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Abstract

These lecture notes provide a self-contained introduction to microlocal analysis, a
branch of modern analysis used today in many fields. The main goal is to give
complete proofs of the continuity of pseudodifferential operators on Sobolev spaces,
of the symbolic calculus for pseudodifferential operators, and of Hörmander’s the-
orem on the propagation of singularities. This book also contains a self-contained
introduction to the study of the Fourier transform as well as exercises for those who
wish to test their understanding of the theory by practice. Students will find many
additional problems in the book [1] that Claude Zuily and I have recently written.
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Introduction

How to act on a function to study its regularity? How to act on the solutions of a
partial differential equation to conjugate it to a simpler equation? There exist many
possible answers to these general questions. The ones we will study in this course
come from a theory developed since the sixties, known as microlocal analysis, and
used today in many fields. It has its origin in the discovery made two centuries ago
by Fourier that the heat equation

mCD − ΔD = 0 where Δ =

3∑
9=1

m2
G 9
,

can be reduced to an ordinary differential equation

mCE + |b |2 E = 0 where |b |2 =
3∑
9=1
b2
9 .

Fourier observed already in 1812 that any function is a sum of oscillatory exponen-
tials, which are the functions R3 3 G ↦→ 48G·b ∈ C where G · b = G1b1 + · · · + G3b3 .
It turns out that this idea of decomposing a function into oscillatory exponentials is
extremely fruitful. It is now used in all sciences. In mathematical analysis, this idea
allows to solve many linear partial differential equations, but also to study subtle
qualitative properties of the solutions of nonlinear partial differential equations.

The study of microlocal analysis is a very vast subject. We refer the reader to the
books ofHörmander for a thorough presentation of this field. One of themain objects
studied by microlocal analysis are the so-called pseudo-differential operators, and
we limit the scope of these lectures to the study of the main properties of these
operators.

There exists many definitions with many variants of a pseudo-differential operator.
We follow here the classical definition introduced in the work of Kohn-Nirenberg
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and Hördmander. We say that ) is a pseudo-differential operator if we can define it
from a function 0 = 0(G, b) by the relation

(0.0.1) )
(
48G·b

)
= 0(G, b)48G·b .

We then say that 0 is the symbol for ) and we denote ) = Op(0). For instance, the
operator associated with the symbol 0 =

∑
U 0U (G) (8b)U is simply the differential

operator Op(0) = ∑
U 0U (G)mUG (with classical notations).

One of the main goal of these lectures is to show that the pseudo-differential calculus
is a process that associates to a symbol 0 = 0(G, b) defined on R3 × R3 an operator
Op(0) such that one can understand the properties of these operators (product,
adjoint, boundedness on the usual spaces of functions...) simply by looking at the
properties of the symbols. Then, by using symbolic calculus we will be able to study
the microlocal regularity of a function, i.e. study its wavefront set.

The main goal of this course is to give complete proofs of the continuity of pseudo-
differential operators on Sobolev spaces, of the symbolic calculus for pseudo-
differential operators, and of Hörmander’s theorem on the propagation of singu-
larities.

The application that associates an operator Op(0) to the symbol 0 is called a
quantization. There are very many quantizations that are known to be useful, which
are variants of (0.0.1). We will also discuss Bony’s quantization, which is perfectly
suited for non-linear problems.

This book also contains a self-contained introduction to the study of the Fourier
transform as well as exercises for those who wish to test their understanding of
the theory by practice. For additional applications and problems, the readers are
referred to the book [1] that Claude Zuily and I have recently written.

The study of pseudo-differential operators is a very vast subject. I refer to Hör-
mander [17] for the general theory as well as Alinhac and Gérard [2], Grigis and
Sjöstrand [14], Lerner [18], Métivier [19], Saint-Raymond [23], Taylor [25] or
Zworski [29] for other introductions to this theory.
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Part I

The Fourier transform
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Chapter 1

Functional analysis

We begin by studying some classical results in functional analysis that explain why
trigonometric polynomials are dense in the space of continuous or square integrable
periodic functions.

1.1 Stone–Weierstrass Theorem

The space of continuous functions has the property of being an algebra. It is
natural to try to determine whether some remarkable sub-algebras are dense. The
main example concerns the study of the approximation of continuous functions by
polynomial functions. There are two fundamental results. The first one, due to
Weierstrass, states that any continuous function can be approximated on a compact
interval by means of algebraic polynomials %(G) = ∑#

==0 0=G
=. The second shows

that a continuous periodic function can be approximated by trigometric polynomials
of the form %(G) = 20 +

∑#
==0(0= cos(=G) + 1= sin(=G)). Both results are in fact

consequences of the following abstract result.

Theorem 1.1.1 (Stone–Weierstrass). Let - be a compact metric space and equip
the space � (-;R) of continuous functions with real values of the uniform norm,
‖ 5 ‖ = supG∈- | 5 (G) |. Consider a unitary sub-algebra � of � (-;R) (this means
a subset of � (-;R) that contains the constant functions and which is stable by
addition and multiplication: if 5 , 6 are in � then 5 + 6 and 5 6 are in �). It is
further assumed that � separates the points of - in the sense that, for all G, H in -
with G ≠ H, there exists 5 ∈ � such that 5 (G) ≠ 5 (H). Then � is dense in � (-;R).
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Proof. The proof is based on three different ideas. The first one concerns the solution
of the problem of the approximation of the absolute value function by polynomials.

Lemma 1.1.2. For all 0 > 0, there exists a sequence of polynomials {?=}=∈N which
converges uniformly to the absolute value function on [−0, 0].

Proof. By the elementary change of variables D(G) ↦→ D(G/0), we return to the
case 0 = 1. We will start by constructing an auxiliary sequence of polynomials that
converges uniformly to the square root function over the interval [0, 1]. Consider
the sequence of functions %= : [0, 1] → R defined by induction:

(1.1.1) %0 = 0 and %=+1(G) = %= (G) +
1
2
(
G − %= (G)2

)
.

Then %= is a polynomial function such that 0 ≤ %= (G). Let us show by recurrence
that %= (G) ≤

√
G for all G in [0, 1]. For this we write

%=+1(G) − %= (G) =
1
2
(
√
G − %= (G)) (

√
G + %= (G))

then the induction hypothesis is used to study the right-hand side. We obtain that
the first factor

√
G − %= (G) is non negative and that the second factor

√
G + %= (G) is

bounded by 2, hence the desired result:

%=+1(G) ≤ %= (G) + (
√
G − %= (G)) =

√
G.

Now, going back to the definition of the sequence (1.1.1), we see that the property
0 ≤ %= (G) ≤

√
G implies that, for all G in [0, 1], the sequence {%= (G)}=≥0 is

increasing and bounded; and therefore convergent. The limit %(G) of this sequence
satisfies the equation %(G) = %(G) + 1

2 (G − %(G)
2), hence %(G) =

√
G. Then, we use

the classical Dini’s lemma (see Lemma 1.1.5) to show that the sequence {%=}=≥0
converges uniformly to its limit

√
G on [0, 1].

Now, define ?= (G) = %= (G2) to obtain a sequence of polynomials that converges
uniformly to the absolute value function over the symmetric interval [−1, 1]. This
completes the proof. �

The second idea of the proof is that � satisfies the following stability property.

Lemma 1.1.3. If 5 and 6 are two elements of �, then max{ 5 , 6} and min{ 5 , 6}
belong to �.

6



Proof. Let 5 , 6 in �. Then 5 + 6 and 5 − 6 belong to �. Thus, to prove this lemma,
it is sufficient to prove that � is stable by taking the absolute value (that is, to prove
that if 5 belongs to �, then | 5 | too). Indeed, we will deduce the desired result from
the elementary identities

max{G, H} = G + H + |G − H |
2

, min{G, H} = G + H − |G − H |
2

.

Consider a function 5 in �, and let us show that | 5 | is in �. There exists a sequence
{ 5?}?∈N with 5? ∈ � and which converges to 5 uniformly on - . Since - is
compact, 5 (-) is bounded in R, from which we deduce that there exists 0 > 0 such
that 5? (-) ⊂ [−0, 0] for all ? ∈ N.

Lemma 1.1.2 implies that there exists a sequence of polynomials {?= (C)} that con-
verges to the absolute value |C | uniformly on [−0, 0]. Then, for all Y > 0, we can find
two indices = and ? such that



 5? − 5 

 ≤ Y/2 and supC∈[−0,0] |?= (C) − |C | | ≤ Y/2. It
follows directly that



?= ( 5?) − | 5 |

 ≤ Y. Since � is an algebra, ?= ( 5?) belongs to
�, which implies that | 5 | belongs to �. �

It then remains to explain how this property of being stable by switching to absolute
value comes into play. This is the object of the following lemma.

Lemma 1.1.4. Let - be a compact topological space that contains at least two
elements. Assume that � ⊂ � (-;R) satisfies the two following conditions:

a. For all D, E in �, the functions max{D, E} and min{D, E} are in �;

b. for any pair of distinct points of - , if U1 and U2 are two real numbers, there exists
D ∈ � such that D(G1) = U1 and D(G2) = U2.

Then � is dense in � (-;R).

Proof. Let 5 ∈ � (-;R) and Y > 0. Let us fix a point G ∈ - . For all H ≠ G, there
exists EH ∈ � such that EH (G) = 5 (G) and EH (H) = 5 (H). Set

OH = {I ∈ - : EH (I) > 5 (I) − Y}.

For all H ∈ - , OH is an open set which contains both H and G, so - = ∪H≠GOH. By
compactness we can extract a finite subcover, which means that - = ∪A

9=1OH 9 , with
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H 9 ≠ G for all 9 . Let us then set DG = max{EH1 , . . . , EHA }. Then this function satisfies
DG ∈ � and furthermore

DG (G) = 5 (G), and ∀G′ ∈ -, DG (G′) > 5 (G′) − Y.

We now vary G and define for each G ∈ - ,

ΩG = {G′ ∈ - : DG (G′) < 5 (G′) + Y}.

ThusΩG is an open set by continuity of E. MoreoverΩG contains G. The compactness
of - can be used again to get a finite number of points such that - = ∪?

8=1ΩG8 . Finally,
let us set D = min{DG1 , . . . , DG? }. Then D ∈ � and, for all G ∈ - , we have

5 (G) − Y < D(G) < 5 (G) + Y.

This proves that ‖ 5 − D‖ ≤ Y, which ends the proof. �

The end of the proof of the Stone-Weierstrass theorem is easy. Firstly, if - is reduced
to a single element then the result is trivial because � (-;R) consists of constant
functions, which belong to � by assumption. Otherwise, if - contains at least
two elements, then Lemma 1.1.3 shows that � = � satisfies the first hypothesis of
Lemma 1.1.4. It only remains to check that � = � satisfies the second hypothesis.
For that, consider G1, G2 in - and two real numbers U1 and U2. As � separates the
points, there exists 5 in � such that 5 (G1) ≠ 5 (G2). We then define D by

D(G) = U1 + (U2 − U1)
5 (G) − 5 (G1)
5 (G2) − 5 (G1)

.

This function belongs to � (thus to �) and satisfies the desired property. This
completes the proof of the theorem of Stone-Weierstrass. �

For the sake of completeness, we recall Dini’s lemma that we used in the proof of
the Stone-Weierstrass theorem.

Lemma 1.1.5 (Dini). Let � be a compact interval of R. Consider a sequence of
continuous functions 5= : � → R with = ≥ 0, which is increasing in the sense of
5= ≤ 5=+1. If the sequence converges pointwise to a continuous function 5 ∈ �0(�),
then it converges uniformly.

Proof. Let Y > 0. For all integer =we putΩ= = {G ∈ � : 5= (G) > 5 (G)−Y}. The sets
Ω= are open because the functions 5= and 5 are continuous by assumption. Moreover
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these sets satisfy Ω= ⊂ Ω=+1 and � = ∪=∈NΩ= (because the sequence ( 5=)=∈N is
increasing and converges pointwise to 5 ). By the Borel-Lebesgue property, there
exists an integer< such that � = Ω<, and thus such that for all G ∈ �, 5< (G) > 5 (G)−Y.
By increasing convergence one has the other inequality: 5< (G) ≤ 5 (G). Thus,
‖ 5 − 5< ‖∞ ≤ Y, which proves that the convergence is uniform. �

The next result is an easy extension of the Stone–Weierstrass result to the case of
complex valued functions.

Corollary 1.1.6 (Stone–Weierstrass, complex version). Consider a compact metric
space - . Let us equip the space� (-;C) of those continuous functions with complex
values with the uniform norm, ‖ 5 ‖ = supG∈- | 5 (G) |. Consider a sub-algebra � of
� (-;C), unitary, stable by complex conjugation (if 5 ∈ � then 5 belongs to �) and
separating the points of - . Then � is dense in � (-;C).

Proof. Note that if 5 ∈ � then Re 5 and Im 5 belong to �. Set � = � ∩ � (-;R).
Then � is a sub-algebra of�0(-;R) which is unitary and which separates the points
(if G ≠ H and if 5 ∈ � is such that 5 (G) ≠ 5 (H), then either Re 5 is suitable, or
Im 5 is suitable). So � is dense in � (-;R). This implies the desired result by
decomposition into real and imaginary parts. �

We are going to apply the previous result to the study of periodic functions 5 : R3 →
C. To simplify the notation, rather than considering arbitrary periods, wewill assume
that the functions are 2c-periodic with respect to each variable (otherwise use
change of variables of the form 5 (G1, . . . , G3) ↦→ 5 ()1G1/(2c), . . . , )3G3/(2c))).
By definition, a function 5 : R3 → C is 2c-periodic with respect to each variable if

5 (G + 2c4 9 ) = 5 (G).

We will simply say below that 5 is periodic.

Definition 1.1.7. A trigonometric polynomial is a function % : R3 → C of the form

%(G) =
∑
|=|≤#

2=4
8=·G ,

with # ∈ N, = = (=1, . . . , =3), |=| = =1+· · ·+=3 , 2= ∈ C and = ·G = =1G1+· · ·+=3G3 .

Corollary 1.1.8 (Density of trigonometric polynomials). Consider a continuous
and 2c-periodic function 5 : R3 → C. For all Y > 0, there exists a trigonometric
polynomial % such that supG∈R3 | 5 (G) − %(G) | < Y.
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Proof. Let us note S1 the circle of complex numbers of modulus 1 and introduce
T3 = S1 × · · · × S1, the product of 3 copies of S1. Consider the algebra of functions
5 : T3 → Cwhich are continuous. Denote by � the sub-algebra formed of functions
of the form %(I) = ∑

|=|≤# 2=I
= where I= = I=1

1 · · · I
=3
3
. Then � is a sub-algebra of

� (T3;C), unitary, stable by conjugation and separating the points (trivially). The
Stone-Weierstrass theorem (in the complex version) implies that � is dense. To
conclude the proof, let us now consider 5 : R3 → C continuous and 2c-periodic
with respect to each variable. Then we can define a function � : T3 → C by
� (48G1 , . . . , 48G3 ) = 5 (G1, . . . , G3) and apply the previous result. �

1.2 Hilbertian bases

Consider a complex Hilbert space � equipped with a scalar product (·, ·).

A sequence of elements (4=)=∈N in a Hilbert� space is called an orthonormal system
if and only if

(4=, 4<) = X<= ∀=, < ∈ N,

where X<= = 1 if = = < and 0 otherwise.

The following result states that one can always obtain such orthonormal systems
starting from a family of linearly independent vectors.

Proposition 1.2.1 (Gram-Schmidt orthonormalization). Let � be a vector space
with a scalar product. Consider a family (D=)=∈N of linearly independent vectors.
Then there exists an orthonormal system (4=)=∈� such that, for all # ∈ N,

vect{40, . . . , 4# } = vect{D0, . . . , D# }.

Proof. We set 40 = D0/‖D0‖ and define the following elements by recurrence, so
that

4= = E=/‖E=‖ where E= = D= − (D=, 40)40 − · · · − (D=, 4=−1)4=−1.

We check that 4= is orthogonal to vect{40, . . . , 4=−1}. �

The main inequality concerning orthonormal system is given by the following result.
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Lemma 1.2.2 (Bessel Inequality). Consider an orthonormal system (4=)=∈N and 5
an element of �. Then

∞∑
==0
| ( 5 , 4=) |2 ≤ ‖ 5 ‖2 .

Proof. Set (# 5 =
#∑
==0
( 5 , 4=)4=. We have

‖(# 5 ‖2 =
∑

0≤=1,=2≤#
( 5 , 4=1) ( 5 , 4=2) (4=1 , 4=2) =

#∑
==0
| ( 5 , 4=) |2 .

We deduce that

( 5 , (# 5 ) =
#∑
==0
( 5 , ( 5 , 4=)4=) =

#∑
==0
| ( 5 , 4=) |2 = ‖(# 5 ‖2 .

Consequently, the Cauchy-Schwarz inequality implies that

‖(# 5 ‖2 = ( 5 , (# 5 ) ≤ ‖ 5 ‖ ‖(# 5 ‖ ,

hence ‖(# 5 ‖ ≤ ‖ 5 ‖ and the wanted result follows by letting # goes to +∞. �

Theorem 1.2.3. Consider a Hilbert space �. The following properties are equiva-
lent:

8) The vector space generated by {4=} is dense in �.

88) For all 5 ∈ �, ‖ 5 ‖2 =
+∞∑
==0
| ( 5 , 4=) |2.

888) For all 5 ∈ �, the series
∑
( 5 , 4=)4= converges to 5 .

8E) If 5 ∈ � satisfies ( 5 , 4=) = 0 for all = ∈ N then 5 = 0.

Proof. The implications 888) ⇒ 8) and 888) ⇒ 8E) are trivial. Let us prove that
88) ⇒ 888). To do so, we use the identity ( 5 , (# 5 ) = ‖(# 5 ‖2 (see the proof of the
above lemma) to deduce that

‖ 5 − (# 5 ‖2 = ‖ 5 ‖2 + ‖(# 5 ‖2 − 2 Re( 5 , (# 5 ) = ‖ 5 ‖2 − ‖(# 5 ‖2 ,
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which implies

(1.2.1)






 5 − #∑
==0
( 5 , 4=)4=






2

= ‖ 5 ‖2 −
#∑
==0
| ( 5 , 4=) |2 .

This proves that 5 −
#∑
==0
( 5 , 4=)4= converges to 0 if

#∑
==0
| ( 5 , 4=) |2 converges to ‖ 5 ‖2.

Consider the implication 8) ⇒ 88). Let us recall that ‖(# 5 ‖ ≤ ‖ 5 ‖ for all 5 ∈ �.
Let � be the vector space generated by {4=}=∈N. Let Y > 0 and let 5 ′ ∈ � such that
‖ 5 − 5 ′‖ < Y. For # large enough we have (# 5 ′ = 5 ′. In addition

‖(# 5 − (# 5 ′‖ = ‖(# ( 5 − 5 ′)‖ ≤ ‖ 5 − 5 ′‖ ≤ Y,

so
‖(# 5 − 5 ‖ ≤ ‖(# 5 − (# 5 ′‖ + ‖(# 5 ′ − 5 ′‖ + ‖ 5 ′ − 5 ‖ ≤ Y + 0 + Y.

Therefore, ( 5 − (# 5 ) converges to 0. Now we can pass to the limit in (1.2.1). and

we get ‖ 5 ‖2 =
+∞∑
==0
| ( 5 , 4=) |2, which concludes the proof of 8) ⇒ 88).

We now move to the implication 8E) ⇒ 888) (this is where we use the fact that �
is complete). Set 0= = ( 5 , 4=) and 5? =

∑?

==1 0=4=. Bessel’s inequality results

in (0=) ∈ ℓ2. Now, for < > ? we have


 5< − 5?

2

=
∑<
==?+1 |0= |

2 and thus the
sequence ( 5?) is a Cauchy sequence, hence converges to an element denoted by
5 ′. But then (considering the partial sums and passing to the limit) we find that
( 5 ′, 4=) = 0= for all =, which means that ( 5 − 5 ′, 4=) = 0 for all =. We deduce that
5 =

∑∞
==1 0=4=, which concludes the proof. �

1.3 Fourier series

For ? in [1,∞], wewill note !?per(R3) the space ofmeasurable functions 5 : R3 → C,
which are periodic and such that | 5 |? is integrable on the cube [0, 2c]3 (then | 5 |? is
integrable on any compact of R3 by periodicity). We quotient the spaces !?per(R3)
by the equivalence relation of equality almost everywhere.

A trigonometric polynomial is a function of the form

(1.3.1) %(G) =
∑
|: |≤#

0:4
8: ·G , 0: ∈ C, : ∈ Z3 ,
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where we used the notations

: · G = :1G1 + · · · + :3G3 , |: | =
√
:2

1 + · · · + :
2
3
.

Let 4: be the function (called the oscillatory exponential) defined by

4: (G) = 48: ·G = exp(8: · G),

and introduce the scalar product (·, ·) defined on !2
per(R3) by

( 5 , 6) = 1
(2c)3

∫
[0,2c]3

5 (G)6(G) dG.

The key point is the orthogonality relation

(4: , 4: ′) = X:
′

: (equal to 1 if : = :′ and 0 otherwise),

which is satisfied by a direct calculation. We deduce that the coefficients 0: in
(1.3.1) satisfy

0: =
1
(2c)3

∫
[0,2c]3

%(G)4−8: ·G dG, ∀: ∈ Z3 .

This motivates the following definition.

Definition 1.3.1. Given a function 5 ∈ !1
per(R3), we define the : th-Fourier coeffi-

cient of 5 by

5̂ (:) = ( 5 , 4: ) =
1
(2c)3

∫
[0,2c]3

5 (G)4−8: ·G dG,

and we call Fourier series of 5 the sequence ((# ( 5 ))#∈N defined by

(# 5 (G) =
∑
|: |≤#

5̂ (:)48: ·G .

There exists 6 ∈ !1
per(R3) such that ‖(#6 − 6‖!1 does not tend to 0 as # goes to

+∞. This explains that one has to seek convergence in other spaces. The simplest
and perhaps most important result to know about Fourier series is the following
theorem.

