) the idenity
(A.1.22) implies that 9,3 = 0 and hence ¥ = 0 since ¥ € H2(R). This proves (A.1.23). [

We also need a commutator estimate to control the commutator of |D,| and a paraproduct.

Lemma A.1.12. (i) For any u € R there exists a positive constant K such that for all a €
CYR) and all f € H*(R),

(A.1.24) | Ta [Dal f = 1Do| (Taf)|| g < K llallc 1F 1]z -

(i7) For any € > 0 and any o €]0,+o0] there exists a positive constant K such that for
all a € CYR) N HTY(R) and all f € C*¢(R) N H°(R),

(A.1.25) |a Dzl f = 1Da| (@f)|| yo < K lallca 1£ e + K N1 fllcrse lall o -

(731) For any € > 0 and any o € [1,400] there exists a positive constant K such that for
all a € C°TE(R) and all f € H(R),

(A.1.26) |a|Dzl f = |Dal (af)|| o < K llallgorree [1£] 7o -

Remark A.1.13. The estimate (A.1.25) is not optimal (see [33] for sharp results).

Proof. To prove (A.1.24), write [Ty, |Del] f = [Ta: Tig] f + Ta(|Dz| = Tie) f — (| Da| — Tie)) Tu f
and use the bounds

Vo € Rv H [Tavﬂﬂ] gHHU’ S HG‘HC1 HgHH" )
V(Ua OJ) € sz H’Dw’g - ]_]é‘gHHU/ g HgHHU’

where the first estimate follows from (A.1.8) applied with p = 1.
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To prove (A.1.25), rewrite the commutator [a, |DI|} f as
[Ta, |Da|] f + (a = Ta) |Da| f = | Dzl (a = Ta) f-
The first term is estimated by (A.1.24). To estimate the last two terms, we use the bound

(A.1.27) Vr el — 1,400, |ag— Tug|

e S lellon gl g + gl oe lall g s

which follows from the paradifferential rules (A.1.12) and (A.1.17) (by writing ag — Tog =
Tya+ Rpa(a,g)). By using (A.1.27) with r =0 or 7 =0 — 1 > —1, we find that

[1Da] (af = Taf)l| o < [[(@f = Taf)|| gosr S laller 1f e + 1f 1l oo lall o s
|alDe| f = Ta |Dal f]| o < Nallcr 11Dl fllggo—1 + 11Dl fll oo llall 7o -

Since |D,| is bounded from C'*¢ to C? (see (A.2.3)), this completes the proof of (A.1.25).
To prove statement (iii), notice that (A.1.20) and (A.1.17) imply that

la|Dg| f = |Da| (af) = [Ta, [ Dall fll o S If L Nlallgosrve -
Then (A.1.26) follows from (A.1.24). O
In Chapters 3 and 5, when studying the quadratic normal forms, we see that there is a small
divisor issue at low frequencies. To help the reader, we end this section with two pictures
which describe the support properties of the function 6 as well as the function ¢ defined by

C(&1,&) =1—0(&1,8&) — ((&2,61) (so that the remainder Rz defined by (A.1.15) is a bilinear
Fourier multiplier with symbol ().
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)

&1

Figure 6.1: The support of the cut-off function 0(&;,&2) is in grey. The set of points (&1, &2)
where 0(£1,&2) = 1 is in darker grey.

Figure 6.2: The support of ((£1,&) = 1 — 0(&1,&) — 0(&2,&1) is in grey. The set of points
(&1, &2) where ((&1,&) = 1 is in darker grey.
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A.2 Estimates in Holder spaces

Here we gather Holder estimates. It is convenient to work in the Zygmund spaces C%, p € R
whose definition is recalled here.

Choose a function ® € C°({¢; |£| < 1}) which is equal to 1 when || < 1/2 and set ¢(§) =
®(£/2) — ®(€) which is supported in the annulus {§; 1/2 < |{| < 2}. Then we have for { € R,

(A.2.1) L=0(&)+ ) ¢(277¢),
j=0

which we shall use to decompose temperate distributions. We set A; = ¢(277D,) for j € Z.
We also use in the paper the notation Spv instead of ®(D,)v.

Remark A.2.1. For y € R, if u € H*(R) then the series 327! Aju converges to ®(Dy)u.

Jj=—00
Definition A.2.2 (Zygmund spaces). For any s € R, we define C£(R) as the space of tem-

perate distributions u such that
(A.2.2) lulle = 1®(Da)ull oo +sup 2% [|Ajul| e < oo
iz
We recall the following result (see [38, Prop. 4.1.16]).
Proposition A.2.3. Ifs >0 and s € N then C(R) = C*(R) and the norms ||-||cs and ||| cs

are equivalent.
Proposition A.2.4. i) Let v €]0, +oo| with v ¢ %N. There exists a constant K such that,
forall z <0 and all f € C2ts satisfying |D.| f € L*(R),

(A.23) 11Dal f]] ¢ < K][1Dal? £

C’Y-‘r% :

i1) For all~ €]1/2, +oo[\%N, there exists K > 0 such that, for all f € C7 satisfying ]Dw|% fe
L*(R),