Theorem 1.3.2. For all 5 ∈ !2
per(R3), we have

5 =
∑
:∈Z3

5̂ (:)48: ·G

13



with convergence in !2
per(R3), which means that

lim
#→+∞

‖ 5 − (# 5 ‖!2 = 0 where (# 5 (G) =
∑
|: |≤#

5̂ (:)48: ·G .

In addition
‖ 5 ‖2

!2 =
∑
:∈Z3
| 5̂ (:) |2.

Conversely, if 2 = (2: ) ∈ ℓ2(Z3), then the series
∑
:∈Z3

2:4
8: ·G converges in !2

per(R3)

to a function 5 satisfying 5̂ (:) = 2: .

Proof. We have already noticed that (4: ):∈Z3 is an orthonormal family : (4: , 4: ′) =
0 if : ≠ :′ and ‖4: ‖!2 = 1. Thus, according to the Theorem 1.2.3 on Hilbertian
bases, to prove this result, it is sufficient to show that the vector space spanned by
� = vect{4: : : ∈ Z3} is dense in !2

per(R3). Let 5 ∈ !2
per(R3) and Y > 0. Since

the set �0
per(R3) of continuous and 2c-periodic functions is dense in !2

per(R3), there
exists 6 ∈ �0

per(R3) such that ‖ 5 − 6‖!2 ≤ Y. Moreover, we have seen that the Stone-
Weierstrass theorem implies that trigonometric polynomials are dense in �0

per(R3).
Precisely, the Proposition 1.1.8 implies that there exists ℎ ∈ vect{4: : : ∈ Z3} such
that ‖6 − ℎ‖!∞ ≤ Y. We deduce that

‖ 5 − ℎ‖!2 ≤ ‖ 5 − 6‖!2 + ‖6 − ℎ‖!2 ≤ Y + (2c)3 ‖6 − ℎ‖!∞ ≤ (1 + (2c)3)Y.

This shows that � is dense in !2
per(R3), which ends the proof. �

14



Chapter 2

The Fourier transform

2.1 From sums to integrals

We will study a decomposition analogous to the Fourier series decomposition, but
without making any periodicity hypothesis. Here also the goal is to write a function
as a sum of oscillatory exponentials. Recall that an oscillatory exponential is by
definition a function of the form G ↦→ exp(8G · b) with b ∈ R3 . The difference
with Fourier series is that this sum will be an integral on R3 instead of being a sum
indexed by : ∈ Z3 .

The Fourier series decomposition of a periodic function is well understood: it is
the decomposition of an element of a Hilbert space on a Hilbertian basis. On the
other hand, the decomposition of a non-periodic function as a sum (in the sense
of integrals) of oscillatory exponentials is less intuitive. To understand how this
decomposition is obtained, we will start from the Fourier series decomposition for
functions which are 2)-periodic with respect to each variable, and then make ) go
to +∞. The heuristic idea is to see a function defined on R3 as a periodic function
of period +∞ with respect to each variable.

Consider a function 5 which is �∞ and has compact support. For ) large enough,
the support of 5 is included in &) =] − ),) [3 . We will compute the Fourier
decomposition of 5 in !2(&) ) and make ) tend to +∞. To do so, let us let us
introduce the scalar product ( 5 , 6) = (2))−3

∫
&)

5 (G)6(G) dG on !2(&) ) and set

4: (G) = exp(8c: · G/)) where : ∈ Z3 . These functions are 2)-periodic with respect
to each variable and we have (4: , 4;) = X;: . The Fourier coefficients of 5 are given

15



by

5̂: = ( 5 , 4: ) =
1
(2))3

∫
&)

5 (G) exp
(
− 8c: · G

)

)
dG.

Let us fix G ∈ R3 . Since 5 ∈ �∞0 (&) ), we have

5 (G) =
∑
:∈Z3

5̂:4: (G)

(with normal convergence and thus pointwise). We can therefore write that

5 (G) =
∑
:∈Z3

5̂:4: (G) =
∑
:∈Z3

1
(2))3

(∫
&)

5 (H) exp
(
− 8c: · H

)

)
dH

)
exp

( 8c: · G
)

)
.

As the support of 5 is included in &) , we observe that

1
23

(∫
&)

5 (H) exp
(
− 8c: · H

)

)
dH

)
exp

( 8c: · G
)

)
= �

( :
)

)
with

� (b) :=
1
23

exp
(
8cb · G

) ∫
R3
5 (H) exp

(
− 8cb · H

)
dH.

If we put ℎ = 1/) , then 5 (G) is equal to ∑
:∈Z3 ℎ

3� (:ℎ). When ) tends to +∞, the
step ℎ tends to 0 and this sum is a Riemann sum which converges, formally 1, to∫
R3
� (b) db. We find that

5 (G) = 1
23

∫
R3
48cG·b

(∫
R3
4−8cH·b 5 (H) dH

)
db.

We prefer to write the previous relation in the form

(2.1.1) 5 (G) = 1
(2c)3

∫
R3
48G·b

(∫
R3
4−8H·b 5 (H) dH

)
db.

This formula corresponds to a frequency description of the function 5 (in the

physical literature, b is called the wave vector and |b | =
√
b2

1 + · · · + b
2
= is said to be

the frequency).

1As we will see later, it is easy to show that if 5 is �∞ with compact support on R3 , then the
function � is integrable on R3 . This would allow to justify the passage to the limit when ) tends to
+∞.
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Definition 2.1.1. Let 5 ∈ !1(R3). We call Fourier transform of 5 the function,
denoted 5̂ or F ( 5 ), defined for all b ∈ R3 by

(2.1.2) 5̂ (b) =
∫
R3
4−8G·b 5 (G) dG.

The assumption that 5 is an integrable function is the minimal assumption for the
formula (2.1.2) to make sense for the Lebesgue integral. This is why we start by
defining the Fourier transform on !1(R3). But we will see that it is natural to work
with other function spaces. We will see two results in this direction. As for the
Fourier series, an essential result is that the Fourier transform preserves the !2-norm
(up to a constant depending on c). This allows us to extend the definition of the
Fourier transform from !1(R3) ∩ !2(R3) to !2(R3). We will also see how to define
the Fourier transform on a much larger space, the space of tempered distributions,
which contains all the Lebesgue spaces !? (R3) as well as the Lebesgue spaces
!
?
per(R3) of periodic functions, and this whatever 1 ≤ ? ≤ ∞. In particular, this

Fourier transform extended to the space of tempered distributions also contains the
theory of Fourier series. Let us add that the space of tempered distributions contains
many other spaces useful in the theory of partial differential equations. Wewill study
the case of the Hölder spaces, and introduce the Littlewood-Paley decomposition to
give a characterization of these spaces which is very useful.

2.2 Schwartz class

To construct a Fourier transform on a space which is as big as possible, we will use a
duality principle. The process is the following: if) is a continuous linear application
from � into � then )∗ is continuous from �∗ into �∗. Moreover if � ⊂ !1(R3)∗,
then !1(R3) ⊂ �∗. So to extend the definition of the Fourier transform to a space
larger than !1(R3), we will try to define it as the adjoint of an isomorphism of a
space � included in !1(R3). (A word of caution: this corresponds very roughly to
what we are going to do. Indeed, we will not be able to work in the framework of
Banach spaces. We will have to work in the framework of Fréchet spaces.)

We have to look for a space, the smallest possible, such that the Fourier transform
is an isomorphism of this space in itself. This principle is very simple but we will
see that its implementation is subtle. Indeed, the following proposition shows that
we cannot use the space we spontaneously think of (the space of functions �∞ with
compact support).

17



Proposition 2.2.1. There exists no non-zero 5 ∈ !1(R) function with compact
support and whose whose Fourier transform is also compactly supported.

Proof. Let 5 ∈ !1(R) have compact support. Then we can define � : C→ C by

� (I) =
∫
R
4−8GI 5 (G) dG.

Note that � (b) = 5̂ (b) for all b in R. Hence, � vanishes on an interval. As � is
an entire function (holomorphic on C), we get that � = 0 because a non zero entire
function can only vanish on a discrete set. �

Instead of working with �∞ functions with compact support, we will work with
work with functions �∞ which are rapidly decayingat infinity, in the sense of the
definition below.

Definition 2.2.2. (8) A function 5 is said to be rapidly decreasing if the product of
5 by any polynomial is a bounded function.

(88) A function 5 is said to belong to the Schwartz class S(R3) if 5 and all its
derivatives are rapidly decreasing. It is equivalent to say that, for all ? ∈ N,

N? ( 5 ) =
∑

|U |≤?,|V |≤?




GUmVG 5 



!∞
< +∞.

Remark 2.2.3. Note that
�∞0 (R

3) ⊂ S(R3).

The basic example of a function of S(R3) that is not an element of �∞0 (R
3) is the

gaussian G ↦→ exp(− |G |2). This function plays a special role in the study of the
Fourier transform. More generally, for all complex numbers I of real part Re I > 0,
the function exp(−I |G |2) belongs to S(R3).

Note that N? is a norm on S(R3) for all integer ?. However, if we consider S(R3)
as a normed space for this norm, then we do not get a Banach space (a Cauchy
sequence for this norm does not converge in general to a �∞ function). The correct
topological notion is that of a topological vector space with a family of semi-norms.

Proposition 2.2.4. The Schwartz class is a graded Fréchet space for the topology
induced by the family of semi-norms {N?}?∈N.
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The following proposition contains several simple properties which are very useful.

Proposition 2.2.5. Suppose that 5 belongs to the Schwartz class S(R3). Then

(i) For all multi-indices U and V in N3 , we have GUmVG 5 ∈ S(R3) (and the
application 5 ↦→ GUm

V
G 5 is continuous from S(R3) into S(R3)).

(ii) The product of two elements of S(R3) belongs to S(R3) (and the product is
continuous from S(R3) × S(R3) into S(R3)).

(iii) For all ? ∈ [1, +∞], we have 5 ∈ !? (R3) (and the injection of S(R3) into
!? (R3) is continuous).

(iv) �∞0 (R
3) is dense in S(R3).

(v) The product of convolution of two elements of S(R3) belongs to S(R3) (and
the convolution product application is continuous).

(vi) The Fourier transform 5̂ belongs to �1(R3) and, for all 1 ≤ 9 ≤ 3 and all
b ∈ R3 ,

mb 9 5̂ (b) = F
(
(−8G 9 ) 5

)
.

(vii) For all 1 ≤ 9 ≤ 3 and all b in R3 ,

b 9 5̂ (b) = −8F
(
mG 9 5

)
(b).

Proof. The first two points are immediate consequences of the definition of S(R3).
To show (iii), we begin by observing that
(2.2.1)

‖ 5 ‖!1 =

∫
| 5 (G) | dG ≤ sup

{
(1 + |G |)3+1 | 5 (G) |

} ∫
dG

(1 + |G |)3+1
≤ �N3+1( 5 ).

Then we observe that 5 ∈ !∞(R3) (direct) and we conclude that 5 ∈ !? (R3) for all
? ∈ [1, +∞] because !1(R3) ∩ !∞(R3) is included in !? (R3).

To prove the point (iv), consider a function j ∈ �∞0 (R
3) and show that, for any

function 5 of S(R3), the sequence j(·/:) 5 converges to 5 in S(R3) when :

tends to +∞. For that, it is enough to verify that, for all ? ∈ N, the semi-norms
N? ( 5 − j(·/:) 5 ) tend to 0. This calculation is left as an exercise.
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To show (v), consider 5 and 6 in S(R3). Then the convolution product 5 ∗ 6 is �∞
on R3 and, for all multi-index V in N3 , we have mVG ( 5 ∗ 6) = (mVG 5 ) ∗ 6. Moreover,
for all < ∈ N, we have

|G |< ≤ (|G − H | + |H |)< ≤ (2 max{|G − H | , |H |})< ≤ 2< ( |G − H |< + |H |<).

So
���GUmVG ( 5 ∗ 6) (G)��� is bounded by∫ (

|G − H | |U |
���mVG 5 (G − H)��� |6(H) | + ���mVG 5 (G − H)��� |H | |U | |6(H) | ) dH.

We then use the obvious inequality‖� ∗ �‖!∞ ≤ ‖�‖!∞ ‖�‖!1 and the points (i)
and (iii) to bound the !1-norm of 6 and HU6 by semi-norms of 6 in S(R3).

To prove the point (vi), it suffices to observe that the hypotheses of the Lebesgue
derivation theorem are satisfied and then apply this result. Finally, the point (vii) is
obtained by writing that

b 94
−8G·b = 8mG 9 4

−8G·b ,

then integrating by parts:

b 9 5̂ (b) =
∫ (

8mG 9 4
−8G·b ) 5 (G) dG = −8 ∫ 4−8G·bmG 9 5 (G) dG = −8F

(
mG 9 5

)
(b).

This manipulation is justified because 5 is rapidly decreasing (we can then integrate
by parts on a ball �(0, ') and then make ' tend to +∞). �

The following proposition shows why S(R3) is the right space to study the Fourier
transform.

Proposition 2.2.6. The Fourier transform maps S(R3) to itself, and there exist
constants �? such that, for all 5 in S(R3),

(2.2.2) N? ( 5̂ ) ≤ �?N?+3+1( 5 ).

This proves that the Fourier transform is continuous from S(R3) into itself.

Proof. Let 5 ∈ S(R3). We can use the previous proposition to get���bUmVb 5̂ (b)��� = ���F {
mUG

(
GV 5 (G)

)}��� .
20



Suppose that |U | ≤ ? and |V | ≤ ?. Using the inequality ‖D̂‖!∞ ≤ ‖D‖!1 and the
formula of Leibniz, it comes���bUmVb 5̂ (b)��� ≤ 

mUG (

GV 5
)


!1 ≤  

∑
|U′ |≤?,|V′ |≤?




GV′mU′G 5





!1
.

The desired inequality is derived by applying (2.2.1). �

We have said that Gaussian functions play an important role in the study of the
Fourier transform. It is because of the following result, which states that the Fourier
transform of a Gaussian function is a Gaussian function.

Proposition 2.2.7. For all 0 > 0 and all dimension 3 ≥ 1,

F
(
4−0 |G |

2
)
=

(c
0

)3/2
4−|b |

2/40 .

Proof. Let us start with the case of dimension of space 3 = 1 in the special case
with 0 = 1. Set 5 (G) = 4−|G |2 . The Fourier transform of 5 , denoted F ( 5 ) (b), is a
regular function regular function which satisfies

(F 5 )′(b) =
∫
R
(−8G)4−8Gb4−G2

dG =
8

2

∫
R
4−8GbmG4

−G2
dG

=
−8
2

∫
R
(−8b)4−8Gb4−G2

dG

so

(F 5 )′(b) = −1
2
b (F 5 ) (b).

By using ∫
R
4−G

2
dG =

√
c

we deduce that
(F 5 ) (b) = 4−b2/4(F 5 ) (0) =

√
c4−b

2/4.

We get the result by some simple manipulations: if 5 (G) ∈ !1(R3) then the
Fourier transform of 5 (G/_) is |_ |3 5̂ (_b). Moreover the Fourier transform of
51(G1) · · · 53 (G3) is 5̂1(b1) · · · 5̂3 (b3). �

We are then able to prove the following fundamental result.
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Theorem 2.2.8. If D belongs to S(R3), then, for all G in R3 ,

D(G) = 1
(2c)3

∫
48G·b D̂(b) db.

Remark 2.2.9. We saw that if D ∈ S(R3) then F834ℎ0CD ∈ S(R3). We have also
seen that S(R3) ⊂ !1(R3) and thus the function b ↦→ 48G·b D̂(b) is integrable. The
previous formula makes sense for all G ∈ R3 .

Proof. Given Y > 0 let us introduce

DY (G) =
1
(2c)3

∫
48G·b D̂(b)4− 1

2 Y
2 |b |2 db.

Using the previous lemma we compute (handling only convergent integrals)

DY (G) =
1
(2c)3

∬
48(G−H)·bD(H)4− 1

2 Y
2 |b |2 dH db

=
1

(2c)3/2

∫
D(H)4−

1
2Y2 |G−H |

2
Y−3 dH

=
1

(2c)3/2

∫ (
D(G + YH) − D(G)

)
4−

1
2 |H |

2
dH + D(G).

Since
|D(G + YH) − D(G) | ≤ Y |H | ‖D′‖!∞ ,

we obtain the desired result by passing to the limit when Y tends to 0. �

Theorem 2.2.10. If 5 and 6 belong to S(R3), then∫
5 (G)6(G) dG = 1

(2c)3

∫
5̂ (b)6̂(b) db.

In particular, for all 5 in S(R3), there holds

‖ 5 ‖2
!2 =

1
(2c)3



 5̂ 

2
!2 .

Proof. We will start by showing that if i, k ∈ S(R3), then

(2.2.3)
∫

î(G)k(G) dG =
∫

i(H)k̂(H) dH.
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As i and k are rapidly decreasing, we can apply Fubini’s theorem to obtain∫
îk dG =

∫ (∫
4−8H·Gi(H) dH

)
k(G) dG

=

∫ (∫
4−8H·Gk(G) dG

)
i(H) dH =

∫
ik̂ dH.

We then apply this identity with i = 5 and 6 = k̂. Then∫
5 6 =

∫
ik̂ =

∫
îk =

∫
5̂ F −16.

Then we verify (using the Fourier inversion theorem) that

(F −16) (b) = (2c)−3
∫

48Hb6(H) dH = (2c)−3
∫

4−8Hb6(H) dH = (2c)−3 6̂(b).

The last identity concerning the norm !2 is then an obvious corollary. �

Corollary 2.2.11. The Fourier transform F is an isomorphism of S(R3) to itself,
and

F −1 5 = (2c)−3F ( 5 ).

2.3 Tempered distributions

2.3.1 Definition of tempered distributions

Definition 2.3.1. By definition, the space of tempered distributions, denotedS′(R3),
is the topological dual of S(R3).

Notation 2.3.2. Let D ∈ S′(R3) and 5 ∈ S(R3) be the topological dual. We denote
〈D, 5 〉S′×S the complex number that we obtain by making D act on 5 .

A linear application ) : S(R3) → C belongs to S′(R3) if and only if there exists
? ∈ N and � > 0 such that

∀ 5 ∈ S(R3), |〈), 5 〉S′×S | ≤ �N? ( 5 ) = �
∑

|U |≤?,|V |≤?




GUmVG 5 



!∞
.
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Let us show as a first example that any function D ∈ !∞(R3) allows to define a
tempered distribution. We define a linear form* : S(R3) → C by

(2.3.1) 〈*, E〉S′×S =
∫
R3
D(G)E(G) dG.

We verify that* is continuous from S(R3) into C by the following estimate

|〈*, E〉S′×S | ≤ ‖D‖!∞ ‖E‖!1

≤ ‖D‖!∞
(∫

3G

(1 + |G |)3+1

)
sup
R3

��(1 + |G |)3+1 E(G)�� ,
which implies that

|〈*, E〉S′×S | ≤ � ‖D‖!∞ N3+1(E).
By reasoning in a similar way, we show that the formula (2.3.1) defines a tempered
distribution for all functions D ∈ !? (R3) with ? ∈ [1, +∞]. This procedure allows
us to embed the Lebesgue spaces into S′(R3). In fact, we can embed many spaces
and we will see later on the fundamental example of Sobolev spaces.

Definition 2.3.3. We will say that a tempered distribution* ∈ S′(R3) belongs to a
certain space - if there exists D ∈ - such that

∀E ∈ S(R3), 〈*, E〉S′×S =
∫
R3
D(G)E(G) dG.

2.3.2 Extension of the calculus to tempered distributions

We have seen that we can embed all Lebesgue spaces in S′(R3). We can also embed
the Hölder spaces and the Sobolev spaces (both will be defined later). We think
of the space of tempered distributions distributions as the largest space in which
we want to work 2. It is then natural to want to extend the definition of important
operators in analysis to S′(R3).

We will see that this can be done very simply.

Definition 2.3.4. Consider a linear application � : S(R3) → S(R3) which is
assumed to be continuous. We will say that � has a continuous adjoint on S(R3) if
there exists a continuous linear application �∗ : S(R3) → S(R3) such that

∀(D, E) ∈ S(R3)2, (�D, E) = (D, �∗E) where ( 5 , 6) =
∫

5 (G)6(G) dG.

2There are larger spaces, such as the space of distributions, but we will not use those spaces in
these lectures
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Example 2.3.5. 8)The Fourier transform satisfies this hypothesis.

88) Let 1 ≤ 9 ≤ 3. If � = mG 9 , then � is indeed continuous from S(R3) into S(R3)
because N? (�D) ≤ N?+1(D) and we have, integrating by parts, (�D, E) = (D, �∗E)
with �∗ = −mG 9 .

888) Let us note �∞
1
(R3) the space of �∞ functions which are bounded together with

all their derivatives. If 2 ∈ �∞
1
(R3), then the operator �2 defined by �2 ( 5 ) (G) =

2(G) 5 (G) satisfies this property. Then (�2)∗ = �2.

8E) If � and � satisfy this property then � ◦ � also satisfies (� ◦ �)∗ = �∗ ◦ �∗.
We deduce from the two previous points that any differential operator �, of the form
�( 5 ) (G) = ∑

|U |≤< 2U (G)mUG 5 (G) with 2U ∈ �∞1 (R
3), satisfies this property.

E) We will see another example later which generalizes the notion of differential
operator (see the section on pseudo-differential operators).

Wewill show that there exists �̃ : S′(R3) → S′(R3) continuous linearwhich extends
the definition of �. For that we define

∀D ∈ S′(R3), ∀E ∈ S(R3), 〈�̃D, E〉S′×S = 〈D, �∗E〉S′×S .

Let us show that the operator thus constructed extends the definition of �.

Proposition 2.3.6. Consider the applicationT : D ∈ S(R3) ↦→ TD ∈ S′(R3) defined
by

TD (E) = (D, E) =
∫

D(G)E(G) dG.

Then this application is well defined, linear, continuous and injective and moreover

�̃TD = T�D, ∀D ∈ S(R3).

Remark 2.3.7. The first part of the result means that T is an injection of S(R3)
into S′(R3); the second part means that �̃ coincides with � on S(R3).

Proof. For all D, E ∈ S(R3) we have already seen that

|〈TD, E〉S′×S | ≤ ‖D‖!∞ ‖E‖!1 ≤ �N0(D)N3+1(E),

which shows that TD belongs to S′(R3) and that D ↦→ TD is continuous from S(R3)
into S′(R3). Moreover T is injective because TD1 = TD2 implies TD1−D2 (D1 − D2) = 0

25



so ‖D1 − D2‖!2 = 0 hence D1 = D2. With the previous definitions, for all D, E in
S(R3), we have

〈�̃TD, E〉S′×S = 〈TD, �∗E〉S′×S = (D, �∗E) = (�D, E) = 〈T�D, E〉S′×S .

This proves that �̃TD = T�D. �

In the following we will simply denote � instead of �̃ the operator extended to
S′(R3). Using this construction, we can define the partial derivative mG 9 of any
tempered distribution! By definition, we have

∀D ∈ S′(R3), ∀E ∈ S(R3), 〈mG 9D, E〉S′×S = −〈D, mG 9E〉S′×S .

We deduce that we can define mUG D for all U ∈ N3 and all D ∈ S′(R3). One can thus
derive to any order any distribution (which is of course of course false for functions).
Note that if D belongs to the Sobolev space �1(R3) then the derivative in the weak
sense of D coincides with the derivative in the sense of tempered distributions.

We will now apply the previous construction with the Fourier transform. Recall that
(cf (2.2.3)), for all i, k in S(R3), we have∫

î(G)k(G) dG =
∫

i(H)k̂(H) dH.

Let us consider a tempered distribution D ∈ S′(R3). We can then apply the previous
principle to define its Fourier define its Fourier transform, denoted F (D), by

〈F (D), E〉S′×S = 〈D, Ê〉S′×S .

We denote also D̂ the Fourier transform of a tempered distribution.

Proposition 2.3.8. The Fourier transform F is an isomorphism of S′(R3) in itself
(continuous linear application with continuous inverse). Moreover we have

F −1 5 = (2c)−3F ( 5 ).

We have already noticed that we can embed the Lebesgue spaces in S′(R3). In
particular, we can consider the Fourier transform of a function !? (R3). The most
important case in practice is that of !2(R3). In this case we have the following
result.
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Proposition 2.3.9. If 5 belongs to !2(R3), then F ( 5 ) belongs to !2(R3) and

‖ 5 ‖2
!2 =

1
(2c)3

‖F ( 5 )‖2
!2 .

Remark 2.3.10. With the previous conventions, the fact that F ( 5 ) belongs to
!2(R3) means that theure exists a function ℎ ∈ !2(R3) such that 〈F ( 5 ), E〉S′×S =∫
R3
ℎ(G)E(G) dG for all E ∈ S(R3). Then we have ‖ 5 ‖2

!2 =
1
(2c)3



ℎ

2
!2 .

Definition 2.3.11. A function < belonging to �∞(R3) is said to be slowly growing
if there exists a polynomial % such that |<(b) | ≤ %(b) for all b ∈ R3 .

If < is a slowly growing function and if E ∈ S(R3), then <E also belongs to the
class of Schwartz. We check that we can define an operator, noted <(�G) on S′(R3)
in the following way:

F (<(�G)D) = <F D.

These operators are used very often. We will see them again in the chapter on
symbolic computation for pseudo-differential operators.
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Chapter 3

Fourier analysis and Sobolev spaces

3.1 Definitions and first properties

Recall the notation
〈b〉 = (1 + |b |2) 1

2 .

Given a real number B ∈ [0, +∞), we say that a function D ∈ !2(R3) belongs to the
Sobolev space �B (R3) if ∫

R3
〈b〉2B |D̂(b) |2 db < +∞.

Proposition 3.1.1. Let B ∈ [0, +∞). Equipped with the scalar product

(D, E)�B = (2c)−3
∫
(1 + |b |2)BD̂(b) Ê(b) db,

and therefore the norm

‖D‖�B = (2c)−3/2



(1 + |b |2)B/2D̂




!2
,

the Sobolev space �B (R3) is a Hilbert space.

Proof. The application D ↦→ (2c)−3/2(1 + |b |2)B/2D̂ is by definition an isometric
bĳection of �B (R3) on !2(R3). This last space being a Banach space, it is the same
for �B (R3) with the norm defined above. �
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Proposition 3.1.2. The Schwartz space S(R3) is dense in �B (R3) for all B ≥ 0.

Proof. Let us consider the isometry D ↦→ (2c)−3/2(1 + |b |2)B/2D̂ from �B (R3) onto
!2(R3). The inverse isometry transforms the dense subspace S(R3) of !2(R3) into
a dense subspace of �B (R3). Now this application is a bĳection of S(R3) onto
itself. We deduce that S(R3) is dense in �B (R3). �

Proposition 3.1.3. For any real number B > 3/2,

�B (R3) ⊂ �0(R3) ∩ !∞(R3),

with continuous injection.

Proof. According to Cauchy-Schwarz inequality, for any 5 ∈ S(R3),

(3.1.1) ‖ 5 ‖!∞ ≤


 5̂ 



!1 ≤


〈b〉B



!2



〈b〉B 5̂ 


!2 ,

and we deduce the result by density of S(R3) in �B (R3). �

Theorem 3.1.4. For any real number B > 3/2, the product of two elements of
�B (R3) belongs to �B (R3). In addition, there is a constant � such that for any D, E
in �B (R3),

‖DE‖�B ≤ � ‖D‖�B ‖E‖�B .

Proof. The proof rests on the following inequality: for every b, [ in R3 we have

∀B ≥ 0, (1 + |b |2)B/2 ≤ 2B
{
(1 + |b − [ |2)B/2 + (1 + |[ |2)B/2

}
,

which is deduced from the triangular inequality and the bound (0+1)A ≤ 2A (0A +1A)
for any triplet (0, 1, A) of positive numbers. Let us write then that for every D, E in
S(R3), we have (check the following formula in exercise)

D̂E(b) = (2c)−3
∫

D̂(b − [)Ê([) d[.

Multiplying the two members by 〈b〉B and using the previous inequality, we find

〈b〉B |D̂E(b) | ≤ �
∫
〈b − [〉B |D̂(b − [) | |Ê([) | d[

+ �
∫
|D̂(b − [) | 〈[〉B |Ê([) | d[.
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If B > 3/2 then F (�B (R3)) ⊂ !1(R3) as we have already seen (cf (3.1.1)). We
then recognize above two products of convolution between a function of !1(R3)
and another of !2(R3), that belong to !2(R3). This implies that 〈b〉BD̂E ∈ !2(R3),
hence the desired result DE ∈ �B (R3). �

We have seen that, any real number B > 3/2, the product of two elements of �B (R3)
is still in �B (R3). The following proposition shows that we can also define the
product iD for everything i ∈ S(R3) and any D ∈ �B (R3) with B ∈ [0, +∞[.

Proposition 3.1.5. For any B ∈ R, if D ∈ �B (R3) and i ∈ S(R3) then iD ∈ �B (R3).

Proof. The proof uses an inequality, called Peetre’s inequality that states that for
every b, [ in R3 , we have

∀B ∈ R, (1 + |b |2)B ≤ 2|B | (1 + |[ |2)B (1 + |b − [ |2) |B | .

Let us assume that B ≥ 0. To obtain this inequality, just use the triangular inequality

1 + |b |2 ≤ 1 + (|[ | + |b − [ |)2 ≤ 1 + 2 |[ |2 + 2 |b − [ |2 ≤ 2(1 + |[ |2) (1 + |b − [ |2),

then raise both sides to the power B ≥0. If B < 0, then −B > 0 and the previous
inequality leads to

(1 + |[ |2)−B ≤ 2−B (1 + |b |2)−B (1 + |b − [ |2)−B .

The desired result is obtained by dividing by (1 + |[ |2)−B (1 + |b |2)−B.

We then proceed as in the proof of the theorem 3.1.4. Indeed, one can still write
for D ∈ �B (R3) and i ∈ S(R3), îD(b) as a convolution product. As î(Z) is in
Schwartz’s class, the previous inequality allows the product of convolution of a
function to appear. of !1 and 〈[〉B |D̂([) | which is in !2. �

3.2 Sobolev embeddings

We will now study the injection of Sobolev spaces �B (R3) into Lebesgue spaces
!? (R3).

Theorem 3.2.1. Let 3 ≥ 1 and B be a real such that 0 ≤ B < 3/2. Then the Sobolev
space �B (R3) is continuously embedded into !? (R3) for any ? such that

2 ≤ ? ≤ 23
3 − 2B

.

31



Remark 3.2.2. The previous theorem states that for any real number B in [0, 3/2[,
we have

‖ 5 ‖
!

23
3−2B
≤ �B ‖ 5 ‖�B .

In fact, we will show a stronger result (see (3.2.1)) :

‖ 5 ‖
!

23
3−2B
≤ � ‖ 5 ‖ ¤�B :=

( ∫
|b |2B

�� 5̂ (b)��2 db
) 1

2
.

In particular, for B =1, this gives another proof of the fact that

@ =
23
3 − 2

⇒ ‖ 5 ‖!@ ≤ � ‖∇ 5 ‖!2 .

Proof. We will show that there is a constant � such as, for any 5 ∈ S(R3), we have

(3.2.1) ? =
23

3 − 2B
⇒ ‖ 5 ‖!? ≤ � ‖ 5 ‖ ¤�B :=

( ∫
|b |2B

�� 5̂ (b)��2 db
) 1

2
.

This is a stronger result than the one stated. Indeed, if ? < 23/(3 − 2B) then there
is B′ ∈ [0, B) such that ? = 23/(3 − 2B′) and hence

‖ 5 ‖!? ≤ � ‖ 5 ‖ ¤�B′ ≤ � ‖ 5 ‖�B .

(A word of caution: one cannot bound ‖ 5 ‖ ¤�B′ by ‖ 5 ‖ ¤�B because we do not have
|b |2B′ ≤ |b |2B for |b | ≤ 1).

We use the proof of Chemin and Xu which is based on the estimate of level sets.
We will denote by {| 5 | > _} the set

{
G ∈ R3 : | 5 (G) | > _

}
and |{| 5 | > _}| the

Lebesgue measure of this set.

Let us consider a function 5 ∈ S(R3). We can assume without loss of generality
that ‖ 5 ‖ ¤�B = 1. We start from the classical identity

‖ 5 ‖?
!?
= ?

∫ +∞

0
_?−1 |{| 5 | > _}| d_.

To estimate |{| 5 | > _}|, we will use a decomposition in terms of low and high
frequencies. For any _ > 0, we will decompose 5 into the form

5 = 6_ + ℎ_

32



where, for a certain constant �_ to be determined,

6̂_ (b) = 5̂ (b) if |b | ≤ �_, 6̂_ (b) = 0 if |b | > �_

ℎ̂_ (b) = 0 if |b | ≤ �_, ℎ̂_ (b) = 5̂ (b) if |b | > �_.

So, according to the triangular inequality,

{| 5 | > _} ⊂ {|6_ | > _/2} ∪ {|ℎ_ | > _/2} .

We will choose the constant �_ so that {|6_ | > _/2} = ∅. Then we will have

|{| 5 | > _}| ≤ |{|ℎ_ | > _/2}| ≤
4
_2 ‖ℎ_‖

2
!2 ,

because

‖ℎ_‖2!2 ≥
∫
{|ℎ_ |>_/2}

|ℎ_ |2 dG ≥ _
2

4
|{|ℎ_ | > _/2}| .

Combining the above observations, we conclude

(3.2.2) ‖ 5 ‖?
!?
≤ 4?

∫ +∞

0
_?−3 ‖ℎ_‖2!2 d_.

Choice of �_. According to the Fourier inversion theorem, we have

|6_ (G) | =
���� 1
(2c)3

∫
48G·b 6̂_ (b) db

���� = ���� 1
(2c)3

∫
|b |≤�_

48G·b 5̂ (b) db
���� .

As 2B < 3, we can use the Cauchy-Schwarz inequality and write that

|6_ (G) | ≤
1
(2c)3

(∫
|b |≤�_

|b |−2B db
) 1

2
(∫
|b |2B

�� 5̂ (b)��2 db
) 1

2

.

If we switch to polar coordinates, we obtain∫
|b |≤�_

|b |−2B db =
∫ �_

0

∫
S3−1

A3−1−2B d\ dA =
|S3−1 |�3−2B

_

3 − 2B
.

As ‖ 5 ‖ ¤�B = 1 by assumption, we finally get

‖6_‖!∞ ≤ �1(B, 3)�
3
2 −B
_

.

33



We then define �_ by

�1(B, 3)�
3
2 −B
_

=
_

2
.

So ‖6_‖!∞ ≤ _/2. Since 6_ is a continuous function (it is the Fourier transform
of an integrable function), we deduce that {|6_ | > _/2} = ∅, which is the desired
result.

End of the proof. By definition of ℎ_, using the identity (3.2.2) and Plancherel’s
formula, we find

‖ 5 ‖?
!?
≤ 4?(2c)3

∫ +∞

0

∫
|b |≥�_

_?−3�� 5̂ (b)��2 db d_.

By definition of �_, if |b | ≥ �_ then

_ ≤ Λ(b) := 2�1(B, 3) |b |
3
2 −B ,

so, using Fubini’s theorem, it comes

‖ 5 ‖?
!?
≤ 4?(2c)3

∫
R3

(∫ Λ(b)

0
_?−33_

) �� 5̂ (b)��2 db,

from where

‖ 5 ‖?
!?
≤ �2(B, 3)

∫
R3
Λ(b)?−2�� 5̂ (b)��2 db,

As 3
2 − B =

3
?
, we have

Λ(b) ≤ �1(B, 3) |b |
3
? .

We finally get

‖ 5 ‖?
!?
≤ �3(B, 3)

∫
R3
|b |

3 (?−2)
?

�� 5̂ (b)��2 db,

which is the desired result. �

Corollary 3.2.3 (Sobolev embeddings). Let 3 ≥ 1 and ? ∈ (1, 3). Define ?∗ by

1
?∗
=

1
?
− 1
3
·

Then there exists a constant � such that, for any function 5 ∈ �∞0 (R
3),

‖ 5 ‖!?∗ (R3) ≤ � ‖∇ 5 ‖!? (R3) .
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Proof. Here we use the following identity

5 (G) = − 1��(3−1
�� ∫R3 (G − H) · ∇ 5 (H)|G − H |3

dH.

It follows that

| 5 | ≤ 1��(3−1
�� �1( |∇ 5 |),

and hence thewanted inequality follows directly from theHardy-Littlewood-Sobolev
inequality. �

Theorem 3.2.4 (Sobolev embedding). Consider an integer 3 ≥ 1 and two real
numbers B ∈ (0, 1) and ? ∈ (0, 3/B), then set

?∗ =
3?

3 − B? ·

There exists a constant � such that for all 5 in �1
1
(R3) and all G in R3 we have

| 5 (G) |?∗ ≤ � ‖ 5 ‖?
∗−?
!?
∗

∫
R3

| 5 (G) − 5 (H) |?

|G − H |3+?B
dH.

It follows that

‖ 5 ‖!?∗ ≤ �
1
?

(∬
R3×R3

| 5 (G) − 5 (H) |?

|G − H |3+?B
dH dG

) 1
?

.

Proof. The following nice proof is taken from the book by Ponce [22] where it is
credited to Brézis. A similar proof is given by Brué and Nguyen in [7] (see also [8]).

We denote by � several constants that do not have to be depend on 3, ? or B and
whose values can change from one line to another.

Step 1. We first check that the integral∫
R3

| 5 (G) − 5 (H) |?

|G − H |3+?B
dH

is well defined for all 5 in S(R3) and all G in R3 . To do so, we cut the integral on
R3 in two parts: the integral on �(G, 1) and that on R3 \ �(G, 1). On �(G, 1), we
use the estimate

| 5 (G) − 5 (H) | ≤  |G − H | with  = sup
<∈R3

|∇ 5 (<) | ,
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while on R3 \ �(G, 1) one writes | 5 (G) − 5 (H) | ≤ 2 sup | 5 |.

Step 2. Let us fix G ∈ R3 and a real C > 0. We denote by CC the annulus

CC = �(0, 2C) − �(0, C) = {H ∈ R3 ; C ≤ |H | < 2C},

and we denote by |CC | its Lebesgue measure.

Then

| 5 (G) |? = 1
|CC |

∫
CC
| 5 (G) |? dℎ ≤ 1

|CC |

∫
CC

(
| 5 (G + ℎ) − 5 (ℎ) | + | 5 (G + ℎ) |

) ? dℎ.

Since

|0 + 1 |? ≤ (2 max{|0 |, |1 |})? ≤ 2?
(
|0 |? + |1 |?),

we deduce that

| 5 (G) |? ≤ 2?

|CC |

∫
CC
| 5 (G + ℎ) − 5 (G) |? dℎ + 2?

|CC |

∫
CC
| 5 (G + ℎ) |? dℎ.

Step 3. Hölder’s inequality implies that

1
|CC |

∫
CC
| 5 (G + ℎ) |? dℎ ≤ � ‖ 5 ‖?

!?
∗

1
C3−B?

·

Consequently, we see that there exists � such that

| 5 (G) |? 1
CB?
≤ �
C3
‖ 5 ‖?

!?
∗ +

�

CB? |CC |

∫
CC
| 5 (G + ℎ) − 5 (G) |? dℎ.

Step 4. Note that |CC | ∼ C3 . Moreover, on CC we have C ∼ |ℎ |. It follows that

| 5 (G) |? 1
CB?
≤ � ‖ 5 ‖?

!?
∗

1
C3
+ �

∫
R3

| 5 (G + ℎ) − 5 (G) |?

|G − H |3+?B
dℎ.

Multiplying the two members of the inequality in the previous question by CB?, we
find

| 5 (G) |? ≤ � ‖ 5 ‖?
!?
∗ C
B?−3 + �CB?

∫
R3

| 5 (G + ℎ) − 5 (G) |?

|G − H |3+?B
dℎ.

We then choose C such that

‖ 5 ‖?
!?
∗ C
B?−3 = CB?

∫
R3

| 5 (G + ℎ) − 5 (G) |?

|G − H |3+?B
dℎ

and the desired inequality is inferred. �
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Chapter 4

Littlewood-Paley decomposition

In this chapter we introduce a dyadic decomposition of the unity. This decomposition
allows to introduce a parameter (large or small) in a problemwhich does not have any.
It is a simple and extremely fruitful idea. For an introduction to this topic, we refer
the reader to Bahouri [3] or Danchin [11]. There are many books which develop a
systematic study of this tool, see Coifman andMeyer [10, 21], Métivier [19], Alinhac
and Gérard [2], Bahouri, Danchin and Chemin [4], Tao [24] or Taylor [27, 28].

4.1 Dyadic decomposition

Lemma 4.1.1. Let 3 ≥ 1. There exist k ∈ �∞0 (R
3) and i ∈ �∞0 (R

3) such that the
following properties hold:

(i) (Support conditions) We have 0 ≤ k ≤ 1, 0 ≤ i ≤ 1 and

suppk ⊂ {|b | ≤ 1} , supp i ⊂
{

3
4
≤ |b | ≤ 2

}
.

(ii) (Decomposition of the unity) For any b ∈ R3 ,

(4.1.1) 1 = k(b) +
∞∑
?=0

i(2−?b).
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(iii) (Almost orthogonality) For any b ∈ R3 ,

(4.1.2)
1
3
≤ k2(b) +

+∞∑
?=0

i2(2−?b) ≤ 1.

Proof. Letk ∈ �∞0 (R
3;R) be a radial function verifyingk(b) = 1 for |b | ≤ 3/4, and

k(b) = 0 for |b | ≥ 1, and decreasing (if |b | ≥ |[ | then k(b) ≤ k([)). Then, we set
i(b) = k(b/2)−k(b) and notice that i is supported in the annulus {3/4 ≤ |b | ≤ 2}.
For any integer # and any b ∈ R3 , we have

k(b) +
#∑
?=0

i(2−?b) = k(2−#−1b),

which immediately implies (10.1.1) by letting # goes to +∞.

It remains to prove (4.1.2). For any integer # we have

k2(b) +
#∑
?=0

i2(2−?b) ≤
(
k(b) +

#∑
?=0

i(2−?b)
)2
.

On the other hand, notice that, for all b ∈ R3 , there are never more than three
non-zero terms in the set {k(b), i(b), . . . , i(2−?b), . . .}. Consequently, using the
elementary inequality (0 + 1 + 2)2 ≤ 3(02 + 12 + 22), we get(

k(b) +
#∑
?=0

i(2−?b)
)2
≤ 3

(
k2(b) +

#∑
?=0

i2(2−?b)
)
.

Then we obtain (4.1.2) by letting # goes to +∞ in the previous inequalities. �

Let us define, for ? ≥ −1, the Fourier multipliers Δ? as follows:

Δ−1 := k(�G) and Δ? := i
(
2−?�G

)
(? ≥ 0).

Let us also introduce, for ? ≥ 0, the Fourier multipliers (?:

(? := k
(
2−?�G

)
=

?−1∑
:=−1

Δ: .

The partition of the unity also implies a partition of the identity.
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Proposition 4.1.2. We have
� =

∑
?≥−1

Δ?,

in the sense of distributions: For any D ∈ S′(R3), the series
∑
D? converges

to D in S′(R3), which means that
∑
? 〈Δ?D, i〉S′×S converges to 〈D, i〉S′×S for any

i ∈ S(R3).

Proof. Let D ∈ S′(R3) and \ ∈ S(R3). The partial sums (#D =
∑#−1
?≥0 Δ?D are well

defined and

〈F ((#D) , \〉 = 〈k(2−#b)F (D), \〉 = 〈F (D), k(2−#b)\〉.

Now lim
#→+∞

k(2−#b)\ = \ in S(R3), so

F ((#D) −→
?→+∞

F (D) in S′(R3).

By continuity of F −1 : S′(R3) → S′(R3) we have D = ∑
?≥−1 Δ?D. �

4.2 Characterization of Sobolev spaces

Proposition 4.2.1. (i) For all D ∈ !2(R3),

(4.2.1)
∑
?≥−1



Δ?D

2
!2 ≤ ‖D‖2!2 ≤ 3

∑
?≥−1



Δ?D

2
!2 .