(A.2.4) D12 £l oy < K|l
(A.2.5) 11Dal ™2 0 f] -y, < K[| £

iii) Let r € R, v €]0, +oo[ with v & N. There exists a constant K such that, for any v €]0,1]
and for all f € C7(R) N H"(R), there holds

1 —v Y
(A.2:6) flon < K[IFlon + 2 DA 1715 -
where H = |D,| " 8, is the Hilbert transform.
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Proof. Let us prove (A.2.6). Consider j in Z and a C*° function ¢ with compact support
such that ¢ = 1 on the support of ¢ and ¢ = 0 on a neighborhood of the origin. Then

%Hﬁ:;/V%wz%>uw|<>

2j 127 (z—ax')
— o [ GO, ) el 6 o de

_ o /E(Qj (z — ')A, f(&) da’

where

B() = 5= [ €"a0) 1€ (i) de

Since E(y) and y*>E(y) are bounded (using an integration by parts), we have E € L'(R).
This implies that

(A.2.7) [AGHS | oo S NAGf Nl e
and hence, using (A.2.2), for v in ]0, +00[\N, we have

(A.2.8) sup 277 || A S || oo S 5up 27 1A fll oo S I Nl -
j=0 j=0

It remains to estimate the low frequency. Consider j < 0. Using (A.2.7), the estimate
[Ajull oo < 2772 Ajull,» and the fact that H is bounded on L2, we get

IAHS | oo = IAHFT NAH ]
S 2D N2 117 -
Now, for any » € R and j <0, ||Ajf||L2 < HAijHT <||f||gr- Thus
IAHF | oo S 272 Nl 1F 15 -

Since ;g 2v3/2 = O(1) it follows from Remark A.2.1 that || ®(Dy)Hf | 1o S N FIEIF 15
The wanted estimate (A.2.6) then follows from (A.2.2) and (A.2.8).

The proof of (A.2.3), (A.2.4) and (A.2.5) are similar. Let us prove (A.2.3). For j in Z, write

D:18f = [ Byt = )(1D.1} 1)) o

h
where 1

l/d%m5¢@j©ds

Ej(y) = 5

satisfies || E|| 1 < 27/2. Consequently,

(A.2.9) 1Da] A || poo S 2772([1Ds ]2 Aj | oo

~
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Since . 27/2 < 400 (and using Remark A.2.1) we thus have

By combining (A.2.9), (A.2.10) and using (A.2.2) we obtain the wanted estimate. O

A.3 Identities

Consider a smooth solution (7, 1) of the water waves system

O = G(n)v,
(A.3.1) oY +mn+ %(83;1#)2 - W(G(n)w + 8mdp)° = 0.
Set
:Gﬂﬁzgﬁkﬂ V = 0 — (B(n)¥) s,

anda=1+0;B+Vo,B.

Lemma A.3.1. There hold

(A.3.2) O = B — VO,

(A.3.3) op+n+ %VZ + BVd,n — %B2 =0,
(A.3.4) o) — Bon = —n — %VQ — %BZ,
(A.3.5) Oh + Vo = —n + %VQ + %BQ,
(A.3.6) OV + Vo,V + adyn = 0.

Proof. The equation (A.3.2) follows from B — V0,1 = G(n)y (see (2.0.3)). To prove (A.3.3),
we begin by noticing that

(009)? = (V + BOyn)? = V2 + B*(9,n)* + 2BV d,n.
Since

(00021 + G (1))

(A.3.7) G

= (1+ (92m)*)B%,

this yields

2 1(8x778xw + G(n)¢)2
2 1+ (0z1n)?

1 1 1
(A.3.8) 5 (0ut) = 5v2 + BVdn — 5B?,
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so (A.3.3) follows from the second equation of (A.3.1). Now (A.3.4) can be verified by a direct
calculation, using 9, = B — V9,n and (A.3.3). In the same way, (A.3.3) and the definition
of V imply (A.3.5).

To prove (A.3.6), write

oV + Vo,V
= (8, + V8,)(8,1) — BOn)
= 04 (01p + V) — (B + V9, B)yn — B, (0 + V) + R,

where R = —0,V 0,1+ B0,V 0yn = —(0;V)V. Then, it follows from (A.3.2) and (A.3.5) that
1 1
AV + VO,V = ax(fn +5V2 4+ 532) — (8B + V8,B)dyn — Bd,B + R.

Now, observing that R + 1/20,V? = 0 and simplifying,
0wV +VaV+(1+B+V9,B)on=0,
which completes the proof of (A.3.6) since a =1+ 0;B + V0, B. O

Lemma A.3.2. There holds

14+ Vd,B— B,V — %G(n)xﬂ — 1G(n)B2 — G(n)n> )

(A.3.9) a= 5

Proof. Starting from B — Vd,n = G(n)Y we have
W B — (0,V)0,n — V9,0, = 0,G(n)1.

We then use the identity 0;V 4+ V0,V + ad,n = 0 (see (A.3.6)) to obtain that

OB + a(0,m)* + VO, VIun — VO,0um = .G (),
and hence, using that by definition of @ we have ;B =a—1—- V0, B,

(1+ (9zn)*)a =1+ G + VO,0an + Ve B — VO,V O,n.
Now we have (see [32, 35] or the proof of Lemma 4.1.2)
(A.3.10) QG = G(n)(Op — BOm) — 0(VOm),
and hence
(14 (9em)®a =1+ G(n)(Opp — BIm) — (0V) (0 + VOen) + VO, B.