(ii) Consider B ∈ R. A tempered distribution D ∈ S′(R3) belongs to the Sobolev
space �B (R3) if and only if

(a) Δ−1D ∈ !2(R3) and for all ? ≥ 0, Δ?D ∈ !2(R3);

(b) the sequence X? = 2?B


Δ?D

!2 belongs to ℓ2(N ∪ {−1}).

Moreover, there exists a constant � such that

(4.2.2)
1
�
‖D‖�B ≤

( +∞∑
?=−1

X2
?

) 1
2 ≤ � ‖D‖�B .
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Proof. The first point follows immediately from (4.1.2) and Plancherel’s identity.

Since ‖D‖�B = ‖〈�G〉BD‖!2 , by applying (4.2.1) with D replaced by 〈�G〉BD, we
obtain ∑

?≥−1



Δ? 〈�G〉BD


2
!2 ≤ ‖D‖2�B ≤ 3

∑
?≥−1



Δ? 〈�G〉BD


2
!2 .

Consider ? ≥ 0 and write that

Δ? 〈�G〉BD


2
!2 = (2c)−3

∫
R3
(1 + |b |2)Bi2(2−?b)

��D̂(b)��2 db.

Since (1 + |b |2)Bi2(2−?b) ∼ 22?B on the support of i2(2−?b), we see that

(4.2.3)
1
�

22?B 

Δ?D

2
!2 ≤



Δ? 〈�G〉BD


2
!2 ≤ �22?B 

Δ?D

2

!2 ,

for some constant � depending only on B. We have a similar estimate for Δ−1D and
the wanted result easily follows. �

Proposition 4.2.2. 8) Consider B ∈ R and ' ≥ 1. Assume that (D 9 ) 9≥−1 is a
sequence of functions in !2(R3) such that

supp D̂−1 ⊂ {|b | ≤ '}, supp D̂ 9 ⊂
{ 1
'

2 9 ≤ |b | ≤ '2 9
}
,

and, in addition,

(4.2.4)
∑
9≥−1

22 9 B 

D 9

2
!2 < +∞.

Then the series
∑
D 9 converges to a function D ∈ �B (R3) and moreover,

‖D‖2�B ≤ �
∑
9≥−1

22 9 B 

D 9

2
!2 ,

for some constant � depending only on B and '.

88) If B > 0, then the previous result holds under the weaker assumption that supp D̂ 9
is included in the ball �(0, '2 9 ).

Proof. 8)We begin by proving that the series
∑
D 9 is normally convergent in �A (R3)

for any A < B. Assuming that supp D̂ 9 is included in a ball
{
|b | ≤ '2 9

}
, parallel
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to (4.2.3), we see that


D 9

�A . 2 9A



D 9

!2 . So, the Cauchy-Schwarz inequality
implies that ∑

9≥−1



D 9

�A ≤ ( ∑
9≥−1

22 9 B 

D 9

2
!2

) 1
2
( ∑
9≥−1

22 9 (A−B)
) 1

2

.
(∑

22 9 B 

D 9

2
!2

) 1
2
< +∞.

This shows that the series
∑
D 9 is normally convergent and hence convergent in

�A (R3). Now we can set D =
∑
9≥−1 D 9 . Our goal is then to prove that D belongs to

�B (R3).

8) Ift supp D̂ 9 is included in an annulus
{ 1
'

2 9 ≤ |b | ≤ '2 9
}
, then there exists some

integer # depending only on ' such that Δ?D 9 = 0 if | 9 − ? | > # . Therefore

Δ?D

!2 ≤
∑
| 9−? |≤#



Δ?D 9

!2 ≤
∑
| 9−? |≤#



D 9

!2 ,

whence the result.

88) If one only assumes that supp D̂ 9 is included in a ball {|b | ≤ '2 9 }, then we just
have, for some integer # ,

Δ?D =
∑
9≥?−#

Δ?D 9 .

It follows from the triangle inequality that

2?B


Δ?D

!2 ≤

∑
9≥?−#

2(?− 9)B2 9 B


D 9

!2 .

Now, since B > 0, the sequence (2(?− 9)B) 9≥?−# belongs to ℓ1 and the convolution
inequality ℓ1 ∗ ℓ2 ↩→ ℓ2 gives the result. �

4.3 Characterization of Hölder spaces

In this paragraph we are going to show that we can describe Hölder spaces using the
Fourier transform.

Definition 4.3.1. Let A ∈ (0, 1). The Hölder space �0,A (R3) consists of those
bounded functions D : R3 → C satisfying

∃� > 0/ ∀G, H ∈ R3 , |D(G) − D(H) | ≤ � |G − H |A .
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88) Let : ∈ N and U ∈ (0, 1]. Let �:,U (R3) be the space of functions �: (R3) whose
derivatives up to order : belong to �0,U (R3).

888) Let A ∈ R+ \N so that A = : +U with : ∈ N and U ∈ (0, 1] then we simply denote
by �A (R3) the space �:,U (R3).

For A ∈ (0, 1[, the space �A (R3) is provided with a Banach space structure by the
norm

‖D‖�A = ‖D‖!∞ + sup
G≠H

|D(G) − D(H) |
|G − H |A .

We give below an equivalent norm.

Proposition 4.3.2. Let A148=]0, 1[. There exists a constant �A > 0 such that the
following two properties hold:

8) If D ∈ �A (R3) then, for any ? ≥ −1,

Δ?D

!∞ ≤ �A ‖D‖�A 2−?A .

88) Conversely, if, for any ? ≥ −1,

Δ?D

!∞ ≤ �2−?A ,

then D ∈ �A (R3) and ‖D‖�A ≤ �A�.

Proof. 8) Consider ? ≥ 0. To prove the first point, we start by writing D? in integral
form,

(4.3.1) D? (G) = 2?3
∫
F −1(i) (2? (G − H))D(H) dH for ? ≥ 0.

The rest of the proof, as well as a precise calculation of the constants, just uses the
fact that the moments of F −1(i) are all zero. Thus with the moment of order 0 we
get

D? (G) = 2?3
∫
F −1(i) (2? (G − H)) (D(H) − D(G)) dH for ? ≥ 0,

hence ��D? (G)�� ≤ 2?= ‖D‖�A
∫ ��F −1(i) (2? (G − H))

�� |H − G |A dH

= 2−?A ‖D‖�A
∫ ��F −1(i) (I)I

�� dI.
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The case ? = −1 is treated in a similar way. We write

D−1(G) =
∫
F −1(k) (G − H)D(H) dH,

then we use that F −1(k) ∈ S(R3) and thus F −1(k) belongs to !1(R3). We deduce
that the !∞-norm of D? is controlled by the !∞-norm of D.

Let us show the converse. We verify that D ∈ !∞ because Δ?D ∈ !∞ and
∑
Δ?D

converge normally if


Δ?D

!∞ ≤ �2−?A . It remains to estimate

sup
G≠H, |G−H |≤1

|D(G) − D(H) |
|G − H |A .

(Note that we can obviously restrict ourselves to |G − H | ≤ 1.)

To do this, we pose, for an integer ? to be determined,

D = (?D + '?D, (?D =

?−1∑
@=−1

D@ and '?D =
+∞∑
@=?

D@ .

By hypothesis it comes

'?D

!∞ ≤∑
@≥?



D@

!∞ ≤∑
@≥?

�2−@A =
�

1 − 2−A
2−?A .

from which we obviously deduce that
��'?D(H) − '?D(G)�� ≤ 2�

1−2−A 2−?A . On the other
hand ��(?D(G) − (?D(H)�� ≤ |G − H | ?−1∑

@=−1



∇D@

!∞ .
From the formula recalled at the beginning of the proof we get

∇D@

!∞ ≤ �′2@ 

D@

!∞ ≤ �′′�2@−@A .

With for @ = −1, ‖∇D−1‖!∞ ≤ �′′′�. Since A < 1, we have 1 − A > 0 and thus

?−1∑
@=0

2@−@A ≤ 1
21−A − 1

2?(1−A) .
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Let’s put the two estimates together: there are two constants 1 and 2 which depend
only on A such that

|D(H) − D(G) | ≤  1� |G − H | 2?−?A +  22−?A .

Let’s choose ? such that 2−1 ≤ 2? |G − H | ≤ 1 (which is possible because we assume
|G − H | ≤ 1). Then

|D(H) − D(G) | ≤  3� |G − H |A ,
which completes the proof. �

4.3.1 Zygmund spaces

We have shown that if A ∈ (0, 1[,

D ∈ �A (R3) ⇐⇒ sup
?

2?A


D?

!∞ < +∞.

In fact, we have more generally

A ∈ R+ \ N, D ∈ �A (R3) ⇐⇒ sup
?

2?A


D?

!∞ < +∞.

Definition 4.3.3. Let A be a real number, we denote by �A∗ (R3) the subspace of
tempered distributions defined by

D ∈ �A∗ (R3) ⇐⇒ sup
?≥−1

2?A


D?

!∞ < +∞.

Remark 4.3.4. We define these spaces for all A ∈ R and not only A ≥ 0. This is
convenient because spaces formed by derivatives of functions of �A∗ naturally occur.

Thus the previous result gives directly

A ∈ R+ \ N⇒ �A∗ (R3) = �A (R3).

Moreover, for : ∈ N, we easily show that

∀: ∈ N, �: (R3) ⊂ , :,∞(R3) ⊂ �:∗ (R3).

However, we can show that

A ∈ N⇒ �A∗ (R3) ≠ �A (R3).

Let’s give an elementary characterization of �1
∗ (R3).
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Proposition 4.3.5. The space �1
∗ (R3) is the space of bounded functions D such that

∃� > 0/ ∀G, H ∈ R3 , |D(G + H) + D(G − H) − 2D(G) | ≤ � |H | .

Proof. Suppose that the function D belongs to �1
∗ (R3). Then consider a non-zero

point H ∈ �(0, 1). Using the dyadic decomposition of the frequency space and and
the Taylor inequality of order 2 between H and 0, we get

|D(G + H) + D(G − H) − 2D(G) | ≤ � ‖D‖�1
∗

(
|H |2

∑
@≤#

2@ + 4
∑
@>#

2−@
)
,

where # is any integer. Choosing # such that 2@# = |H |−1, we obtain

|D(G + H) + D(G − H) − 2D(G) | ≤ � ‖D‖�1
∗
|H | .

Conversely, let us choose a function D such that, for all H in G'=, we have

|D(G + H) + D(G − H) − 2D(G) | ≤ � |H | .

It is now a matter of estimating


Δ@D

!∞ . The fact that the function i is radial,

therefore even, entails that

D@ (G) = 2@=F −1i(2@ ·) ∗ D(G) = 2@=
∫
F −1i(2@H)D(G − H) dH

= 2@=
∫
F −1i(2@H)D(G + H) dH.

Let us introduce ℎ(I) = F −1i(I). Since i is zero near the origin we deduce that ℎ
has zero integral, so

2@=F −1i(2@ ·) ∗ D(G) = 2@=−1
∫
F −1i(2@H) (D(G + H) + D(G − H) − 2D(G)) dH.

Since the function I ↦→ |I | ℎ(I) is integrable, we have

D@

!∞ ≤ �2−@ sup
H∈R3

|D(G + H) + D(G − H) − 2D(G) |
|H | ,

which concludes the proof. �
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Part II

Pseudo-differential calculus
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Chapter 5

Definition of Pseudo-differential
operators

Consider a differential operator

% =
∑
|U |≤<

?U (G)mUG

where the coefficients ?U belong to the space �∞
1
(R3;C) of those �∞ functions

which are bounded as well as all their derivatives. The function

? : R3 × R3 → C, ?(G, b) =
∑
|U |≤<

?U (G) (8b)U

is called the symbol of %. With this definition, we have

%48G·b = ?(G, b)48G·b .

Consider now a function D in the Schwartz space S(R3). It follows from the Fourier
inversion formula that

D(G) = 1
(2c)3

∫
48G·b D̂(b) db,

and hence we see that one can write %D under the form

%D(G) = 1
(2c)3

∫
48G·b ?(G, b)D̂(b) db.

A pseudo-differential operator is an operator of the previous form, but where the
function ?(G, b) is not necessarily a polynomial function. In this chapter we propose
to study the definition of these operators.
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5.1 Continuity on the Schwartz class

Consider a function 0 ∈ �∞
1
(R3 × R3). By definition, this means that, for all

multi-indices U and V in N3 , we have

sup
(G,b)∈R3×R3

���mUG mVb 0(G, b)��� < +∞.
Given any function D ∈ S(R3) in the Schwartz class and a fixed G ∈ R3 , the function
b ↦→ 0(G, b)D̂(b) belongs to S(R3

b
). In particular, it is integrable and we may define

the function Op(0)D by

Op(0)D(G) = 1
(2c)3

∫
R3
48G·b0(G, b)D̂(b) db.

We say that Op(0) is a pseudo-differential operator and we call 0 its symbol.

Proposition 5.1.1. For any 0 ∈ �∞
1
(R3 × R3) and any D ∈ S(R3), the function

Op(0)D is well-defined and belongs to S(R3). Moreover Op(0) is continuous from
S(R3) into S(R3).

Proof. Since D̂ ∈ S(R3), we can apply Lebesgue’s differentiation theorem to check
easily that Op(0)D ∈ �∞(R3). So it will suffice to prove estimates.

Using ‖0‖!∞ < +∞ and


〈b〉3+1D̂



!∞ < +∞, we get the inequality

|Op(0)D(G) | ≤ 1
(2c)3

∫
‖0‖!∞



〈b〉3+1D̂


!∞ 〈b〉

−3−1 db,

which implies that Op(0)D is bounded together with the estimate

‖Op(0)D‖!∞ ≤ � ‖0‖!∞ N3+1(D̂)

where we used the notation N? (i) =
∑
|U |≤?,|V |≤?




GUmVG i



!∞

to denote the canon-

ical semi-norms on the Schwartz space; let us recall that the Fourier transform is
continuous from S(R3) into S(R3) and that, for any integer ? ∈ N,

N? (D̂) ≤ �?N?+3+1(D).

To estimate the other semi-norms inS(R3) ofOp(0)D, we use the following formulas
(to be checked as an exercise)

mG 9 Op(0)D = Op(0) (mG 9D) + Op(mG 90)D,
G 9 Op(0)D = Op(0) (G 9D) + 8Op(mb 90)D.
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Thus, GUmVG Op(0)D can written as a linear combination of terms of the form

Op
(
m
W
G m

X
b 0

)
(GU−XmV−WG D).

Since mWG mXb 0 belongs to �∞
1
(R3 × R3) and since GU−XmV−WG D belongs to S(R3), we

are back to the previous case. This shows that one can estimate the !∞ norm of
GUm

V
G Op(0)D in terms of the semi-norms of 0 in �∞

1
(R23) and the ones of D in

S(R3). This implies that Op(0)D belongs to S(R3) and the previous estimates
imply that Op(0) is continuous from S(R3) to itself. �

5.2 The Calderón-Vaillancourt theorem

We can now state the main result, which asserts that one can extend Op(0) as a
bounded operator from !2(R3) into itself.

Theorem 5.2.1. For any symbol 0 ∈ �∞
1
(R23), the operator Op(0) can be uniquely

extended as a bounded linear operator in L(!2(R3)).

Wewill demonstrate this result by assuming, to simplify the notations, that the space
dimension 3 is less than or equal to 3 (otherwise just replace the polynomial %(Z)
below by (1 + |Z |2): where : is an integer such that 4: > 3).

Let us introduce the polynomial

%(Z) = 1 + |Z |2 (Z ∈ R3 , 3 = 1, 2, 3).

Lemma 5.2.2. Given a function D ∈ S(R3), we introduce the function

,D(G, b) =
∫
R3
4−8H·b%(G − H)−1D(H) dH ((G, b) ∈ R23).

8) Then,D is a function �∞
1
(R23) and moreover for any multi-indices U, V, W,

sup
R23

%(G) |b |W
���(mUG mVb,D) (G, b)��� < +∞.

88) There is a constant � such that

(5.2.1) ‖,D‖!2 (R23) = � ‖D‖!2 (R3)
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for any D in S(R3).

888) For any W ∈ N3 , there exists a positive constant �W such that

mWG,D

!2 (R23) ≤ �W ‖D‖!2 (R3) .

Proof. 8) We verify that

bW (mUG m
V

b
,D) (G, b) =

∫
8 |W |mWH

(
4−8H·b

)
(−8H)VmUG (%(G − H)−1)D(H) dH,

so, by integrating by parts

bW (mUG m
V

b
,D) (G, b)

=
∑

W′+W′′=W

W!
W′!W′′!

∫
(−8) |W |mW

′
H

(
D(H) (−8H)V

)
(−1) |W′′ | (mW′′+U1/%) (G − H)4−8H·b dH.

We next use the elementary estimates���mUZ 〈Z〉−2
��� ≤ �U〈Z〉−2−|U | ≤ �U〈Z〉−2

to deduce that

|mU (1/%) (G − H) | ≤ �U (1 + |G − H |2)−1 ≤ 2�U (1 + |G |2)−1(1 + |H |2),

where the last inequality comes from the fact that

1 + |G |2 = 1 + |G − H + H |2 ≤ 1 + 2|G − H |2 + 2|H |2 ≤ 2(1 + |G − H |2) (1 + |H |2).

88) For any G ∈ R3 ,,D(G, ·) is the Fourier transform of H ↦→ D(H)%(G − H)−1. So∫
|, (G, b) |2 db = (2c)3

∫ ��D(H)%(G − H)−1��2 dH

according to Plancherel’s theorem. So∬
|, (G, b) |2 db dG = (2c)3

∬ ��D(H)%(G − H)−1��2 dH3G = �2 ‖D‖2
!2 (R3) ,

where � is defined by

�2 = (2c)3
∫
R3
%(I)−2 dI.

Notice that this integral is converging by definition of %, since we assume that 3 ≤ 3.

The statement 888) is proved by combining the above observations. �
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Lemma 5.2.3. Consider D, E in S(R3). For all G ∈ R3 and all b ∈ R3 , there holds

D̂(b) = 4−8G·b (� − Δb)
(
48G·b,D(G, b)

)
and

E(G) = 1
(2c)3

4−8G·b (� − ΔG)
(
48G·b,Ê(b, G)

)
.

Proof. Write (� − Δb)48- ·b = %(-) to obtain

48G·b D̂(b) =
∫

48(G−H)·bD(H) dH = (� − Δb)
∫

48(G−H)·b%(G − H)−1D(H) dH.

In a dual way, using the inverse Fourier transform, we have

48G·bE(G) = 1
(2c)3

∫
48(b−[)·G Ê([) d[

=
1
(2c)3

(� − ΔG)
∫

48(b−[)·G%(b − [)−1Ê([) d[,

which implies the second identity. �

Proof of Theorem 5.2.1. Given the density of S(R3) in !2(R3), it is enough to
demonstrate the inequality

‖Op(0)D‖!2 ≤ � ‖D‖!2

for any D in S(R3). Let us consider two functions D, E in S(R3) and let us set

� :=
∬

48G·b0(G, b)D̂(b)E(G) db dG.

We want to show that |� | ≤ � ‖D‖!2 ‖E‖!2 . For this we will rewrite � as a scalar
product in !2(R23) of functions involving,D and,Ê.

Let us start by writing � in the form

� =

∬
0(G, b)

[
(� − Δb)

(
48G·b,D(G, b)

]
E(G) db dG.

Since (� − Δb)
(
48G·b,D(G, b)E(G)

)
belongs to S(R23), we can integrate by parts in

b and deduce that

� =

∬ [
(� − Δb)0(G, b)

]
,D(G, b)48G·bE(G) db dG.
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Using the identity for E it comes

� =

∬ [
(� − Δb)0(G, b)

]
,D(G, b) (� − ΔG)

(
48G·b,Ê(b, G)

)
dG

and integrating by parts in G,

� =

∬
(� − ΔG)

[ (
(� − Δb)0(G, b)

)
,D(G, b)

]
48G·b,Ê(b, G) db dG

so

� =
∑

|V |≤2,|U |+|W |≤2
�UVW

∬
(mUG m

V

b
0(G, b))mWG,D(G, b),Ê(b, G)48G·b dG db.

We conclude the proof with the Cauchy-Schwarz inequality and the previous results:

mWG,D

!2 (R23) ≤ �W ‖D‖!2 (R3) ,

,Ê(b, G)


!2 (R23) = �



Ê


!2 = �(2c)

3
2 ‖E‖!2 (R3) ,

where the Plancherel formula was used in the last inequality. �
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Chapter 6

Symbolic calculus

6.1 General symbol classes

Notation 6.1.1. Let Ω be an open set of a space R3 with 3 ≥ 1. We denote �∞
1
(Ω)

the set of �∞ functions on Ω which are bounded as well as all their derivatives.

Definition 6.1.2. For < ∈ R and 0 ≤ X ≤ d ≤ 1, the symbol class (<
d,X
(R3) is

the space of functions 0 ∈ �∞(R23;C) such that, for all multi-indices U ∈ N3 and
V ∈ N3 , there exists a constant �UV such that���mUG mVb 0(G, b)��� ≤ �UV (1 + |b |)<+X |U |−d |V | .
We say that 0 is a symbol of order < and type (d, X).

Remark 6.1.3. Notice that �∞
1
(R23;C) = (0

0,0(R
3).

For any real numbers < ∈ R and 0 ≤ X ≤ d ≤ 1, and for any symbol 0 ∈ (<
d,X
(R3),

by using similar arguments to those used to prove Proposition 5.1.1, one can prove
that Op(0) is a continuous operator from S(R3) to S(R3).

Let us state a generalization of Theorem 5.2.1 to the case of general symbol.

Theorem 6.1.4 (Calderón-Vaillancourt). Let 0 ∈ (0
d,X
(R3) with 0 ≤ X ≤ d ≤ 1 and

X < 1. Then Op(0) can be extended as a bounded operator from !2(R3) to itself.
Moreover,

‖Op(0)‖L(!2) ≤ � sup
|U |≤[ 32 ]+1

sup
|V |≤[ 32 ]+1

sup
(G,b)∈R23

���(1 + |b |)X |U |−d |V |mUG mVb 0(G, b)��� ,
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for some absolute constant � depending only on 3, d, X.

Proof. Wewill not use this result and refer to [9] for the proof. The precise bound in
terms of a the semi-norms of ? is proved for instance byCoifman andMeyer [10]. �

Remark 6.1.5 (continuity on !?). We have studied the boundedness of pseudo-
differential operators on !2(R3). Let us briefly discuss the boundedness on other
functions spaces.

(8) Firstly, a pseudo-differential operator of order 0 and type (d, X) is not bounded
in general on Lebesgue spaces !? (R3) with ? ≠ 2. Nevertheless, Fefferman proved
in [13] that, for any 0 ≤ X ≤ d ≤ 1 with X < 1, and any symbol 0 ∈ (<

d,X
(R3), the

operator Op(0) belong to L(!? (R3)) provided that

< ≤ −3 (1 − d)
����12 − 1

?

���� .
We also refer to David and Journé (see [12]) for the boundedness of pseudo-
differential operators on !? (R3) when d = 1 = X.

(88) We will study later on the case when 0 ∈ (0
1,1(R

3). See also Exercise 11.0.3.

(888) One can also consider the case where X > d, see Hörmander [15].

It is proved in Exercise 11.0.3 that the statement of Theorem 6.1.4 does not hold for
(d, X) = (1, 1). This means that an operator of 0 and type (1, 1) is not bounded in
general from !2(R3) to !2(R3). However, the following result, due to Stein, states
that such an operator is bounded from �B (R3) to �B (R3) for any B > 0.

Theorem 6.1.6 (Stein). Assume that 0 ∈ (0
1,1(R

3). Then the operator Op(0) is
bounded from �B (R3) to �B (R3) for all B > 0 and from the Hölder spaces�0,U (R3)
to itself for any U ∈ (0, 1).

Proof. We will not use this result and refer to [19] for the proof. �

6.2 Classical symbols

Notation 6.2.1. Let us fix some notations which will be used continuously in the
sequence. In this course, we will be mainly interested in a particular subclass: the
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(<1,0 class. We will simply note

(< (R3) = (<1,0(R
3).

Notice that
�∞1 (R

23) = (0
0,0(R

3).

We will use the bracket notation:

〈b〉 = (1 + |b |2) 1
2 .

We also introduce

(−∞ :=
⋂
<∈R

(< and (+∞ =
⋃
<∈R

(< .

Definition 6.2.2 (Elliptic symbols). Let < ∈ R. A symbol 0 ∈ (< (R3) is elliptic if
there exist two strictly positive constants ' and � such that,

∀(G, b) ∈ R23 , |b | ≥ ' ⇒ |0(G, b) | ≥ �〈b〉< .

The elementary rules of differential calculus imply the following proposition.

Proposition 6.2.3. If 0 ∈ (<, 1 ∈ (<′, U, V ∈ N3 then

mUG m
V

b
0 ∈ (<−|V |, 01 ∈ (<+<′ .

Of course we have (0(R3) ⊂ �∞
1
(R23).

Examples

1) If ? is a function of G only and ? ∈ �∞
1
(R3) then ? ∈ (0(R3).

2) If ? = ?(G, b) belongs to �∞0 (R
23) (compact support in G and b) then ? ∈ (−∞.

3) Suppose that ?(G, b) is a polynomial in b of order < ∈ N whose coefficients are
functions in �∞

1
(R3), that is

?(G, b) =
∑
|U |≤<

?U (G)bU (?U ∈ �∞1 (R
3)).

Then ? ∈ (< (R3).
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4) For all < ∈ R, the symbol 〈b〉< belongs to (< (R3). Indeed, the function
R × R3 3 (g, b) ↦→ (g2 + |b |2)</2 is positively homogeneous of order < on
R3+1 and therefore mU

b
((g2 + |b |2)</2) is homogeneous of order <− |U |, bounded

by �U (g2 + |b |2) (<−|U |)/2. As the derivation in b and the restriction to g = 1
commute, we deduce the result.

5) The symbol |b | is not in (1(R3) because it is not regular in 0.

6) Let 0 = 0(b) ∈ �∞(R3 \{0}) be a homogeneous function of degree<, satisfying

0(_b) = _<0(b) ∀_ > 0.

For all function j ∈ �∞
1
(R3

b
) which vanishes in the neighborhood of 0, we have

j(b)0(b) ∈ (< (R3).

7) Let 0 = 0(G, b) be an elliptic symbol of order <. Then there exists j ∈ �∞0 (R
3)

such that
1 − j(b)
0(G, b) ∈ (

−< (R3).

8) Let 5 = 5 (G) in �∞
1
(R). The symbol ?(G, b) = 5 (G) sin(b) belongs to �∞

1
(R2)

but not to (0(R) because the derivative in b of order U does not decrease as
(1 + |b |)−U.

6.3 Introduction to symbolic calculus

Consider two pseudo-differential operators � = Op(0) and � = Op(1) of symbols
0, 1 ∈ (< (R3). Then _�+ `� is a pseudo-differential operator of symbol _0 + `1 ∈
(< (R3). The questions that will interest us in this chapter concern the operators
� ◦ � and �∗. We will see that these are also pseudo-differential operators and that
we can compute their symbols. The symbolic calculation is precisely the process
which allows us to manipulate operators by working at the level of the symbols.

We will see three very distinct situations in which one can easily study the compo-
sition and the transition to the adjoint for pseudo-differential operators.

These situations correspond to the following cases:

A. the Fourier multipliers (of symbols not depending on G);
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B. the differential operators (the symbol is a polynomial in b);

C. the operators of microlocalization (of symbols with compact support in R23).

A. Fourier multipliers

Let � = Op(0) with 0 = 0(b) independent of G. Then � is a special case of Fourier
multiplier. Recall that a Fourier multiplier is a linear operator operator which acts
on !2(R3) or S′(R3) by multiplying the Fourier transform of a function (or of a
tempered distribution) by a given function, called the symbol. Given a function
< = <(b) with complex values, the Fourier multiplier of symbol < is the operator,
denoted <(�G), defined by �<(�G) 5 (b) = <(b) 5̂ (b).
If < ∈ !∞(R3) then <(�G) is well defined on !2(R3) and <(�G) ∈ L(!2). If
<(�G) ∈ �∞(R3) is slowly increasing (there exists # such that for all U we have��mU
b
<(b)

�� ≤ �U〈b〉# ) then<(�G) is continuous fromS′(R3) intoS′(R3). We check
that

<1(�G)<2(�G) = <(�G) with <(b) = <1(b)<2(b),

<(�G)∗ = <∗(�G) with <∗(b) = <(b).

Examples of Fourier multipliers:

• mG 9 is the Fourier multiplier of symbol 8b 9 .

• The laplacian Δ is the Fourier multiplier of symbol − |b |2.

• The Hilbert transform is the Fourier multiplier of symbol −8b/|b | (b ∈ R).

• The square root of−Δ is the Fourier multiplier of symbol |b | =
√
b2

1 + · · · + b
2
= .

• Let B ∈ R. The operator which realizes the canonical isomorphism of �B on
!2 is the Fourier multiplier of symbol 〈b〉B where 〈b〉 = (1 + |b |2)1/2.

• Consider the equation

mCD + 8〈�G〉BD = 0, DAA>FE4ACC=0 = D0.

This equation can be solved by the Hille-Yosida theorem or by the Fourier
transform. The operator which sends the initial data D0 on the solution at time
C is the Fourier multiplier of symbol exp(−8C〈b〉B).
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B. Differential operators

Consider two differential operators

� =
∑
|U |≤<

0U (G)mUG , � =
∑
|U |≤<′

1U (G)mUG

where the coefficients 0U, 1U belong to �∞1 (R
3). Let us introduce their symbols

0(G, b) =
∑
|U |≤<

0U (G) (8b)U, 1(G, b) =
∑
|U |≤<′

1U (G) (8b)U,

so that � = Op(0) and � = Op(1). Let 4b be the exponential function G ↦→ 48G·b .
Then

(�4b) (G) = 0(G, b)4b (G), (�4b) (G) = 1(G, b)4b (G).
Moreover, for all regular functions 1(G, b),

�(14b) (G) =
∑
U

0U (G)mUG
(
48G·b1(G, b)

)
=

∑
U

0U (G)
(
(8b + mG)U1(G, b)

)
48G·b

= 48G·b0
(
G, b + 1

8
mG

)
1(G, b)

= 48G·b
∑
V∈N3

1
8 |V |V!

(
m
V

b
0(G, b)

) (
m
V
G 1(G, b)

)
where we used the formula of Taylor for a polynomial. We deduce the following
result.

Proposition 6.3.1. If � and � are differential operators, then � ◦ � is a differential
operator of symbol

0#1(G, b) =
∑
U∈N3

1
8 |U |U!

(
mUb 0(G, b)

) (
mUG 1(G, b)

)
.

Note that the sum is finite since mU
b
0 = 0 if |U | > <.

Proof. The operator � ◦ � is of course a differential operator and we have seen that
(� ◦ �)4b = (0#1)4b . �

Exercise 6.3.2. Let � be a differential operator. Show that �∗ is a differential
operator of symbol

0∗(G, b) =
∑
U

1
8 |U |U!

mUb m
U
G 0(G, b).
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C. Microlocalization operators

The localization operators, of the form D ↦→ iD where i ∈ �∞0 (R
3), are essential in

Analysis. In the same way as the frequency localization operators, which are Fourier
multipliers D ↦→ i(�G)D with i ∈ �∞0 (R

3). The pseudo-differential operators allow
a sort of simultaneous localization in G and in b, by considering an operator Op(0)
with 0 ∈ �∞0 (R

23) (a word of warning: we recall from Proposition 2.2.1 that it is
not possible to localize exactly in both G and b). If 0 ∈ �∞0 (R

23) we say that Op(0)
is a microlocalization operator.

We will see that the adjoint of a microlocalization operator is a pseudo-differential
operator whose symbol does not necessarily belong to �∞0 (R

23) but belongs to all
spaces (< (R3) for < ≤ 0.

Proposition 6.3.3. Let 0 = 0(G, b) be a symbol belonging to �∞0 (R
23). Then

0∗(G, b) = (2c)−3
∫

4−8H·[0(G − H, b − [) dH d[

defines a symbol 0∗ belonging to (−∞ and

(Op(0)D, E) = (D,Op(0∗)E)

for all D, E in S(R3).

Remark 6.3.4. One objective of this chapter will be to prove a result which extends
the previous proposition to the case of a general symbol 0 ∈ (+∞. We start by
looking at the case where 0 has compact support (hence belongs to (−∞) because
the analysis is then much easier. The reader will note in particular that the integrals
which appear in the proof below are meaningless if 0 is a general symbol.

Proof. Let D ∈ S(R3). Since 0 is compactly supported we can use Fubini’s theorem
to write

Op(0)D(G) = (2c)−3
∫

48G·b0(G, b)D̂(b) db

= (2c)−3
∫

48G·b0(G, b)
(∫

4−8H·bD(H) dH
)

db

= (2c)−3
∫ ∫

48(G−H)·b0(G, b)D(H) dH db

= (2c)−3
∫ (∫

48(G−H)·b0(G, b) db
)
D(H) dH.
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Therefore

Op(0)D(G) =
∫

 (G, H)D(H) dH

where  =  (G, H) (called kernel of Op(0)) is given by

 (G, H) = (2c)−3
∫

48(G−H)·b0(G, b) db

= (2c)−3 (Fb0) (G, H − G),

where Fb0(G, Z) =
∫
4−8b ·Z0(G, b) db is the Fourier transform of 0 with respect to

the second variable. We deduce that  ∈ S(R23).

Now, if E is also in S then

(Op(0)D, E) =
∫ (∫

 (G, H)D(H) dH
)
E(G) dG

=

∫
D(H)

(∫
 (G, H)E(G) dG

)
dH,

so (Op(0)D, E) = (D, (Op(0))∗E) with

(Op(0))∗E(G) :=
∫

 (H, G)E(H) dH.

Note that Op(0)∗ is an operator with kernel

 ∗(G, H) =  (H, G) = (2c)−3
∫

48(G−H)·\0(H, \) d\.

We want to write  ∗(G, H) in the form  ∗(G, H) = (2c)−3 (Fb0∗) (G, H − G). Then

0∗(G, b) = (2c)−3
∫

48b ·I (Fb0∗) (G, I) dI

=

∫
 ∗(G, G + I)48I·b dI

=

∫
 ∗(G, G − H)4−8H·b dH

= (2c)−3
∫ (∫

48(G−(G−H))·\0(G − H, \) 3\
)
4−8H·b dH

= (2c)−3
∬

48H·(\−b)0(G − H, \) dH d\

= (2c)−3
∬

4−8H·[0(G − H, b − [) dH d[.
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Then, the calculations already made at the beginning of the proof lead to the fact
that Op(0)∗ is the pseudo-differential operator of symbol 0∗. �

6.4 Oscillating Integrals

In this section we propose to study to study the oscillatory integrals. These integrals,
which play a crucial role in micro-local analysis, are of the form∫

48q(G)0(G) dG (G ∈ R# , # ≥ 1).

We say that q is a phase and that 0 is an amplitude. We will always assume that 0
is a function �∞ of R# in C and that q has real values.

These integrals play a crucial role in micro-local analysis. In particular, they appear
naturally to define symbols. For instance, let us notice that for (G0, b0) fixed in
R3 × R3 ,

0∗(G0, b0) = (2c)−3
∫

4−8H·[0(G0 − H, b0 − [) dH d[

is written in the form

0∗(G0, b0) =
∫

48q(G)�(G) dG

where # = 23, G = (H, [) and q(G) = −H · [.

If 0 is the symbol of a differential operator operator, polynomial in G, the integral
is obviously obviously divergent in the classical sense. To give a meaning to the
integral

∫
48q(G)0(G) dG and to show results of calculations on these integrals, the

idea is that, under a hypothesis of strong oscillation of the term 48q(G) , we can
compensate for the growth of 0.

A. Principle of non-stationary phase

The analysis of oscillatory integrals is based on the so-called principle of non-
stationary phase, which expresses the decay of an oscillatory integral as a function
of a large parameter.
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Lemma 6.4.1 (Non-stationary phase lemma). Let # ≥ 1, i ∈ �∞
1
(R# ) a function

with real values and 5 ∈ �∞0 (R
# ). Let + be a neighbourhood of the support of 5 .

It is assumed that
inf
+
|∇i(G) | > 0.

Then, for all integers : and for all _ ≥ 1,����∫ 48_i(G) 5 (G) dG
���� ≤ �:_−: sup

|U |≤:



mUG 5 

!1 (R3) .

where �: is a constant independent of _ and 5 .

Proof. Let us introduce the differential operator

! := −8∇i · ∇
|∇i |2

where ∇i · ∇ =
∑

1≤ 9≤#

mi

mG 9

m

mG 9
·

which is well defined because the differential of the phase does not vanish above + .
Moreover, ! satisfies, for all _ ∈ R,

! (48_i) = _48_i,

and therefore !: (48_i(G)) = _:48_i(G) . Then, by doing successive integrations by
parts, we deduce that

_:
∫

48_i(G) 5 (G) dG =
∫

48_i(G) (C!): 5 (G) dG,

where
C! 5 = 8

∑
1≤ 9≤#

m

mG 9

(
1
|∇i |2

(
5
mi

mG 9

))
.

Let us note that (C!): is a differential operator of order : whose coefficients are �∞

(and depend on i). We thus obtain the desired result by bounding the last integral
by



(C!): 5 


!1 . We also obtain that the constant �: depends only on : , inf |∇i |2

and sup|U |≤:+1 ‖mUi‖!∞ . �

B. Definition of an oscillatory integral

Definition 6.4.2. Let < be a real number. The space �< of amplitudes of order <
consists of those functions 0 ∈ �∞(R# ;C) such that

∀U ∈ N# , sup
G∈R#

��(1 + |G |)−<mUG 0(G)�� < +∞.
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We introduce the norms

‖0‖<,: := max
|U |≤:

sup
G∈R#

��(1 + |G |)−<mUG 0(G)�� .
We will assume that q is a non-degenerate quadratic form, of the form

q(G) = (�G) · G (G ∈ R# )

where � ∈ "# (R) is an invertible symmetric matrix. Then ∇q(G) = 2�G and we
can apply the principle of non-stationary phase.

Theorem 6.4.3. Let < ≥ 0, q be a non-degenerate quadratic form on R# , 0 ∈ �<
and k ∈ S(R# ) such that k(0) = 1. Then the integral

� (Y) :=
∫

48q(G)0(G)k(YG) dG,

which is well-defined for Y > 0, converges when Y tends towards 0 towards a limit
independent of k, which is equal to

∫
48(G)0(G) dG if 0 belongs to !1(R# ). When

0 ∉ !1, we continue to denote the limit
∫
48q(G)0(G) dG and we have

(6.4.1)
����∫ 48q(G)0(G) dG

���� ≤ �q,< ‖0‖<,<+#+1 .
Proof. We want to use the principle of non-stationary phase, which requires to
make a large parameter appear. To do this, we will use a dyadic decomposition.
Let us recall how to obtain such a decomposition. Let j0 ∈ �∞0 (R

# ;R) be a radial
function satisfying j0(G) = 1 for |G | ≤ 1/2, and j0(G) = 0 for |G | ≥ 1. We
pose j(G) = j0(G/2) − j0(G). Then the function j is supported in the annulus
{G ∈ R# ; 1/2 ≤ |G | ≤ 2} and, for all G ∈ R# , we have the equality

1 = j0(G) +
∞∑
9=0

j(2− 9G).

The convergence of this series is not a problem because, for all G ∈ R# , we have
j(2−?G) = 0 for all integer ? large enough. Let us set

(? (G) = j0(G) +
?∑
9=0

j(2− 9G) = j0(2−?−1G),
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and introduce the well-defined integrals

�? :=
∫

48q(G)0(G)(? (G) dG, '? (Y) :=
∫

48q(G)0(G) (1 − k(YG))(? (G) dG.

Notice that, by dominated convergence,

� (Y) =
∫

48q(G)0(G)k(YG) dG = lim
?→+∞

∫
48q(G)0(G)k(YG)(? (G) dG.

Also, by definition, ∫
48q(G)0(G)k(YG)(? (G) dG = �? − '? (Y).

Hence, it will suffice to prove that lim?→+∞ �? exists and that lim?→+∞ '? (Y) =
$ (Y). This will prove that � (Y) has a limit when Y tends towards 0 and that this
limit is independent of k.

After changing variables I = 2−?G,

�? − �?−1 =

∫
482

2?q(I)0(2?I)j(I)2#? dI

where we used the fact that q is quadratic to write q(CI) = C2q(I).

On the support of j we have |I | ≥ 1/2 so

inf
I∈supp j

|∇q(I) | ≥ 20 > 0

and we can apply the principle of non-stationary phase. More precisely, it follows
from Lemma 6.4.1 applied with 5 (G) = 0(2?G)j(G) and _ = 22? that, for all : ∈ N,∫

482
2?q(I)0(2?I)j(I)2#? dI ≤ �:2#?−2?: max

|U |≤:

∫
|G |≤2

��mUG (
0(2?G)j(G)

) �� dG,
where we used the fact that supp j is contained in the ball �(0, 2). The assumption
that 0 is an amplitude of order < implies that there exists a constant� > 0 such that,
for all ? ≥ 1, ∫

|G |≤2

��mUG (
0(2?G)j(G)

) �� dG ≤ �2?( |U |+<) ‖0‖<,|U | .
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From this we deduce that∫
482

2?q(I)0(2?I)j(I)2?# dI ≤ ��:2?(#+:+<−2:) ‖0‖<,: .

We choose : = # + < + 1 so that���? − �?−1
�� ≤ ��#+<+12−? ‖0‖<,#+<+1 .

In the same way we obtain that��'? (Y) − '?−1(Y)
�� ≤ Y�2−? .

This completes the proof. �

C. An inequality of Hörmander

The aim of this paragraph is to demonstrate a nice result, the proof of which allows
us to implement several ideas which are very useful in practice.

Consider a family of operators )ℎ, depending on a small parameter ℎ, of the form

()ℎ 5 ) (b) :=
∫

48q(G,b)/ℎ0(G, b) 5 (G) dG (G, b ∈ R3).

Let us suppose that the phase q is with real values and that the amplitude 0 is
compactly supported in G and in b. Then, we easily satisfy that, for all ℎ > 0,
)ℎ is a continuous linear from !2(R3) to !2(R3). We will prove an estimate, due
to Hörmander, which states that if the mixed Hessian q′′

Gb
is not singular on the

amplitude support, then ℎ−3/2)ℎ is uniformly bounded in L(!2).

Theorem 6.4.4. Let 0 ∈ �∞0 (R
3 × R3). If 0 ∈ �∞(R3 × R3) is real and satisfies

(G, b) ∈ supp 0 ⇒ det
[
m2q

mGmb
(G, b)

]
≠ 0,

then there exists a constant � such that, for all ℎ ∈ (0, 1] and all 5 ∈ !2(R3),

‖)ℎ 5 ‖!2 ≤ �ℎ
3
2 ‖ 5 ‖!2 .
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Remark 6.4.5 (Hausdorrf-Young inequality). In view of the obvious estimate

‖)ℎ 5 ‖!∞ ≤ ‖ 5 ‖!1 ,

the Riesz convexity theorem implies that, if ? ∈ [1, 2] and 1/? + 1/?′ = 1, then

‖)ℎ 5 ‖!?′ . ℎ3/?
′ ‖ 5 ‖!? , 5 ∈ �∞0 (R

3).

By taking Φ(G, b) = G · b and 0 with 0(0, 0) = 1, we obtain the Hausdorff-Young
inequality by a scaling argument.

Proof. We will use classical results on bounded operators on L(!2). First, let
‖) ‖2L(!2) = ‖)

∗‖2L(!2) . We deduce that ‖))∗‖2L(!2) . As furthermore

‖)∗ 5 ‖!2 = 〈)∗ 5 , )∗ 5 〉 = 〈))∗ 5 , 5 〉 ≤ ‖))∗‖L(!2) ‖ 5 ‖2!2 ,

we check that
‖)∗‖2L(!2) = ‖)

∗‖2L(!2) = ‖))
∗‖L(!2) .