Since Oyn + Voyn = B (see (A.3.2)), to conclude it remains only to use (A.3.4). O
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Remark A.3.3. One can further simplify (A.3.9) to obtain

a:1+éwy(u+wme+BmmB—;Gmwﬂ—;mm3”4ﬂmo.

Indeed
(A.3.11) G(n)B=-0,V, G(n)V =0,B.

We have already seen the first formula (see (4.1.7)) and the proof of the second is similar: it
relies on the uniqueness result result of Proposition 1.1.6 and the fact that 9,¢ is the harmonic
extension of V' = 0,¢|y—,. Therefore, by definition of the Dirichlet-Neumann operator,

Gn)V = (8y8x¢ - axnagd)) | y=n
= (0049 + 0m50) | ,_,
= 893 (ay¢) | y=n

and hence G(n)V = 0, B since 0y¢ is the harmonic extension of B = 0y¢|y—y.

A.4 Local existence results

The goal of this appendix is to show that Proposition 1.2.1 is just a restatement of Theo-
rem 4.35 in the book of Lannes [35], and to prove also a local propagation of Sobolev estimates
for the action of vector fields on a solution of the water waves equation.

To help the reader we recall the equations and the statement of Proposition 1.2.1. We consider
the system

o = G(n),

1
O +n + 5(8931/})2 D)

(A.4.1) 1
(14 (921m)%)

(G + Dumdyip)® = 0.

Proposition A.4.1. Let y be in |7/2,+00[\3N, s € N with s > 2y —1/2. There are &y > 0,
T > 1 such that for any couple (no, o) in H3(R) x H%’V(R) satisfying

-1 1
(A42) o~ Tagupm € HE®), lmllor + 1Dl ol sy < b0,

equation (A.4.1) with Cauchy data n|i=1 = Mo, ¥|1=1 = Yo has a unique solution (n,) which
is continuous on [1,T] with values in

. l . l s
(A.4.3) {{0) € B¥R) x B3V (R); % — Togypun € HE*(R) }.
Moreover, if the data are O(g) on the indicated spaces, then T > c/e.
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Proof. Let us check that the assumptions of Theorem 4.35 of Lannes [35] are satisfied under
the hypothesis of Proposition A.4.1. We have to check that the finiteness of the quantity
(4.66) of [35] with tg =y — 3/2, N = s, which may be written

(A.4.4) 110217 ol + Inolife + 3 (10212 (9540 — (Blno)o)azm)|

lal<s
is actually equivalent to
(A.4.5) Yo € H3Y, mo € H®, o — Thiuypemio € HZ*.
We also need to verify assumption (4.69) of [35], which follows from the inequality
1

where ag is given by (3.1.5) (see also (3.1.7)) with (n,) replaced by (7o, %0). Let us write
for |a| < s, setting By = B(no)o,

02 [1D2]7 (o — Tiymo)] = [Dal? ((0%40) — Bo(%n0)) — | Dx|? [0%, Tz, ] m0

(A.47) 1
+ ‘Dgc‘? (TQ%WOBO + RB((??U(), Bo)).

Both assumptions (A.4.4) and (A.4.5) imply that |Dx|% o belongs to C7~2 and that Ozno is
in C7~1, so that by (1.1.44), G(n9)wo and so By are in C?~!. Since v — 1 > 1, the symbolic
calculus of appendix A.1 shows that [0, Tp,] sends H® to H~*T! ¢ H'/? for a < s, so that
the commutator term in (A.4.7) belongs to L?. The boundeness properties of the remainder
given in (A.1.17) show in the same way that Rg(9$no, Bo) is in HY/? it %m0 is in L2. The
equivalence between (A.4.4) and (A.4.5) will follow if we show that Tya,,, By belongs to H 172,
which follows from (A.1.20) and the fact that By is in C7~1. Finally, notice that (A.4.6)
follows from (3.1.8) applied with 7, replaced by ng, 1. O

Proposition A.4.2. Assume that s and v are such that

1 1

Consider a solution (n,v) of (A.4.1), defined on the time interval [To, T1], which is continuous
on [Ty, T1] with values in (A.4.3) and such that the Taylor coefficient is bounded from below
by a positive constant. Assume that, at time Ty, (1o, o) = (1, V) |t=1, satisfies

(28,)10 € HSTY(R), (20,)00 € H253(R),

(A.4.8)
(202) (Yo — Tp(ne)uweo) € H="L(R).
Then
Zn € CO[To, Ti]; H'(R)),  Z4¢ € CO([To, Th]; H3°2(R)),
(A.4.9)

Z (¥ = Topyen) € CO[To, Ti); H2°'(R)).
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Proof. Since the equations (A.4.1) are invariant by translation in time, we can assume without
loss of generality that To = 0.