Therefore, it is sufficient to prove that the norm 1 of )ℎ)∗ℎ is bounded by �ℎ3 . Let
us write

()ℎ)∗ℎ 5 ) (b) =
∫

 ℎ (b, [) 5 ([) d[

where

 ℎ (b, [) =
∫

48(Φ(G,b)−Φ(G,[))/ℎ0(G, b)0̄(G, [) dG.

We then use Schur’s lemma (proved at the end of this proof) which states that a
kernel operator, of the form

() 5 ) (G) =
∫

 (G, H) 5 (H) dH,

satisfies

2 ‖) ‖!2→!2 ≤ sup
H

∫
| (G, H) | dG + sup

G

∫
| (G, H) | dH.

It thus remains to estimate the kernel  ℎ. If we introduce a partition of the unit, we
can always suppose that the support of 0 is included in a ball of diameter X small.
One can thus limit oneself to consider the case where b and [ are close. Then

|mG
(
Φ(G, b) −Φ(G, [)

)
| = |Φ′′Gb (G, [) (b − [) | +$ ( |b − [ |2) ≥ 2 |b − [ | ,

1It is frequently used that it is more convenient to estimate the operator norm of ))∗ than that of
) ; we then say that we use the ))∗ argument.
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and one is able to use the lemma of the non-stationary phase to obtain the majoration

| ℎ (b, [) | ≤ �#
(
|b − [ |
ℎ

)−#
,

for all # ∈ N. As moreover  ℎ is bounded, we deduce that

| ℎ (b, [) | ≤ �′# (1 + |b − [ | /ℎ)−# ,

from which

sup
[

∫
| ℎ (b, [) | db ≤ �ℎ3 , sup

b

∫
| ℎ (b, [) | d[ ≤ �ℎ3 ,

which concludes the proof. �

Lemma 6.4.6 (Schur’s Lemma). Let  (G, H) be a continuous function on R3 × R3
such that

sup
H

∫
| (G, H) | dG ≤ �1, sup

G

∫
| (G, H) | dH ≤ �2.

Then the operator % of kernel  , defined for D ∈ �0
0 (R

3) by

%D(G) =
∫

 (G, H)D(H) dH

extends uniquely into a continuous operator of !2(R3) in !2(R3) and

‖%D‖!2 ≤
√
�1�2 |D‖!2 .

Proof. According to the Cauchy-Schwarz inequality

|%D(G) |2 ≤
∫
| (G, H) | |D(H) |2 dH

∫
| (G, H) | dH ≤ �2

∫
| (G, H) | |D(H) |2 dH,

from which ∫
|%D(G) |2 dG ≤ �2

∫ ∫
| (G, H) | |D(H) |2 dH dG

≤ �2

∫
|D(H) |2

( ∫
| (G, H) | dG

)
dH

≤ �1�2

∫
|D(H) |2 dH,

which implies the desired inequality. �
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Remark 6.4.7. Schur’s lemma implies that if 5 ∈ !1 and 6 ∈ !2 then ‖ 5 ∗ 6‖!2 ≤
‖ 5 ‖!1 ‖6‖!2 . To see this it is sufficient to observe that

5 ∗ 6(G) =
∫

 (G, H)6(H) dH where  (G, H) = 5 (G − H).

The desired inequality comes from Schur’s lemma with � = ‖ 5 ‖!1 .

6.5 Adjoint and composition

To state themain result of this chapter, it is convenient to use the following definition.

Definition 6.5.1. 8) Let B ∈ R. The Sobolev space �B (R3) is the space of tempered
distributions 5 such that (1+ |b |2)B/2 5̂ (b) belongs to !2(R3). This space is equipped
with the norm

‖ 5 ‖2�B :=
1
(2c)3

∫
(1 + |b |2)B

�� 5̂ (b)��2 db.

88) Let < ∈ R. An operator is said to be of order < if it is bounded from �` (R3) to
�`−< (R3) for all < ∈ R.

Example 6.5.2. • The identity is an operator of order 0 and the Laplacian is
an operator of order 2;

• A differential operator % =
∑
|U |≤: ?U (G)mUG with : ∈ N and ?U ∈ �∞1 (R

3)
is an operator of order : (non-trivial to prove starting from the definition of
Sobolev spaces for ` ∈ R \ N);

• The convolution operator by a function in the Schwartz class is an operator
of order −∞ (which means that it is of order −; for all ; ∈ N or that it sends
�−∞(R3) = ∪B∈R�B (R3) into �∞(R3) = ∩B∈R�B (R3)).

In this chapter, we will prove (and make sense of) the following statement.

Theorem 6.5.3. 8) If 0 ∈ (< (R3) then Op(0) can be extended on the space S′(R3)
of tempered distribution as an operator of order <.

88) Suppose 0 ∈ (< (R3) and 1 ∈ (<′ (R3). Then Op(0) ◦ Op(1) is a pseudo-
differential operator of symbol denoted 0#1 and defined by

0#1(G, b) = (2c)−3
∬

48(G−H)·(b−[)0(G, b)1(H, [) db dH.
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In addition Op(0) ◦Op(1) = Op(01) + ' where ' is of order < +<′ − 1 and more
generally, the operator

Op(0) ◦ Op(1) − Op
( ∑
|U |≤:

1
8 |U |U!

(
mUb 0(G, b)

) (
mUG 1(G, b)

) )
is of order < + <′ − : − 1, for all integer : ∈ N.

888) The adjoint Op(0)∗ is a pseudo-differential operator of symbol 0∗ defined by

0∗(G, b) = (2c)−3
∬

4−8H·[0(G − H, b − [) dH d[.

Moreover Op(0)∗ = Op(0) + ' where ' is of order < − 1 and more generally

Op(0∗) − Op
( ∑
|U |≤:

1
8 |U |U!

mUb m
U
G 0(G, b)

)
is of order < − : − 1,

for all integer : ∈ N.

Corollary 6.5.4. Let 0 ∈ (< (R3) and 1 ∈ (<′ (R3). By definition, the Poisson
bracket of 0 and 1 is defined by

{0, 1} =
∑

1≤ 9≤3

( m0
mb 9

m1

mG 9
− m1

mb 9

m0

mG 9

)
·

Then the commutator

[Op(0),Op(1)] = Op(0) ◦ Op(1) − Op(1) ◦ Op(0)

is an operator of order < + <′ − 1 whose symbol 2 can be written as

2 =
1
8
{0, 1} + 2′ where 2′ ∈ (<+<′−2.

To prove Theorem 6.5.3 we start by studying the adjoint with the following propo-
sition.

Proposition 6.5.5. Let < ∈ R. If 0 ∈ (< (R3) then the oscillatory integral

0∗(G, b) = (2c)−3
∬

4−8H·[0(G − H, b − [) dH d[

defines a symbol 0∗ that belongs to (< (R3).
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Proof. Let q(H, [) = −H · [. Then q is a non-degenerate quadratic form on R23 (we
have q(-) = (�-) · - where � is the symmetric invertible matrix � = −1

2
( 0 �
� 0

)
).

At (G, b) fixed we denote

1G,b (H, [) = 0(G − H, b − [).

To study 1G,b , we will use the following inequality.

Lemma 6.5.6 (Peetre’s Lemma). Recall the notation

〈b〉 = (1 + |b |2)1/2.

Let 3 ≥ 1. For all < ∈ R and all b, [ in R3 , we have

〈b + [〉< ≤ 2|< | 〈b〉 |< | 〈[〉< .

Proof. According to the triangular inequality

1 + |b + [ |2 ≤ 1 + (|b | + |[ |)2 ≤ 1 + 2 |b |2 + 2 |[ |2 ≤ 4(1 + |b |2) (1 + |[ |2)

so 〈b + [〉2 ≤ 22〈b〉2〈[〉2 and we deduce the desired inequality for < ≥ 0. Now
consider < < 0 so that −< > 0. We can then use the inequality with −< > 0 to get

〈[〉−< ≤ 2−< 〈b + [〉−< 〈−b〉−<,

which implies the desired result by dividing by 〈[〉−< 〈b + [〉−<. �

The previous lemma implies that

〈b − [〉< ≤ 2|< | 〈b〉< 〈[〉 |< | ∀b, [ ∈ R3 .

Then, the assumption that 0 is a symbol implies that���mUH mV[ 0(G − H, b − [)��� ≤ �UV〈b − [〉<−|V | ≤ �UV〈b − [〉<
≤ �UV2|< | 〈b〉< 〈[〉 |< |

≤ �UV2|< | 〈b〉< (1 + |H |2 + |[ |2) |< |/2

for all U, V in N3 . By definition of the classes of amplitudes, we deduce that

1G,b ∈ �|< | (R23)
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and moreover

1G,b

|< |,|< |+23+1 = max
|U |+|V |≤|< |+23+1

���〈(H, [)〉−|< |mUH mV[ 1G,H (H, [)��� ≤ �〈b〉< .
Since 0∗(G, b) is an oscillatory integral given by

0∗(G, b) =
∬

48q(H,[)1G,b (H, [) dH d[,

the previous estimation and the inequality (6.4.1) imply that 〈b〉−<0∗ is a bounded
function. It remains to estimate the derivatives. For that we will prove that 0∗ is �∞

and that for all any multi-indices U, V we have

mUG m
V

b
(0∗) = (mUG m

V

b
0)∗.

Let us admit this identity. Then the previous argument applied with the symbol
mUG m

V

b
0 ∈ (<−|V | (R3) instead of 0 ∈ (< (R3) implies that 〈b〉−(<−|V |)mUG m

V

b
(0∗) is

bounded for all U, V in N3 . This will prove that 0∗ is in (< (R3).

It remains to prove that mUG m
V

b
(0∗) = (mUG m

V

b
0)∗. For this we will show that we can

differentiate the oscillatory integral which defines 0∗ under the integral sign. Recall
that for all function k ∈ �∞0 (R

3 × R3) such that k(0, 0) = 1 we have

0∗(G, b) = lim
Y→0

∬
4−8H·[ 0̄(G − H, b − [)k(YH, Y[) dH d[.

We will again use an integration by parts argument that relies on the identity

(1 + |H |2)−: (1 + |[ |2)−: (� − ΔH): (� − Δ[):4−8H·[ = 4−8H·[ .

Since we are integrating regular functions with compact support, we can integrate
by parts and obtain that∬

4−8H·[ 0̄(G − H, b − [)k(YH, Y[) dH d[

=

∬
4−8H·[ (� − ΔH): (� − Δ[):

[
0̄(G − H, b − [)k(YH, Y[)
(1 + |H |2): (1 + |[ |2):

]
dH d[.

Recall that we have shown that��mWH mX[ 0(G − H, b − [)�� ≤ �WX2|< | 〈b〉< (1 + |[ |2) |< |/2.
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On the other hand��mWH (1 + |H |2)−: �� ≤ �:,W (1 + |H |2)−: , ��mX[ (1 + |[ |2)−: �� ≤ �:,X (1 + |[ |2)−: .
We then easily verify that, if : > (3 + |< |)/2, then we can use the dominated
convergence theorem and deduce that

(6.5.1) 0∗(G, b) =
∬

4−8H·[ (� − ΔH): (� − Δ[):
[

0̄(G − H, b − [)
(1 + |H |2): (1 + |[ |2):

]
dH d[.

The key point is that we have written 0∗(G, b) in the form of a convergent integral in
the Lebesgue sense, andwhose integrand depends in a smoothway on the parameters
G, b. We then check that we can apply the derivation theorem under the integral sign
for convergent integrals in the usual Lebesgue sense. It follows that 0∗ ∈ �∞(R23)
and

mUG m
V

b
(0∗) (G, b) =

∬
4−8H·[ (� − ΔH): (� − Δ[):

[
mUG m

V

b
0̄(G − H, b − [)

(1 + |H |2): (1 + |[ |2):

]
dH d[.

And then observe that the latter integral is equal to (mUG m
V

b
0)∗ by applying (6.5.1)

with 0 replaced by mUG m
V

b
0. This proves that mUG m

V

b
(0∗) = (mUG m

V

b
0)∗, which concludes

the proof. �

Proposition 6.5.7. Let < ∈ R and 0 ∈ (< (R3). Then, for all D, E in S(R3) we have

(Op(0)D, E) = (D,Op(0∗)E) ,

where ( 5 , 6) =
∫
R3
5 (G)6(G) dG.

Proof. To prove this result we will make the additional assumption that 0 is com-
pactly supported in G.

The proof is based on continuity arguments. Recall that the Schwartz space S(R3)
is a Fréchet space whose topology is induced by the following family of semi-norms,
indexed by ? ∈ N,

N? (i) =
∑

|U |≤?,|V |≤?
sup
G∈R3

���GUmVG i(G)��� .
The convergence of a sequence (i: ):∈N of S(R3) to a function i ∈ S(R3) is
therefore equivalent to

∀? ∈ N, lim
:→∞
N? (i: − i) = 0.
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Similarly, the topology on the symbol class (< (R3) is induced by the following
family of semi-norms, indexed by ? ∈ N,

M<
? (0) =

∑
|U |≤?,|V |≤?

sup
(G,b)∈R3×R3

{
〈b〉−(<−|V |)

��mUG mVb 0(G, b)��} ·
The convergence of a sequence of symbols is equivalent to the convergence in the
sense of the semi-norms : for < ∈ R we say that a sequence (0: ) of symbols
belonging to (< (R3) converges to 0 in (< (R3) if and only if

∀? ∈ N, lim
:→+∞

M<
? (0: − 0) = 0.

Lemma 6.5.8. Let< ∈ R, 0 ∈ (< (R3) and (0: ) be a sequence of symbols belonging
to (< (R3) and converging to 0 in (< (R3).

8) For all D ∈ S(R3), the sequence (Op(0: )D) converges to Op(0)D in S(R3).

88) The sequence (0∗
:
) converges to 0∗ in (< (R3).

888) Let ℓ ∈ R, 1 ∈ (ℓ (R3) and (1: ) be a sequence of symbols belonging to (ℓ (R3)
and converging to 1 in (ℓ (R3). Then (0:1: ) converges to 01 in (<+ℓ (R3).

Proof. 8) We have already seen that if 0 ∈ (< (R3) and D ∈ S(R3) then Op(0)D ∈
S(R3). The proof of this result leads directly to the result stated in point 8). In the
same way the previous proposition proves the continuity result stated at point 88).
Finally, the result stated at point 888) is a direct consequence of Leibniz’ rule. �

Lemma 6.5.9. Let j ∈ �∞0 (R
3) such that j(0) = 1. Let us introduce AY (b) =

j(Yb) − 1. Then AY converges to 0 in (1(R3).

Proof. We will show that
���mUb AY (b)��� ≤ �UY〈b〉1−|U | for all multi-index U ∈ N3 . For

U = 0 we write

AY (b) = Y
∫ 1

0
j′(CYb) · b dC

and we deduce 〈b〉−1AY (b) = $ (Y) because j′ is bounded. For |U | > 0, we check
that ���〈b〉 |U |−1mUb AY (b)

��� = Y ���Y |U |−1〈b〉 |U |−1(mUb j) (Yb)
���

then we use the majoration���Y |U |−1〈b〉 |U |−1mUb j(Yb)
��� ≤ ���〈Yb〉 |U |−1(mUb j) (Yb)

��� ≤ sup
R3

���〈Z〉 |U |−1mUb j(Z)
���
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to obtain the desired result. �

We are now able to prove the theorem. Consider a symbol 0 = 0(G, b) ∈ (< (R3).
We fix j ∈ �∞0 (R

3) satisfying j(0) = 1 and we introduce, for all : ∈ N∗,

0: (G, b) = j
(
b

:

)
0(G, b).

Since 0: is compactly supported in b and also in G (by additional hypothesis on 0)
we can apply the proposition 6.3.3 to write that

(6.5.2) (Op(0: )D, E) =
(
D,Op(0∗: )E

)
.

To prove the theorem, we have to see that we can pass to the limit in this equality.
To do this we start by combining Lemma 6.5.9 with the point 888) of Lemma 6.5.8
to obtain that (0: ) converges to 0 in (<′ (R3) for all <′ > <. The point 88) of
Lemma 6.5.8 then implies that (0∗

:
) converges to 0∗ in (<′ (R3). We can then apply

point 8) of this lemma to obtain that Op(0: )D converges to Op(0)D in S(R3) and
similarly we get that Op(0∗

:
)D converges to Op(0∗)D in S(R3). We can then pass to

the limit in the identity (6.5.2), which concludes the proof. �

We can now define the action of Op(0) on a tempered distribution. To do this, let us
recall the principle we saw in the chapter on the Fourier transform. Let 0 ∈ (< (R3)
with < ∈ R. Then Op(0) : S(R3) → S(R3) a continuous linear application. We
define then an operator � of S′(R3) in S′(R3) by

∀(D, E) ∈ S(R3)2, 〈�D, E〉S′×S = 〈D,Op(0∗)E〉.

Then the proposition 2.3.6 shows that the operator � thus defined extends the
definition of Op(0). We denote it again as Op(0).

To conclude this paragraph, we will consider the composition of pseudo-differential
operators.

Let �1 = Op(01) and �2 = Op(02) be two pseudo-differential operators. Suppose
that 01 and 02 belong to �∞0 (R

23) and consider D ∈ S(R3). Then

�1�2D(G) = (2c)−3
∫

48G·b01(G, b) �̂2D(b) db
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and

�̂2D(b) =
∫

4−8H·b�2D(H) dH

= (2c)−3
∬

4−8H·(b−[)02(H, [)D̂([) d[ dH

so

�1�2D(G) = (2c)−23
∭

48H·[+8b ·(G−H)01(G, b)02(H, [)D̂([) db dH d[.

Thus we obtain that �1�2D(G) is equal to

(2c)−3
∫

48G·[
(
(2c)−3

∬
48(G−H)·(b−[)01(G, b)02(H, [) db dH

)
D̂([) d[.

Formally �1�2 = Op(1) where

1(G, [) = (2c)−3
∬

48(G−H)·(b−[)01(G, b)02(H, [) db dH.

The formula which defines 1 is still a convolution in the variables (H, b) (at (G, [)
fixed), this is why we can apply arguments parallel to those used to study the symbol
of the adjoint.

Proposition 6.5.10. If 01 ∈ (<1 (R3) and 02 ∈ (<2 (R3), then Op(01) ◦ Op(02) =
Op(1), where 1 = 01#02 ∈ (<1+<2 (R3) is given by the oscillatory integral

1(G, [) = (2c)−3
∬

48(G−H)·(b−[)01(G, b)02(H, [) db dH.

We will not discuss the proof, analogous to the one concerning the adjoint.

We have seen in this section that, for all < ∈ R and all 0 ∈ (< (R3), we can define
Op(0) on the space of tempered distributions. In particular we can defineOp(0)D for
all D in a Sobolev space �B (R3) with any B ∈ R. Thanks to the previous proposition
on composition, we will now see that Op(0) is an operator of order< as was claimed
in point 8) of the theorem 6.5.3.

Proposition 6.5.11. Let < ∈ R and 0 ∈ (< (R3). The operator Op(0) is bounded
from �B (R3) to �B−< (R3) for all 3 ≥ 1 and all B ∈ R.
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Proof. For ` ∈ R, we denote by (� − Δ)`/2 the Fourier multiplier of symbol 〈b〉` =
(1 + |b |2)`/2. Then (1 − Δ)`/2 is an isomorphism of �` (R3) onto !2(R3). It is
therefore sufficient to show that the operator

�B,< := (� − Δ) (B−<)/2 ◦ Op(0) ◦ (� − Δ)−B/2

is bounded from !2(R3) to !2(R3). Note that if 1 = 1(b) then

Op(0) ◦ Op(1) = Op(01)

so the symbol of Op(0) ◦ (1 − Δ)−B/2 is 0(G, b)〈b〉−B. As 0 ∈ (< (R3) and 〈b〉−B ∈
(−B (R3), the product of these two symbols belongs to (<−B (R3). On the other hand,
to manipulate (�−Δ) (B−<)/2 ◦Op

(
0〈b〉−B/2

)
, we use the composition theorem which

implies that �B,< is a pseudo-differential operator whose symbol belongs to (0(R3).
It is therefore a bounded operator on !2(R3) according to the continuity theorem
proved in the previous chapter. �

To conclude, it remains to prove the part concerning the symbolic calculation of
pseudo-differential operators. To do this, let us introduce the notion of asymptotic
sum of symbols. This notion allows us to give a rigorous meaning to claims such
as: 0 is the sum of a term (usually its so-called principal symbol) and a “better”
remainder.

Definition 6.5.12. Let 0 9 ∈ (< 9 (R3) be a sequence indexed by 9 ∈ N of symbols,
such that < 9 decreases towards −∞. We will say that 0 ∈ (<0 (R3) is the asymptotic
sum of 0 9 if

∀: ∈ N, 0 −
:∑
9=0
0 9 ∈ (<:+1 (R3).

We then denote 0 ∼ ∑
0 9 .

Proposition 6.5.13. 8) Let < ∈ R and 0 ∈ (< (R3). Then

0∗ ∼
∑
9

� 9 with � 9 =
∑
| |0 |= 9

1
8 |U |U!

mUb m
U
G 0.

88) Let <1, <2 ∈ R. If 01 ∈ (<1 (R3) and 02 ∈ (<2 (R3), then

01#02 ∼
∑
9

� 9 with � 9 =
∑
|U |= 9

1
8 |U |U!

(
mUb 01

) (
mUG 02

)
.
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Remark 6.5.14. In practice, by abuse of notation, we write simply

0∗ ∼
∑
U

1
8 |U |U!

mUb m
U
G 0

and

01#02 ∼
∑
U

1
8 |U |U!

(
mUb 01

) (
mUG 02

)
.

Proof. We will limit ourselves to proving the point 8). We use Taylor’s formula
(whose statement is recalled at the end of the proof of this proposition)

0(G − H, b − [) =
∑

|U+V |<2:

(−H)U
U!
(−[)V
V!

mUG m
V

b
0(G, b) + A: (G, b, H, [)

with

A: (G, b, H, [) =
∑

|U+V |=2:
2:
(−H)U
U!
(−[)V
V!

AUV (G, b, H, [)

and

AUV (G, b, H, [) =
∫ 1

0
(1 − C)2:−1mUG m

V

b
0(G − CH, b − C[) dC.

Earlier we proposed to prove as an exercise that, for all U and V in G#=,

(2c)−3
∫

4−8H·G
HU

U!
GV

V!
dH dG =

{
0 if U ≠ V,

(−8) |U |/U! if U = V.

This result implies that the sum over |U + V | < 2: corresponds to the asymptotic
expansion sought for 0∗. It then only remains to prove that∫

4−8H·[A: (G, b, H, [) dH d[ ∈ (<−: .

We will integrate by parts to deal with AUV. By noting simply ∗ different numerical
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constants, we obtain 2∫
4−8H·[HU[VAUV (G, b, H, [) dH d[

= ∗
∫

mU[
(
4−8H·[

)
[VAUV (G, b, H, [) dH d[

= ∗
∫

4−8H·[
∑
W

(mW[ [V)mU−W[ AUV (G, b, H, [) dH d[

=
∑
W

∗
∫

4−8H·[[V−WmU−W[ AUV (G, b, H, [) dH d[

=
∑
W

∗
∫

4−8H·[mV−WH m
U−W
[ AUV (G, b, H, [) dH d[.

By definition of AUV, we have

m
V−W
H m

U−W
[ AUV (G, b, H, [) = ∗

∫ 1

0
(1− C)2:−1C2:−2|W |mU+V−WG m

U+V−W
b

0(G − CH, b − C[) dC.

As W ≤ U and W ≤ V we have |W | ≤ : and |0 + V − W | ≥ : , so

m
U+V−W
G m

U+V−W
b

0 ∈ (<−: .

Then ∫
4−8H·[A: (G, b, H, [) dH d[ =

∫
4−8H·[B: (G, b, H, [) dH d[

where B: is an amplitude B: ∈ �|<−: | with

‖B: ‖ |<−: |,|<−: |+23+1 ≤ �: 〈b〉<−: .

We deduce that

〈b〉:−<
∫

4−8H·[A: (G, b, H, [) dH d[

is bounded and then that
∫
4−8H·[A: (G, b, H, [) dH d[ belongs to (<−: . �

2If 0 ∈ �< and 1 ∈ �ℓ , for U ∈ N# we have,∫
48q (G)0(G)mU1(G) dG =

∫
1(G) (−m)U

(
48q (G)0(G)

)
dG.
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In order to be complete, we prove the version of the Taylor formula that was used
above.

Theorem 6.5.15. Let D be a function of class �: on R3 . Then for all G and H in R3

we have

D(G + H) =
∑
|U |<:

1
U!
HUmUG

d
dC
D(G) +

∑
|U |=:

:

U!
HU

∫ 1

0
(1 − C):−1(mUG D) (G + CH) dC.

Proof. We check that

d
dC

( ∑
|U |=:−1

1
U!
HUmUG D(G + CH)

)
=

∑
|V |=:

( ∑
U≤V,|U |=:−1

1
U!

)
HV (mVG D) (G + CH)

=
∑
|V |=:

©­«
∑

1≤ 9≤3

V 9

V!
ª®¬ HV (mVG D) (G + CH)

=
∑
|V |=:

:

V!
HV (mVG D) (G + CH).

So the function

E(C) =
∑
|U |<:

1
U!
(1 − C) |U |HU (mUG D) (G + CH)

satisfies E(1) = D(G + H) and

E(0) =
∑
|U |<:

1
U!
HUmUD(G), mCE: =

∑
|U |=:

:

U!
HU (1 − C):−1(mUG D) (G + CH)

so that the Taylor formula is a consequence of the fundamental theorem of integral
calculus. �

6.6 Applications of the symbolic calculus

6.6.1 Action on Sobolev spaces

We will give another proof of the following result that we have already seen in the
previous chapter.
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Theorem 6.6.1. If 0 ∈ (0(R3) then Op(0) is bounded on !2(R3).

Proof. Let us set � = Op(0). The idea is the following, as

‖�D‖2
!2 = (�D, �D) = (�∗�D, D),

to show the inequality ‖�D‖2
!2 ≤ " ‖D‖2!2 for some " > 0, it is enough to show that

suffice to show that (�D, D) ≥ 0 where � = " Id−�∗�. Note that � is a self-adjoint
operator. To prove that � is positive for " large enough, we will show that we can
write, approximately, � in the form of a square. Precisely, we will show that we can
write � in the form

� = �∗� + ',
where � = Op(2) with 2 ∈ (0(R3) and ' = Op(A), A ∈ (−1.

Let us choose " = 2 sup |0(G, b) |2 and then let us take :

2(G, b) = (" − |0(G, b) |2)1/2.

We check that 2 belongs to (0(R3). The theorem of composition of operators implies
that �∗� = " Id−�∗� + ' where ' = Op(A) with A ∈ (−1. Thus

‖�D‖2
!2 ≤ " ‖D‖2!2 + ('D, D).

Now we have to increase the error ('D, D). Since ‖'D‖2
!2 = ('D, 'D) = ('∗'D, D),

' will be continuous on !2 if '∗' is, with

‖'‖!2→!2 ≤ ‖'∗'‖1/2
!2→!2 .

Now A∗#A ∈ (−2 : by iterating the argument we see that it is sufficient to show
that, for : large enough, any operator of symbol A ∈ (−: is continuous on !2. We
will show this result by using Schur’s lemma and the following remark: if A ∈ (−=−1

then the kernel  (G, H) of Op(A) is a bounded continuous function, because

| (G, H) | ≤ (2c)−=
∫
|A (G, b) | db ≤ �0

(2c)=
∫

db
(1 + |b |)=+1

≤ �.

Moreover, (G 9 − H 9 ) (G, H) is the kernel of Op(8mb 9A) ∈ Op (−=−2 ⊂ Op (−=−1 so by
iterating (= + 1) times, we finally find (1 + |G − H |=+1) (G, H) ≤ �. The decay of  
to infinity implies in particular:∫

| (G, H) | dG ≤ �,
∫
| (G, H) | dH ≤ �.

We conclude the proof with Schur’s lemma (see Lemma 6.4.6). �
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6.6.2 Subelliptic problems

Proposition 6.6.2. Let ` ∈ R and 4 ∈ (` be a symbol such that

|4(G, b) | ≥ 2(1 + |b |)` ∀(G, b) ∈ R23 .

Then 4−1 belongs to (−`. Moreover, for all B ∈ R there exist constants  0,  1 > 0
such that, for all D ∈ �B,

‖D‖�B ≤  0 ‖Op(4)D‖�B−` +  1 ‖D‖�B−1 .

Proof. The fact that 4−1 ∈ (−` can be proven directly. Then 4#4−1 = 1 + 1 with
1 ∈ (−1 and we deduce Op(4−1) Op(4)D = Op(1)D + Op(1)D = D + Op(1)D so

‖D‖�B ≤


Op(4−1)




L(�B−`;�B) ‖Op(4)D‖�B−` + ‖Op(1)‖L(�B−1;�B) ‖D‖�B−1 ,

which gives the desired result. �

Proposition 6.6.3 (Gårding’s inequality). Let < ∈ R and 0 ∈ (< (R3) be a symbol
such that

(6.6.1) ∃2 > 0/ ∀(G, b) ∈ R23 , Re 0(G, b) ≥ 2(1 + |b |)< .

Then there exist constants �0, �1 > 0 such that, for all D ∈ S(R3),

Re(Op(0)D, D) ≥ �0 ‖D‖2�</2 − �1 ‖D‖2� (<−1)/2 .

Remark 6.6.4. One can improve this inequality in two directions.

8) Firstly, as it is explained in Exercise 11.0.9, one can prove that, for all # there
exists a constant �# such that,

Re(�D, D) ≥ 2
2
‖D‖2

�</2
− �# ‖D‖2�−# ,

for all D ∈ S(R3).

88) The previous proposition remains true if 0 is a matrix-valued symbol (in this case
Re 0 = 0 + 0∗). The proof reduces to showing that, for all symbol 0 ∈ (0 such that
0(G, b) is Hermitian definite positive uniformly for (G, b) ∈ R3 , there exists 1 ∈ (0

such that 1(G, b)∗1(G, b) = 0(G, b).
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Proof. To prove this inequality, which is a relation between the positivity of a
symbol and that of the associated operator, we will use the symbolic calculus to
write � = Op(0) as a square (i.e. %∗%) plus an operator of order < − 1.

Let us set

� := Re � =
1
2
(� + �∗) ,

so that Re(�D, D) = (�D, D). As �∗ ∈ Op(0̄) + Op (<−1, we have � = Op(1) with
1 = 1

2 (0 + 0
∗) = Re 0 + 3 where 3 ∈ (<−1.

We then denote 4 the positive square root of Re 0, which is a symbol belonging to
(</2 by assumption (6.6.1). Moreover, the composition of the symbols is such that

5 := 4∗#4 − Re 0 ∈ (<−1.

We deduce that 1 = 4∗#4 + 6 where 6 = 3 − 5 ∈ (<−1. We can then write

Re(�D, D) = (Op(1)D, D)
= (Op(4)∗Op(4)D, D) + (Op(6)D, D)
= ‖Op(4)D‖2

!2 + (Op(6)D, D)
≥ ‖Op(4)D‖2

!2 − ‖Op(6)D‖
�

1−<
2
‖D‖

�
<−1

2
.

The previous proposition implies that

‖D‖
�
<
2
≤  0 ‖Op(4)D‖!2 +  1 ‖D‖� <

2 −1 ,

and the theorem about the continuity of ΨDOs on Sobolev spaces implies that

‖Op(6)D‖
�

1−<
2
≤  2 ‖D‖

�
<−1

2
.

Combining the previous inequalities we get the desired result. �

Recall the Poisson bracket notation:

{0, 1} =
∑

1≤ 9≤=

m0

mb 9

m1

mG 9
− m1

mb 9

m0

mG 9
·

Theorem 6.6.5. Let % = Op(?) be a pseudo-differential operator such that ? =
?1 + ?0 with ?1 ∈ (1(R3) and ?0 ∈ (0(R3). Suppose that there exists a constant 2
such that,

8{?1, ?1} > 2(1 + |b |).
Then there exists a constant � such that

‖D‖�1/2 ≤ � ‖%D‖!2 + � ‖D‖!2 .
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Remark 6.6.6. The previous condition on 8{?1, ?1} is called the Hörmander hy-
poellipticity condition. We check that for all ? ∈ �1(R3) with complex values, the
Poisson bracket 8{?, ?} is a real-valued function.

Proof. Let us introduce the operator & = %∗% − %%∗. Then

‖%D‖2
!2 = (%∗%D, D)
= (%%∗D, D) +

(
(%∗% − %%∗)D, D

)
= ‖%∗D‖2

!2 + (&D, D)
≥ (&D, D).

Thus, any estimate of positivity of & will give an estimate on ‖%D‖2
!2 .

Recall first that if � = Op(0) ∈ Op (<1 and � = Op(1) ∈ Op (<2 , are two pseudo-
differential operators, then �∗ ∈ Op (<1 and [�, �] ∈ Op (<1+<2−1. Furthermore

�∗ ∈ Op(0) + Op (<1−1, [�, �] ∈ Op
(1
8
{0, 1}

)
+ Op (<1+<2−2.

Therefore & = Op(@) with @ = @1 + @0 where @1 ∈ (1(R3), @0 ∈ (0(R3) and

@1 =
1
8
{?1, ?1}.

By hypothesis we deduce that Re @1 > 2 |b | if |b | ≥ '. The Gårding’s inequality
implies that

Re(&D, D) ≥ 1
�
‖D‖2

�1/2 − � ‖D‖2!2 .

This concludes the proof. �
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Part III

Propagation of singularities
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Chapter 7

The Cauchy-Lipschitz theorem

In this chapter, we recall several fundamental results : the Banach fixed point
theorem, the local inversion theorem and the Cauchy-Lipschitz theorem.

7.1 Reminders of differential calculus

Let � and � be two real normed vector spaces and let* be an open set of � . Consider
an application 5 : * → � and a point 0 ∈ *. We say that 5 is differentiable at point
0 in the Fréchet sense if there exists a continuous linear application ! : � → � and
an application Y : � → � such that

5 (G) = 5 (0) + ! (G − 0) + ‖G − 0‖� Y(G − 0) with lim
‖ℎ‖�→0

Y(ℎ) = 0.

The existence of ! depends on the choice of the norm ‖·‖� . Such a linear application
! is necessarily unique and is called the differential of 5 in 0, denoted d(0) (or d0 5
or 5 ′(0)). By abuse, we will simply say differentiable instead of differentiable in
the Fréchet sense. Recall the following result.

Theorem 7.1.1. Let 5 : * ⊂ � → � be a differentiable application on an open
convex open*. Suppose that there exists a constant � such that

∀0 ∈ *, ‖d 5 (0)‖L(�,�) ≤ �.

Then, for all (G, H) in* ×*, we have

‖ 5 (G) − 5 (H)‖� ≤ � ‖G − H‖� .

89



Suppose that 5 is differentiable at any point of*. Then we denote d 5 the application
0 ↦→ d 5 (0), called the differential of 5 . If the application d 5 is continuous from *

into L(�, �), then we say that 5 is of class �1 on * and we denote 5 ∈ �1(*). If
the application d 5 is differentiable at any point 0 of *, then we say that 5 is twice
differentiable on * and we denote d2 5 the resulting application. If this application
is continuous from* into L(�,L(�, �)), then we then we say that 5 belongs to the
space �2(*) of functions of class �2 on*. By induction, we define more generally
the notion of a function of class �: for all integer : ∈ N. We say that 5 belongs to
the space �∞(*) of functions of class �∞ on* if 5 is of class �: for all : . Finally,
given a closed set  ⊂ *, we will say that 5 is of class �: on  if there exists an
open set + such that  ⊂ + ⊂ * and such that 5 belongs to �: (+).

7.2 Banach fixed point theorem

Let us start with the fundamental example of solving an equation Φ(D) = 0 in the
case whereΦ−Id is a contracting application, in the sense of the following definition.

Definition 7.2.1. Let (�, 3) be a metric space and a positive real number : . We say
that an application 5 : � → � is :-Lipschitzian if, for all pair (G, H) in � × � ,

3 ( 5 (G), 5 (H)) ≤ :3 (G, H).

We say that 5 is contracting if it is :-Lipschitzian for some : ∈ [0, 1).

Theorem 7.2.2. Let � be a complete metric space and 5 : � → � a contracting
application. There exists a unique fixed point G∗ of 5 in � , such that 5 (G∗) = G∗.
Moreover any sequence (G=)=∈N of elements of � satisfying G=+1 = 5 (G=) converges
to G∗.

Proof. Let G0 ∈ � and let (G=)=∈N be the sequence defined by G=+1 = 5 (G=). Then
3 (G<+1, G<) ≤ :3 (G<, G<−1) so

3 (G<+1, G<) ≤ :<3 (G1, G0).

Since G=+? − G= = G=+1 − G= + · · · + G=+? − G=+?−1 we deduce

3 (G=+?, G=) ≤ (:= + · · · + :=+?−1)3 (G1, G0) ≤ :=
1

1 − : 3 (G1, G0),
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so the sequence (G=)=∈N is a Cauchy sequence. Since � is a complete space, this
sequence converges to an element denoted G∗. To show that G∗ is a fixed point of
5 we will use the previous inequality 3 (G<+1, G<) ≤ :<3 (G1, G0) which leads to
3 ( 5 (G<), G<) ≤ :<3 (G1, G0). Since : < 1 and 5 is continuous, we can pass to the
limit in this inequality to deduce that 3 ( 5 (G∗), G∗) = 0, which shows that G∗ is a
fixed point of 5 . �

7.3 Inverse function theorem

In this section we will see the proof of the inverse function theorem in Banach
spaces.

Definition 7.3.1. Consider two normed spaces �1, �2 and open sets * ⊂ �1 and
+ ⊂ �2. We say that an application 5 : * → + is a �: -diffeomorphism, with
: ∈ N ∪ {∞}, if :

• 5 is of class �: ,

• 5 is a bĳection from* to + ,

• the inverse 5 −1 is of class �: .

Theorem 7.3.2. Let 5 : * → �2 be an application �1 from an open set * of a
Banach space �1 to a Banach space �2. If d 5 (G0) is an isomorphism from �1 to �2
then 5 is a �1 diffeomorphism of a neighborhood of G0 on a neighborhood of 5 (G0).

Remark 7.3.3. Moreover, we can prove that, if 5 is injective and if for all G of* the
differential d 5 (G) is a bi-continuous isomorphism, then 5 (*) is an open set and the
inverse bĳection, from 5 (*) to*, is of class �1.

Proof. We begin by observing that it is sufficient to consider the case �1 = �2,
G0 = 0, 5 (G0) = G0 and d 5 (G0) = Id. To see this, we replace * by the set *̃ of
elements G such that G0 + G belongs to*, and 5 by the application

5̃ (G) = (d 5 (G0))−1( 5 (G0 + G) − 5 (G0)).

Now let us introduce i(G) = G − 5 (G). The differential di(0) of i at 0 vanishes
so there exists A > 0 such that �A is included in * and such that the norm of the
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differential of i is always less than 1/2 on this ball. We introduce , = �A/2 and
+ = �A ∩ 5 −1(,). Let us show that 5 is bĳective from + to, .

Surjectivity. Let H ∈ , . We look for G ∈ + such that H = 5 (G). To do this we write
the equation H = 5 (G) in the form

G = ℎ(G) with ℎ(G) = H + i(G) = G + H − 5 (G),

and we are looking for a fixed point of ℎ.

Theorem 7.1.1 implies that i is 1/2-lipschitzian on �A . Thus ‖i(G)‖ ≤ A/2 for
all G ∈ �A . For all H ∈ , = �A/2 we have ‖H‖ < A/2 so ℎ sends �A in �A by the
triangular inequality. Moreover ℎ, like i, is 1/2-lipschitzian. Therefore ℎ has a
fixed point G in �A (according to the fixed point theorem). We check that G belongs
to �A because G = ℎ(G). Similarly we have G ∈ 5 −1(,) because 5 (G) = H. This
proves that for all H ∈ , , we can find G ∈ + such that 5 (G) = H.

Injectivity. For all (G1, G2) ∈ + ×+ ,

‖G1 − G2‖ = ‖i(G1) + 5 (G1) − i(G2) − 5 (G2)‖

≤ 1
2
‖G1 − G2‖ + ‖ 5 (G1) − 5 (G2)‖

so

(7.3.1) ‖G1 − G2‖ ≤ 2 ‖ 5 (G1) − 5 (G2)‖ ,

which implies that 5 : + → , is injective.

Regularity. First we observe that d 5 (G) = Id− di(G) and di(G) has norm less than
1/2 < 1 for all G in+ . Therefore d 5 (G) has bounded inverse according to a classical
result proved below, and its inverse is given by

∑
=∈N(di(G))=, of norm smaller than

2. Let us then show that 5 −1 is differentiable and that its differential is the inverse
of d 5 ( 5 −1(G)). To do this, let H ∈ , , let G = 5 −1(H) and set ! = (d 5 ( 5 −1(H)))−1.
We want to show that

(7.3.2)


 5 −1(H + I) − 5 −1(H) − !I



 = >(‖I‖).
For this let us introduce ℎ such that G + ℎ = 5 −1(H + I). Then

 5 −1(H + I) − 5 −1(H) − !I



 = ‖G + ℎ − G − ! ( 5 (G + ℎ) − 5 (G))‖
=



! (
5 (G + ℎ) − 5 (G) − !−1ℎ

)


≤ 2



 5 (G + ℎ) − 5 (G) − !−1ℎ


 ,

92



because ‖!‖L(�) is bounded by 2. Now we use !−1 = d 5 (G) to conclude

 5 −1(H + I) − 5 −1(H) − !I


 ≤ 4 ‖ℎ‖ .

We can then use the inequality (7.3.1) to conclude that ‖ℎ‖ ≤ 2 ‖I‖, which finally
proves (7.3.2).

Since 5 −1 is differentiable it is continuous and G ↦→ (d 5 ( 5 −1(G)))−1 is continuous
by composition of continuous functions. �

Lemma 7.3.4 (Neumann series). Let � be a Banach space and ) ∈ L(�) satisfy
‖) ‖ < 1. Then Id−) is invertible and its inverse is given by

(Id−))−1 =

∞∑
==0

)=.

Proof. The proof relies on the fact that L(�) is a Banach space (because � is one)
and on the fact that the operator norm on L(�) satisfies the following inequality:
‖)1)2‖L(�) ≤ ‖)1‖L(�) ‖)2‖L(�) .

Let us consider the partial sum (= = )
0 + ) + · · · + )=. Then (Id−))(= = Id−)=+1

converges to Id because


)=+1

L(�) ≤ ‖) ‖=+1L(�) and ‖) ‖L(�) < 1 by hypothesis.

Moreover the series (= converges normally so it converges because L(�) is a
Banach space. This classical result can be proved directly in the following way:
since

‖(=+< − (=‖L(�) ≤
=+<∑
9==+1

‖) ‖ 9L(�) ≤
+∞∑
9==+1

‖) ‖ 9L(�) ,

and since the right-hand side of the previous inequality converges to 0, the sequence
((=) is a Cauchy sequence and therefore it has a limit in the Banach spaceL(�). �

7.4 Cauchy-Lipschitz theorem

Theorem 7.4.1. Let = ≥ 1 and consider an application 5 ∈ �1(R ×R3;R3). Then,
for all H0 in R3 , there exists ) > 0 such that the system of differential equations
H′ = 5 (C, H) has a unique solution H ∈ �1( [−),)];R3) satisfying H(0) = H0.

Proof. Let us fix a parameter ) > 0. Note that H satisfies

(7.4.1) H′ = 5 (C, H(C)), H |C=0 = H0,
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if and only if the function I(g) = H()g) − H0 satisfies

(7.4.2) I′(g) = ) 5 ()g, I(g) + H0), I |g=0 = 0.