The proof is based on the analysis in Chapter 2 and the following observations:

e If (n,1) solves (A.4.1), then the functions 7, and v, defined by
(A.4.10) mt ) = A2 (M, N%2), st z) = A3 (A, A2a) (A >0)
are also solutions of (A.4.1).

e For any function C! function u, there holds

_ d 2
(A.4.11) Zu(t,z) = au()\t,)\ x) i’

e A bootstrap argument: It is sufficient to prove that there exists 7' > 0, depending only
on My defined by
Hsi| Y

(A.4.12) Myi= sup | n(8)]l e + 1Dal $(0)] ey + 1Dl w(t)]

t€[07T1]

1
H™2
such that

Zn e CO(0,T); H* Y (R)), Zy € CO([0,T}; H25 5 (R)),
(A.4.13) N
Z( — Tpyen) € C°([0,T]; H2* 1(R)).

Let us explain why it is sufficient to prove (A.4.13). Using the equations satisfied by 7,
Y and ¢ — Tg(yyn (see (A.4.1) and the second equation of (A.4.19)) it is easily seen
that

dm € C°([0,T1); HH(R)), 9 € CO([0, T1); H7°~2(R)),
(A.4.14) -
0 (¥ — Tp(myyn) € C°([0,Th]; H2*'(R))

(and hence the same result holds with &; replaced by t;). Since 29, = 3(Z — td;), it
follows from (A.4.13) and (A.4.14) (evaluated at time T") that

(20,)n(T) € HY(R), (20,)%(T) € H>* 3 (R),
(€02) (W(T) = Tnirywryn(T)) € HESH(R).

Since the system (A.4.1) is invariant by translation in time, this means that we can apply
the previous result with initial data at time 7" instead of 0. This yields that (A.4.13)
remains true when [0,77] is replaced by [0, min(27,77)]. Iterating this reasoning, we
obtain (A.4.9).
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We begin the proof by fixing some notations and explaining its strategy.
NOTATIONS

Recall that, given two functions 7 and ¢ we use the notations

G O0x1n) Oy
(A.4.15) B— (")1¢++(é 777)72) YV Z 0 — Boyy, w=1— T,
Also we define
(A.4.16) F(n)y = G(n)Y — [ Dyl w + 8, (Tyn),

and (recalling that a is a positive function by assumption)

1 1 1
a=——_ 1+V8$B—B<9$V—GnVQ—GnBQ—Gnn>,
(A.4.17) 1+(8x77)2< 26 3¢ 0) (n)

a=+a—1.
Then, it follows from the proof of Proposition 3.1.8 that, with the notations

(A.4.18) w=|( " o (d+Ta)y
| D2 9 7 | D |? w ’

one has

QU + Ty 0,U" — (Id + Ty) |Dy|2 U? = F',

(A.4.19) ) 1
OU? + |Dy|2 Ty 120,U° + | Dy |2 ((Id + To)UY) = F2,
where
Fli=(Id+ To) (F(n)¢ — Ta,vn) + {Tata + TV To.a + [TV, Ta}a’”}n’
and

F2 = |Dy|2 (TaTs — To2)n

1

+|D:|2 (TvTo,y — Tvo,n)B
1

+|De|?2 (Tva,B — TvTs,B)N

1 1 1 1
+ 51Dt Rs(B,B) — L |Du] Rs(V.V)
+ |D.|? Ty Rs(B, d.n) — |Du|? Ris(B, V).

Notice that we write here the source terms as F', F? instead of F', F? as we wrote in the
proof of Proposition 3.1.8. This is in order to avoid confusion with F' which is used later on
as a compact notation for F'(n)i.
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STRATEGY OF THE PROOF

Consider A in [1/2,3/2]. We define (1, %) by (A.4.10) and denote by By, Vi, wy, uy, Uy,
ay, ay, F the functions obtained by replacing (n,1) by (7, %) in the previous expressions.
These functions are defined for ¢ less than T3 /) < 277 /3.

The remark (A.4.11) implies that, when A tends to 1,

Mm—"n U= wy—w
A—1" A—1" A—1

converges to Zn, Zvy, Zw, respectively, in the sense of distributions. To prove the wanted
result, we have to prove a uniform estimate for these quantities. Moreover, by using the
bootstrap argument explained above, it is sufficient to prove an uniform estimate on some
time interval [0, 7] with 7" > 0 possibly small. Given T in [0, 27} /3], we define

MAT) i= sup | [na(8) = n(O)llgems + [|1Dal 7 (1) = ()]
(A.4.20) telo7]

+ [1Da]? (wr(t) — w(t)]

|
Our goal is to prove that there exist two constants C' > 0 and T" > 0, depending only on Mg
as defined by (A.4.12), such that

(A.4.21) M(T)<C|N—1].

Notice that assumption (A.4.8) implies that, at time 0,

(A.4.22) My (0) = O(|A — 1]).

Hereafter, we denote by C various constants depending only on My, whose values may vary
from places to places.

To prove (A.4.21), we shall prove three inequalities. The key step is to prove that there exists
C' depending only on Mj such that, for any T in [0, 27} /3],

(A.4.23) 1Ux = Ul e oz -1y < €€ (1A = 1 + TMA(T)).

We shall also prove that one can control a lower order norm. Namely, given T in [0, 271/3],
one introduces

(A.4.24) ma(T) = sup [ lat) = n®ll—s + 1Dl (a0 = $(O)] 5]

We shall prove that, for any 7" in [0, 277/3],
(A.4.25) ma(T) < Ce"(I\ = 1| + TM\(T))
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and

Consequently, by combining these inequalities, we obtain that there exists C' > 0 depending
only on My such that, for any 7" in [0, 27} /3],

(A.4.27) My(T) < CeTO(|A — 1] + TMA\(T)).

Then, there exists T > 0, depending on Mg, such that My(T) < Ce®|X — 1| + M, (T) and
hence My(T) < 2CeC|\ — 1].

To prove (A.4.23), we form an equation for Uy — U and estimate its H5 !-norm. Write the
equations (A.4.19) under the form

(A.4.28) L(V,a)U = F.
Since (1, 1)) solves (A.4.1), we have

(A.4.29) L(Vy, an)Uy = Fi.
It follows from (A.4.28) and (A.4.29) that

(A.4.30) L(Vr,ax)(Un = U) = F — F — (L(Vx, an) — L(V, )\ U.

The proof is then in four steps. Firstly, we state an energy estimate for the equation
(A.4.30). Secondly, we prove various estimates for A(ny)Yy — A(n)y where A(n) denotes
either G(n), F(n),... This allows us to estimate the L>([0, T]; H*~!)-norm of the right-hand
side of (A.4.30). Thirdly, we estimate the L>°([0, T]; H*~1)-norm of Uy—U. Then we conclude
the proof.

STEP 1: Energy estimate

Here we state and prove an energy estimates for the equation (A.4.30).

Lemma A.4.3. Let o in R. Given 0 < T, consider two real valued functions V and &
such that V belongs to C°([0,T];C*(R)) and & belongs to C’O([O,T];C%(R)). Assume that
U e CO[0,T); H*(R)) and F € LY([0,T]; H*(R)) are real-valued and satisfy L(V,&)U = F.
Then

(A.4.31) 1T, < 4@ (HU(O)HHH + H‘fHLl([O,t];H“(R))>’
where

—— ¥ / vt
(A.4.32) AW = s IV en + a3 -
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Proof. Write
- 1 -
1771 #7177l
(Tp 0. U U crn = 5(Tp0s + (Tp02) YU UY) s g
Since V is real-valued and C! in z, (A.1.9) implies that
HTf/ax + (Tffaw) Hc(Hn,Hu) S HVHCN
and hence
1 ~ =112
(A.4.33) (T 0. U UY) e | S|V | e |0 -
Similarly, writing
1 1
|Da|? Ty e-1/200 = Ty O + [|Dal?  Tyjg-1/20: ]
and estimating the L(H*, H*)-norm of the commutator by means of (A.1.8) applied with
p =1, we find that

(A.4.34) )< 1D,|2 T ‘,1/2a$02,02>

vie SVl Ol

HHxHH
Also, using (A.1.9) with p = 1/2 to estimate the E(H‘“%, HH)-norm of Ty — (Td)*, we obtain
that

(A.4.35) ’< 1D, |2 ((Id + T@)Ul) ,U2> - <(Id +Ts) | Dy|2 U2, Ul>

HHXH#P HHrxH#H

- ~ 12

S lall s 1l
By classical arguments, one can further assume that U is C! in time with values in H¥, so
that the time derivative of H(NJHZH is given by 2<8tU, U>
previous estimates we find that

Huxpne Then, by combining the

d - - i . . i
101 S (10l + &l )10+ 1 a1 e

which yields the desired result. O

STEP 2: Estimates for the differences

Lemma A.4.4. Consider s >4+ 3, 1, in H(R) and ¢ € H%73_%(R). Set

1
(A.4.36) M = |Imll gs + lmell gs + H|D$|2 1/1‘

1.
H 3

There exists a constant C' depending only on M such that

(A.4.37) 1G(2)Y = Gn)Y |-z < Cllma = mll g1,
(A.4.38) 1B(n2) = Bm) | g2 < Cllnz = mll grs-1
(A.4.39) V()¢ = V)l gs—2 < Cllna = mll g1,
(A.4.40) 1E(2) = Fn) ¢l s < Clinz = mll s
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Proof. For y in [0, 1], introduce

9(y) = G(m + y(n2 —m)), b(y) = B(m +y(m2 —m)),
v(y) =V (m +y(p —m)), f(y) = F(m +y(nz —m))v.

To prove (A.4.37), (A.4.38), and (A.4.39), we have to estimate the H*~2-norm of g(1) — g(0),
b(1) — b(0), and v(1) — v(0). To do so, if ¢ denotes either g, b or v, we write

1
(A.441) (1) = ¢Ola < [ 1o/

Hs—2 dy

We shall prove that, for any fixed y in [0, 1], ||/ (y)]| gs—2 < C'[|m — n2|| ys—1 for some constant
C' depending only on M defined by (A.4.36). Similarly, to prove (A.4.40), we shall prove that
L (W)l grs=1 < C'|lm — n2]| ggs—1 for some constant C' depending only on M.

Let us prove (A.4.37). Fix y in [0, 1] and set

ny)=m+ym—m), n=ny)=mn—n.

We use the property, proved by Lannes [32], that one has an explicit expression of the deriva-
tive of G(n)y with respect to n. As in (2.6.8), one has

(A.4.42) 9'(y) = —=G(n(v)) [nb(y)] — 8z [7v(y)].-

In this proof, we denote by C' various constants depending only on M defined by (A.4.36)
(and independent of y € [0,1]). With this notation, it follows from (2.1.2) and the Sobolev
embedding that ||b(y)|| -1 < C and |[v(y)||ys—1 < C. Also, it follows from (2.1.2) and the
Sobolev embedding that for any s > 3+ 3, any y in [0,1] and any f in H%’s_%(R),

1G () fll e < O[22 f|

1.
H 2

By using this estimate with s replaced by s — 1 and f replaced by nB, we find that

|G (n(y) [7b(y)]]

Since H571(R) is an algebra, this gives

|G (n(y)) [nb(y)]]|

On the other hand, using the fact that H5~!(R) is an algebra, one has

102 [0 ()] |

Hs—2 S CHnb(y)HHs—l

or < CLIO) gz 10l amr < CJJ| s

o2 S il s [0 @) [ o1 < C | s -

By combining the two previous estimates we conclude that there exists a constant C' = C' (M)
such that, for any y in [0, 1], one has ||¢'(y)|l gs—2 < C' |||l gs—1. Then (A.4.37) follows from
(A.4.41).
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Since

1+@i?7(y))2 (9(y) + (0:0)un(v)), v(y) = dutd — b(y)un(y),

and since H5~2(R) is an algebra for s > 2 + 1, the previous estimate for the H5~?(R)-norm

b(y) =

of ¢'(y) easily implies that

(A.4.43) 16"(»)]|

Hs—2 + H,U/(y)‘ Hs—1 S C ||”7||H5_1 ’
which proves (A.4.38) and (A.4.39) (using (A.4.41)).

Let us prove (A.4.40). We want to prove that || f'(y)]

a1 < C|ne — 2l gs—1. Since

) =9(y) — |Dz| (¥ = Toyyn(y)) + 0= (Tyyn(y))

it follows from (A.4.42) that

) ==Gm) [nb(y)] — 0z [1v(y)] + |Dal Tyt + 02Ty
+ [Dz| Ty (yn(y) + 0= T (yn(y)-

Replace G(n(y)) by G(n(y)) — |Dz| + |Dz| in the first term of the right-hand side to obtain
f(y) = A1 + Ag + A3 with

Al = - |Dz| (ﬁb(y)) - a:c (W(y ) + |Dx| Tb(y)ﬁ + 8va(y)77,
Ay = —(G(n(y)) — |Dz]) (nb(y)),
Az = [Dz| Ty (yn(y) + 0z Ty yyn(y).

Let us estimate the H '-norm of Ay. Since s —3/2 > 3 — 1/2, we can apply the estimate
(2.5.1) with u = s (and the Sobolev embedding) to obtain that

[Aallros < CUIM@) s ) |1 D2 (b(w)]

3.
H 2

Now write
1
[1D2]2 (7b(y))]

This prove that [|Az|| gs—1 < C'[|0]] gs—1-

o3 S Il gs— 0@ s < Cllll o -

Next we estimate the H5~'-norm of Ajs. It follows from (A.1.12) that

1A et S V'@ o I L 7= + [[0" @] oo I @) g7 -

Since s > 5/2, the Sobolev embedding implies that

14s]| o1 < {6 ()]

o2 1) s + [0 W) oo 1) gy -
So the estimate (A.4.43) for ||b'(y)|| gs—2 and ||V (y)|| ys—2 imply that ||As|| o1 < C||9]] gs—1-
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Finally, it remains to estimate the H* !-norm of A;. Here we cannot estimate the terms
separately: we need to exploit some cancellations and follow the proof of Lemma 6.8 in [3].
Firstly, we paralinearize nb(y) and nv(y) (see (A.1.15)) to obtain that

- aa:(Tﬂv(y)) — Oy (RB(% U(y))

Directly from (A.1.17) and the Sobolev embedding we have

|1Dz| (Ra(1,b(y)))|
|1Dz| (Rs (1, v(y)))]

ot S 0l s 10| sr < Cllill v s
pro—1 S s o)l s < Cllll o -

It remains to estimate the H* '-norm of Ay := — |D,| (T3b(y)) — 0z(Tyv(y)). This we now
do using the identity G(n(y))b(y) = —0v(y) (see (A.3.11) or (4.1.7)). Write

Ay = =Ty | D2 | by) — Tyduv(y) + [Ty, [ Dl [0(y) = To.no(y),
and replace d,v(y) by —G(n(y))b(y) in the second term, to obtain
AL =Ty (Gn(y)) — 1Dal )b(y) + [T, 1Dzl [b(y) — To,i0(y).

Using (A.1.12), (2.5.1) and the Sobolev embedding, we have

1T3(G(n(y)) — 1D )b(y))|

oot Sl e [ (G() = [Dal )o()]] 1o
S Clll =1 10@) | rs—1 < C | o1 -

On the other hand, using (A.1.24) and the Sobolev embedding, we have

1T, 121 Jo(w)]

-1 S Illon [18@) | g1 < C il goa -

Also, using (A.1.12) and the Sobolev embedding H*~2(R) C L*(R), we have

| To,mv(y)|

ot S s o)l gsr < Clnll o -

This completes the proof of the lemma. ]

Use the abbreviate notations

G=Gn)y, B= B, V=V, F=F(n),
Gh =Gy, Bx= B )va, Va=V)va, = F(n)va.
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Lemma A.4.5. There exists a constant C' depending only on Mg such that for any X\ in
[1/2,3/2] and any T in [0,211/3],

(A.4.44) 1Gx = Gll oo o rpsms—2) < CMA(T),
(A.4.45) 1By = Bllpoo(o,rpsms-2) < CMA(T),
(A.4.46) VA =Vl qoapms—2 < CMA(T),
(A.4.47) I1Ex = Fllpooqoryms-1y < CMA(T),
(A.4.48) lax — a”LOO([O,T};HS*f’) < CM\(T),
(A.4.49) lox = el poeoryms—sy < CMA(T),
(A.4.50) 10rx — Bhll e 1ot < CMA(T).

Proof. We shall see that these inequalities hold with M) (T) replaced by

(A4.51) sup [ = (0o + D21 @a(0) = 010)|

57§:| *
t€[0,7] H™=2

Notice that, since 1y = A73y(\t, \2z), we have

1
(A4.52) sup sup | [l + [1Da12 0r(®)] oy | S M
AE[3,3]te[0.T]

where Mj is defined by (A.4.12).
To prove (A.4.44), we write

Gr— G = (G(m) — G()r+ G(n) [vx —¥].
The estimate (A.4.37) and (A.4.52) imply that

[(G(mx) — G(n)) |

On the other hand, the estimate (2.1.2) and the Sobolev embedding imply that

o2 < Cllox =0l g -

G [tn = ©] || yea < C||IDal? (01 — )]

3.
H°"2

By combining the two previous estimates we obtain (A.4.44).

The proof of (A.4.45), (A.4.46), and (A.4.47) are similar. Now the estimate (A.4.48) fol-
lows from similar arguments, the previous estimates and the formula (A.3.9). The estimate
(A.4.49) follows from (A.4.48) and the definition of & = /a — 1. To prove (A.4.50), one
differentiates in time the formula (A.3.9) using the rule (3.1.6) and then one replaces in the
expression thus obtained 0;V and dyn by the expressions given by Lemma A.3.1 (and one
replaces 9B by —V 0, B 4 a — 1 according to the definition a = 1+ 0;B + V9, B). O
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STEP 3: Energy estimates for Uy — U

Hereafter, we denote by C various constants depending only on M, (defined by (A.4.12)),
whose values may vary from places to places. With this notation, it follows from (2.1.2),
(3.1.8) and the Sobolev embedding that

(A4.53) IVllgos <C 1Bl <€, laller <C.

Remembering that
(A.4.54) ﬁ(V)\, Oé)\)(U)\ - U) = .F)\ - F+ (ﬁ(V)\, Oé)\) - ﬁ(V, Ot))U,
the wanted estimate (A.4.23) will be obtained by applying Lemma A.4.3 with

(Ad55)  U=U\—-U, V=V, a=ay, F=F—F+(LVra)-L(V,a)U.

Since V) = A"V (M, A2z) and o, = a(\t, \%z), as can be checked by direct computations, it
follows from (A.4.53) and the Sobolev embedding that

AS[UP VAl Lo o2 /310 @)y S IV e omujionmy) < ©
€5,
(A.4.56) o

sup [lay|

A L ([0,271 /31,C % (R)) ™ S lla HL°°([0T]C?( R)) =
E[272

Similarly, for any T in [0, 27} /3], the estimates (A.4.46) and (A.4.49) imply that

S[ulpg} VA = VI oo (f0,77;200 (r)) < CMA(T),

Aeld,

(A.4.57) o
sup [lax — all oo (o, 79;00(m)) < CMA(T).

Ael3,3]

We use (A.4.56) to control the quantity A defined by (A.4.32). Our next task consists in
proving that the source term F defined by (A.4.55) satisfies

(A.4.58) [Fal i < TCM(T).

([0,7];H5-1)

To do so, it is obviously sufficient to prove that H]:" H oo
and (A.1.12) we have

(o.m-1) < CMA(T). By (A4.57)

H (E(VN Ct)\) - E(V, a)) < CM)\(T).

UHLOO([O,T];HSA)

On the other hand, by using the paradifferential rules recalled in Appendix A.1, the estimates
proved in Lemma A.4.5 imply that

| Fx — < CMy(T).

‘FHLOO([O,T];HH)
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This completes the proof of (A.4.58) and hence gives the wanted estimate (A.4.23).
STEP 4: End of the proof
It remains only to prove (A.4.25) and (A.4.26).

Let us prove that
(A4.59) 78 = ll o o 1ps11-202y) < C€TC (A = 1] + TMA(T)),

(A.4.60) 1D2]2 (5 ~ O o < CeTO(|\ = 1] + TMA(T)).

[SHTT 2 (R)) =

Using the previous notations, write d;(ny —n) = G — G. By integrating in time this identity,
it follows from (A.4.44) that for any T in [0, 277 /3],

A () = (0l gs—2 < 112(0) = 0(0) || o2 + TCMA(T).

So the estimate (A.4.59) follows from M)(0) = O(|A —1|) (see (A.4.22)) and the fact that
72 (0) — n(0)|| js—2 is smaller than My(0). The estimate (A.4.60) is proved similarly. This
proves (A.4.25).

It remains only to prove (A.4.26). By definitions (A.4.20) and (A.4.24), and (A.4.18) we have

MAT) = sup [In(®) = @) s + 1021 (06) = (0|

3
H°"2

+||U% - U?|

Hs—1i|

and

mA(T) == sup_ | llna(t) = n(t) | -2 + [ 1D21 (0(5) = (1)

s—§:| *
te[0,T] H™ 2

So to prove (A.4.26), we need only prove that
(A.4.61) l[mx — 77‘|Loo([o,T];Hs—l(R)) < Cmy(T) + C U - UHLOO([o,T];Hs—l(R)) )
1
(A4.62) D2 (v =), o= &y S O + CIUN = Ullpeo o1 my) -

J;H™ 2 (R))

We shall prove (A.4.61) only. To do so, we shall write ) —7 in terms of U)\1 —U! and in terms
of a smoothing operator acting on 7y, — 7. To do so, remembering that o = \/a — 1, we first
write that

(A.4.63) T jan = (Id+Ta)n + (Ty — Id)n.
Then we let act a parametrix of T’ va» that is T} /y/a» o obtain

n="Tyyalyan+ (Id =Tyl ya)n
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and hence, using (A.4.63),

(A.4.64) n="T,a(ld+To)n+ Ty, 5T — Idn+ (Id - Ty 5T /5)0

Remembering that U = (Id + Ta)n, this yields n = KU' + Rn where
K=T,/ R=T,.4T -Id+Id-T,/,T/;)

Using obvious notations, one thus writes that

m —n=K\[U} —U'] + Ry[ny — ]
+ (Ky — K)U' 4 (R\ — R)n,

and hence

[y = nll g1 < HK)\H[:(HS—l,HS—l) HUAl - U1| gs—1 ”RAHL:(Hs—2,Hs—1) ln = 0l grs—2

B = Kl g o) 10| roms + 1B = Bll st prony l1nll o

Notice that
1]

Hs—1 S C7 Hn”HS*l S Ca HT])\ - 17HHS*2 S my.

Also, using (A.1.12) and (A.1.14) applied with p = 1, we easily check that
HKAH,C(HS*l,HS*l) S C, ”R)\HE(HS—27HS—1) S C7

where one used again that ,/ay and 1/,/ay are uniformly bounded in L*([0, (2/3)T1]; C*(R))
with respect to A € [1/2,3/2].

Finally, to estimate || K\ — K|| z(gs—1 gs-1) and [[Rx — R|| z(gs—1 gs-1) We apply (A.4.48) with
s replaced by s — 1, to obtain

lax = all oo (o, ry;00) S llax = all oo o779, pr5-1y < Cmn(T).

Indeed, as mentioned in the proof of Lemma A.4.5, the estimate (A.4.48) remains true when
M\(T) is replaced by (A.4.51). O

We conclude this appendix by proving a technical result. Consider two functions n and v
and use the notations recalled above (see (A.4.15) and (A.4.17)) for V and a. We consider
the operator C' defined by

1 1.0
Cn,9)U = Ty-o,w0eU" = Toyyyp, g |De? U

1 1
[Dol® Ty _g,uy1e-1/205U° + 1Dal* T,

1
a+1 1D,V

The operator C is of order 1. The following result states that its real part is of order 0 with
tame estimates for its operator norm.
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Lemma A.4.6. Consider ¢ €]4,400] and p € R. For any (n,¢) € C? x C22 such that
(n,) belongs to the set £, introduced after the statement of Proposition 1.1.6, and for any
U= (UYU?) in H*Y(R) x H*(R), there holds

2
(A.4.65) | Re(C(n, )V, U arncran| < K (Il + [1Dal? ¢l ) 1015
for some constant K depending only on ||1||q. + H|Dm\% @bHCQ.

Proof. Set V =V —0,¢ and & = a+1 |D,|n. It follows from (A.4.33), (A.4.34), and (A.4.35)
that

~ - 2
| Re(Cn. )V, U) st < (V]| o + 1] o )15
So to prove (A.4.65) we need only prove that
~ _ 102
[Vl + Gl < K(No)Ng  where Ny = [[1llce + [||Dal2 %o
Recall (cf (2.0.4)) that
(A.4.66) [Bllge-1 + IV]lge-1 < K(Ng)No.
Since V — 0,9 = BJd,n the wanted estimate for V — 9,1 follows from the previous inequality
and the fact that C1(R) is an algebra.
Also, using (A.4.66) and applying (2.0.4) with 1 replaced by B? or V2, there holds
GO BZ[|cos + GV gorr < K (NN
It thus follows from the identity (3.1.7) for a that
la =1+ G(m)nller < C(Ng)NG.

Now recall from (2.6.12) that, for any v > 3, there holds
IGM)Y = 1Dl Wllc-z < CUmles) Il [1Dal? ¢l .y
By using this estimate with n = ¢ we conclude that
la =1+ |Dxfnflca < C(N)NG.

So the wanted estimate for o + % |D,|n follows from the definition of o = y/a — 1. O
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