So if we can find ) > 0 such that there exists a solution I defined on a time interval
[−1, 1] we will have a solution of the initial problem, defined on the time interval
[−),)].

Let us introduce the spaces

�0 = �
0( [−1, 1];R3) and �1 =

{
I ∈ �1( [−1, 1];R3) ; I(0) = 0

}
.

These are Banach spaces for the norms

‖D‖�0 := sup
[−1,1]

|D(g) | , ‖D‖�1 := sup
[−1,1]

|D(g) | + sup
[−1,1]

|D′(g) | ,

where |·| denotes any norm onR3 . Let us also introduce the functionalΦ : R×�1 →
R × �0 defined by

Φ(), I) = (), E) where E(g) = I′(g) − ) 5
(
)g, I(g) + H0

)
.

Then q is a �1 application and its differential at the origin (0, 0) is given by the
application (IdR, d/dg), that is

dΦ(0, 0) · (), ℎ) = (), D) with D(g) = ℎ′(g) − ) 5 (0, H0).

This application is a linear isomorphism of R× �1 onto R× �0, whose inverse is the
application ! defined by ! (), E) = (), F) where F(g) = )g 5 (0, H0) +

∫ g

0 E(B) dB.

We can then apply the inverse function theorem. We deduce that Φ is a �1-
diffeomorphism of a neighborhood * ⊂ R × �1 of (0, 0) on Φ(*). Since (0, 0)
belongs to *, Φ((0, 0)) belongs to Φ(*). Now, by definition of Φ, we have
Φ((0, 0)) = (0, 0). Moreover Φ(*) is an open set, because it is the preimage of
the open set * by the continuous application Φ−1. In particular, the pair (), 0)
belongs to Φ(*) for ) small enough. There exists a pair () ′, I) in R × �1 such
that Φ(() ′, I)) = (), 0). We deduce that ) ′ = ) and that I is a solution of the
equation (7.4.2). Then, as we explained at the beginning of the proof, the function
H(C) = I(C/)) is a solution of (7.4.1).

Let us finally notice that the uniqueness of the solution comes from the uniqueness
result for the inverse function theorem. �
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7.5 Propagation along bicharacteristic curves

Definition 7.5.1. Consider a function 1 = 1(G, b) ∈ �2(R23) with real values. We
denote �1 : R23 → R23 the vector field defined by

(7.5.1) �1 (G, b) =
( m1
mb1
(G, b), . . . , m1

mb=
(G, b),− m1

mG1
(G, b), . . . ,− m1

mG=
(G, b)

)
.

We say that �1 is the Hamiltonian field of 1. Its integral curves are called bicarac-
teristics. For (G, b) ∈ R3 × R3 , we denote C ↦→ ΦC

�1
(G, b) = (G(C), b (C)) the unique

maximal solution of the system

(7.5.2)
3G

3C
=
m1

mb
(G(C), b (C)), 3b

3C
= −m1

mG
(G(C), b (C)),

G(0) = G, b (0) = b.

Proposition 7.5.2. Suppose 1 is a real-valued symbol with 1 ∈ (1(R3). Then the
flow ΦC

�1
: R23 → R23 is defined for all time C ∈ R. Moreover, if ? ∈ (0(R3), then

?(ΦC
�1
(G, b)) defines a symbol that belongs to (0(R3) uniformly in C.

Proof. Given (G, b) ∈ R23 , the Cauchy problem (7.5.2) can be written under the
form {

"′(C) = �1 (" (C)) where " (C) = (G(C), b (C)),
" (0) = (G, b).

Since 1 is a �∞ function, the vector field �1 is �1 and hence the Cauchy-Lipschitz
theorem implies that there exists a unique maximal solution < : [0, )∗) → R23 . Let
us prove that this solution is globally defined, which means that )∗ = +∞. Recall
the following alternative: either )∗ = +∞ or lim supC→)∗ |<(C) | = +∞. To prove that
the latter condition is impossible, we will estimate H(C) = |<(C) |2. Since 1 belongs
to (1, there exists a constant � > 0 such that |�1 (<) | ≤ � + � |< | for all < ∈ R23 .
It follows that

d
dC
H(C)2 = 2<′(C) · <(C) ≤ 2� (1 + |< |) |< | ≤ � + 3�H(C)2.

Then it follows from Gronwall’s lemma that

H(C)2 ≤ H(0)243�C + 1
3
(43�C − 1),
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from which we deduce that )∗ = +∞.

In addition, the smooth dependence of the solution of an ordinary differential
equation with respect to the initial data implies that, for all C ≥ 0, the flow
(G, b) ↦→ ΦC

�1
(G, b) is �∞. Denote ΦC (G, b) = (- C (G, b),ΞC (G, b)). We claim

that, for all multi-indices U and V in N3 , there exist constant �UV and �′UV such that

∀(G, b) ∈ R23 ,
���mUG mVb - C (G, b)��� ≤ �UV〈b〉−|V | if |U | + |V | > 0,(7.5.3)

∀(G, b) ∈ R23 ,
���mUG mVb ΞC (G, b)��� ≤ �′UV〈b〉1−|V | for any U, V ∈ N3 .(7.5.4)

We begin by studying ΞC (G, b). Since mG1 is a symbol of order 1, as above we have

(7.5.5)
���� d
dC
ΞC (G, b)

���� ≤ � + � ��ΞC (G, b)�� ,
and since Ξ0(G, b) = b, the same argument as above implies that��ΞC (G, b)��2 ≤ |b |2 43�C + 1

3
(43�C − 1).

This proves (7.5.4) when U = V = 0. In addition, this implies that there exists
C1 small enough (namely for 43�C1 < 4), for all C ∈ [0, C1], we have

��ΞC (G, b)�� ≤
2(1+ |b |). Now set C0 = 1/(6�) (notice that C0 ≤ C1). Then, by plugging the estimate��ΞC (G, b)�� ≤ 2(1 + |b |) in (7.5.5) it follows that, for all C ∈ [0, C0],��ΞC (G, b) − b�� ≤ ∫ C

0

���� d
dB
ΞB (G, b)

���� dB ≤ 1
2
(1 + |b |).

Therefore, for all (G, b) ∈ R23 and all time C ∈ [0, C0],

(7.5.6)
1
2
|b | − 1

2
≤

��ΞC (G, b)�� ≤ 1
2
+ 3

2
|b | .

Set

(C (G, b) =
(

dG- C 〈b〉 db- C

〈b〉−1 dGΞC dbΞC

)
where the differentials dG- C , db- C , dGΞC and dbΞC are identified with matrices. One
can form an evolution equation on (C , namely

m

mC
(C (G, b) = �(C, G, b)(C (G, b) ; (0(G, b) = IdR23
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where

� =

(
dG∇b1 ◦ΦC (G, b) 〈b〉 db∇b1 ◦ΦC (G, b)

−〈b〉−1 dG∇G1 ◦ΦC (G, b) − db∇G1 ◦ΦC (G, b)

)
.

Let assume that (7.5.3) and (7.5.4) hold for all multi-indices U, V such that |U | + |V | ≤
: with : ∈ N∗. It follows that, if |U | + |V | ≤ : then

(7.5.7) sup
R23
〈b〉 |V |

���mUG mVb (C (G, b)��� < +∞.
We want to prove a similar estimate for �. We claim that, if |U | + |V | ≤ : then

(7.5.8) ∀C ∈ [0, C0], sup
R23
〈b〉 |V |

���mUG mVb �(C, G, b)��� < +∞.
To see this, we first observe that, for any function � ∈ �∞(R23), and for all multi-
indices U, V, mUG m1b � (Φ

C (G, b)) is a linear combination of terms of the form

(mU′G m
V′

b
�) (ΦC (G, b))

(
m01
G m

11
b
- C81

)
· · ·

(
m
0 |U′ |
G m

1 |U′ |
b

- C8 |U′ |

) (
m
0′1
G m

1′1
b
- C91

)
· · ·

(
m
0′|U′ |
G m

1′|U′ |
b

ΞC9 |V′ |

)
where

01 + · · · + 0 |U′ | + 0′1 + · · · + 0
′
|V′ | = U, 11 + · · · + 1 |U′ | + 1′1 + · · · + 1

′
|V′ | = V.

In addition, for any symbol A ∈ (0, we have���(mU′G mV′b A) (ΦC (G, b))��� ≤ �〈ΞC (G, b)〉−|V′ | ≤ �′〈b〉−|V′ |,
where we used (7.5.6). By using the previous inequality with

A = mb 9mG:1, A = 〈b〉−1m2
G 9G:

1 or A = 〈b〉m2
b 9b:

1,

(which are symbols of order 0) and combining this with the induction hypothesis,
we get the wanted result (7.5.9).

It follows that

m

mC
mUG m

V

b
(C (G, b) = '(C, G, b)+�(C, G, b)mUG m

V

b
(C (G, b) ; mUG m

V

b
(0(G, b) = X0

UX
0
1 IdR23 ,

where '(C, G, b) is a linear combination of terms of the form mU−U
′

G m
V−V′
b

�mU
′

G m
V′

b
(C

where |U′| + |V′| < |U | + |V | ≤ : . In particular, it follows from (7.5.10) and (7.5.9)
that

(7.5.9) ∀C ∈ [0, C0], sup
R23
〈b〉 |V | |'(C, G, b) | < +∞.
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Then the Gronwall lemma implies that

(7.5.10) sup〈b〉 |V |
���mUG mVb (C (G, b)��� < +∞.

Now, directly from the definition of (C , we deduce that the induction hypothesis
holds at rank : + 1.

Now, consider a symbol ? ∈ (0, a time C ∈ [0, C0] and set @(G, b) = ?(ΦC (G, b)).
It follows from the estimates (7.5.3) and (7.5.4) and the arguments used to estimate
� above, that @ is a symbol of order 0. The above argument holds for all time C
small enough, namely for C ∈ [0, C0]. To conclude that the result holds for all times,
we will see that it suffices to iterate. To begin, let us first prove the desired result
on the time interval [0, 2C0]. To do so, set @ = ? ◦ ΦC0 and let g ∈ [0, C0]. Since
ΦC0+g = ΦC0 ◦ Φg, we have ? ◦ ΦC0+g = @ ◦ Φg. The previous result applies twice
implies successively that @ is a symbol of order 0 and then that @ ◦ Φg is also a
symbol of order 0, uniformly in g. By induction we successively prove that, for
all integer # , ? ◦ ΦC belongs to (0 for all C ∈ [0, #C0], uniformly in time. This
concludes the proof. �
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Chapter 8

Sobolev energy estimates for
hyperbolic equations

8.1 Introduction

Let 3 ≥ 1 and E = (E1, . . . , E3) ∈ R3 . The transport equation is the prototype of a
first order hyperbolic equation. It is the equation

mCD + E · ∇D = 0

where the unknown D = D(C, G) is a real function of class �1, defined on R×R3 and

E · ∇D =
3∑
9=1
E 9mG 9D.

Proposition 8.1.1. Let D0 ∈ �1(R3). There exists a unique function D ∈ �1(R×R3)
which is a solution of the Cauchy problem{

mCD + E · ∇D = 0,
D |C=0 = D0.

This solution is given by the formula D(C, G) = D0(G − CE).

Proof. The idea is to introduce a family of functions C ↦→ - (C, G) indexed by G ∈ R3
such that, if D is a solution of mCD + E · ∇D = 0 then C ↦→ D(C, - (C, G)) is a constant
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function. Here, this amounts to introducing - (C, G) = G + EC. Indeed,

d
dC
D(C, G + EC) = (mCD + E · ∇D) (C, G + EC).

So if D is a solution of the Cauchy problem then

D(C, G + EC) = D(C, - (C, G)) = D(0, - (0, G)) = D(0, G) = D0(G),

hence D(C, G) = D0(G − EC).

Conversely, we directly verify that (C, G) ↦→ D0(G − CE) is a �1 function which is a
solution of the Cauchy problem. �

In the case where the constant vector E is replaced by a function with variable
coefficients, we still have a formula for representing the solution based on the use
of the characteristics curves. We will not study use this approach. Instead we will
study an approach based on a priori energy estimates, which is a powerful tool to
study PDE of different natures. In the general theory of partial differential equations,
an a priori estimate is an inequality for the solution or its derivatives of a partial
differential equation. A priori means "from before" in Latin and is used to refer to
the fact that one proves an estimate about the possible solutions of an equation before
one knows that these solutions exist. This is a fundamental method from which it
is often possible to prove that solutions do exist using arguments from functional
analysis (see for instance Exercise 11.0.11). In this chapter we will see an example
of this principle.

Let us recall Gronwall’s lemma which plays a fundamental role in the study of
evolution equations.

Lemma 8.1.2 (Gronwall’s Lemma). Let �, � ≥ 0 and 1, q : R+ → R+ be two
continuous continuous functions such that

∀C ≥ 0, q(C) ≤ � + �
∫ C

0
q(B) dB +

∫ C

0
1(B) dB.

Then, for all C ≥ 0,

q(C) ≤ �4�C +
∫ C

0
1(B)4�(C−B) dB.

Proof. Let us introduce

F(C) = � + �
∫ C

0
q(B) dB +

∫ C

0
1(B) dB.
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By hypothesis, this function is of class �1 on R+ and

F′(C) = �q(C) + 1(C) ≤ �F(C) + 1(C).

Therefore (
F(C)4−�C

)′
≤ 1(C)4−�C ,

and we deduce the desired result by integrating this inequality and noting that
q(C) ≤ F(C). �

Let us now consider + ∈ �∞
1
(R × R3) with real values and a solution D ∈

�1(R+; !2(R3)) of the equation

mCD ++ (C, G) · ∇D = 0.

By multiplying the equation by D and integrating we obtain that

d
dC

∫
D(C, G)2 dG = 2

∫
DmCD dG = −2

∫
D(+ · ∇D) dG

and by integrating by parts we deduce that∫
D(+ · ∇D) dG = 1

2

∫
+ · ∇D2 dG = −1

2

∫
(div+)D2 dG,

from which
d
dC

∫
D(C, G)2 dG ≤ ‖div+ ‖!∞

∫
D2 dG.

The Gronwall lemma then gives

∀C ≥ 0, ‖D(C)‖2
!2 ≤ 4C‖div+ ‖!∞ ‖D0‖2!2 .

Note that if div+ = 0 then the !2(R3 , dG)-norm is preserved.

The aim of this chapter is to derive similar estimates in Sobolev spaces for general
hyperbolic equations and then to deduce from these estimates that the Cauchy
problem for the latter equations has a unique solution.

8.2 Pseudo-differential hyperbolic equations

We consider complex valued symbols 0(G, b) depending on a the variables G, b in
R3 where 3 ≥ 1 is a fixed integer.

101



Definition 8.2.1. Consider a complex valued symbol 0 = 0(G, b) in (1. We say that
0 is hyperbolic if 0 can be written as 0 = 01 + 00 where 01 ∈ (1 is purely imaginary
and 00 belongs to (0.

Example 8.2.2. The symbol 0(G, b) = 8+ (G) · b is hyperbolic, then Op(0)D = + · ∇D.

We consider in addition:

• a time ) > 0 and a real number B;

• an initial data D0 ∈ �B (R3);

• a source term 5 ∈ �0( [0, )];�B (R3)).

We are interested in the following Cauchy problem

(8.2.1)

{
mCD + Op(0)D = 5 ,

D |C=0 = D0,

where the unknown is the function D = D(C, G), the variable C ∈ R+ corresponds to
time and the variable G ∈ R3 (3 ≥ 1) corresponds to the space variable.

Theorem 8.2.3. Let ) > 0, 3 ≥ 1 and B ∈ R. For any initial D0 ∈ �B (R3) and any
5 ∈ �0( [0, )];�B (R3)) there exists a unique function

D ∈ �0( [0, )];�B (R3)) ∩ �1( [0, )];�B−1(R3))

which verifies
mCD + Op(0)D = 5

and which is such that D(0) = D0.

8.3 A priori estimate

As explained in the introduction, the key point is to obtain an a priori estimate. We
will deduce Theorem 8.2.3 from the following lemma.
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Lemma 8.3.1. Let B ∈ R, ) > 0. There exists a constant � such that, for all
D ∈ �1( [0, )];�B) ∩ �0( [0, )];�B+1), all 5 ∈ �0( [0, )];�B), all D0 ∈ �B and all
C ∈ [0, )], if D is a solution of (8.2.1) then

(8.3.1) ‖D(C)‖�B ≤ 4�C ‖D0‖�B +
∫ C

0
4� (C−C

′) ‖ 5 (C′)‖�B dC′.

Moreover there are two constants  and # which depend only on B such that

� ≤  
∑

|U |+|V |≤#
sup
G,b

���〈b〉−|V |mUG mVb 1(G, b)��� where 1 := 0 + 0∗ =
(
0∗ − 0

)
+ 2 Re 0.

(Here 0∗ denotes the symbol for the adjoint of Op(0).)

Proof. We start with the case B = 0. Since D is �1 with values in !2 we can write
that

d
dC
‖D(C)‖2

!2 =
d
dC
(D(C), D(C))

= 2 Re (mCD(C), D(C))
= −2 Re (Op(0)D(C), D(C)) + 2 Re ( 5 (C), D(C)) .(8.3.2)

Now write that

(Op(0)D(C), D(C)) = (D(C), (Op(0))∗D(C)) = (D(C),Op(0∗)D(C)) ,

to get
2 Re (Op(0)D(C), D(C)) = (Op(0 + 0∗)D(C), D(C)) .

The assumption that the symbol 0 is hyperbolic means that 0 = −0 + 2 Re 0 with
Re 0 ∈ (0(R3). Since in addition we have 0∗ − 0 ∈ (0, we deduce that 0∗ = −0 + 1
where 1 :=

(
0∗−0

)
+2 Re 0 belongs to (0. Thenwe deduce from theCauchy-Schwarz

inequality and the continuity theorem of ΨDO of order 0 on !2 that

| (Op(1)D(C), D(C)) | ≤ ‖Op(1)‖L(!2) ‖D(C)‖2!2 ≤ �0 ‖D(C)‖2!2

where �0 is a constant that does not depend on C. By plugging this inequality into
(8.3.2) we conclude that

(8.3.3)
d
dC
‖D(C)‖2

!2 ≤ �0 ‖D(C)‖2!2 + 2 ‖ 5 (C)‖!2 ‖D(C)‖!2 .
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To conclude the proof, wewould like towrite that d
dC ‖D(C)‖

2
!2 = 2 ‖D(C)‖!2

d
dC ‖D(C)‖!2

and simplify the inequality by dividing by ‖D(C)‖!2 . To do so in a rigorous way,
we proceed as follows: Given X > 0, we deduce from (8.3.3) that the function

H(C) =
√
‖D(C)‖2

!2 + X verifies

d
dC
H(C)2 = d

dC
‖D(C)‖2

!2 ≤ �0H(C)2 + 2 ‖ 5 (C)‖!2 H(C),

and since ‖D(C)‖2
!2 + X > 0, the function H(C) is �1 and then it is possible to write

d
dC
H(C)2 = 2H(C) d

dC
H(C),

and then to infer that

2
d
dC
H(C) ≤ �0H(C) + 2 ‖ 5 (C)‖!2 .

Gronwall’s lemma implies that

‖D(C)‖!2 ≤ H(C) ≤ H(0)4�0C/2 +
∫ C

0
‖ 5 (C′)‖!2 4

�0 (C−C ′)/2 dC′,

for all X > 0. By making X tend to 0 we obtain that

‖D(C)‖!2 ≤ ‖D(0)‖!2 4�0C/2 +
∫ C

0
‖ 5 (C′)‖!2 4

�0 (C−C ′)/2 dC′,

which concludes the proof of the lemma in the case B = 0.

Now for any B ∈ R we commute ! = mC + Op(0) to ΛB = 〈�G〉B, which gives

ΛB!D = !̃ΛBD, !̃ = mC + �̃, �̃ = ΛB Op(0)Λ−B .

Note that �̃ is a ΨDO operator of hyperbolic symbol. We conclude the proof by
applying the previous !2 estimate to !̃ (that is the estimate (8.3.1) with B = 0). �

8.4 Proof of Theorem 8.2.3

8.4.1 Step 1: uniqueness

The first consequence that we can draw from Lemma 8.3.1 is the part of Theo-
rem 8.2.3 which has to do with uniqueness. Indeed, if D 9 , 9 = 1, 2 are two different
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solutions of the Cauchy problem

mCD 9 + Op(0)D 9 = 5 ; D 9 |C=0 = D0,

withD 9 ∈ �0( [0, )];�B (R3))∩�1( [0, )];�B−1(R3)), then the differenceD = D1−D2
belongs to �1( [0, )];�B−1(R3)). Then one can use the energy estimate (8.3.1)
applied with B replaced by B − 1 to obtain that D1 = D2.

8.4.2 Step 2: construction of approximated solutions

So it remains only to prove the existence. We will construct a solution of the Cauchy
problem as the limit of solutions of approximate problems. To do so, we introduce
for Y > 0 the following Cauchy problem

(8.4.1) mCD + Op(0)�YD = 5 , D(0) = D0

where �Y, called Friedrichs mollifier, is defined by

�̂YE(b) = j(Yb)Ê(b),

where j is a function �∞ on R3 , with support in the ball of center 0 and radius 2,
and value 1 on the ball of center 0 and radius 1.

The next statement contains all the properties that we are going to prove about the
approximated Cauchy problems (8.4.1). It will imply immediately Theorem 8.2.3.

Proposition 8.4.1. Let ) > 0 and B ∈ R. For all Y ∈ (0, 1], all D0 ∈ �B and all
5 ∈ �0( [0, )];�B), there exists a unique solution DY belonging to �1( [0, )];�B) of
the Cauchy problem (8.4.1). Moreover, for all f < B, the sequence (DY)Y∈(0,1] is a
Cauchy sequence in �0( [0, )];�f) ∩�1( [0, )];�f−1) and converges in this space
to the unique solution D ∈ � ( [0, )];�B) ∩ �1( [0, )];�B−1) of the Cauchy problem

mCD + Op(0)D = 5 , D(0) = D0.

Proof. We will note� several constants (whose value can vary from one expression
to another) which depend only on ) and B.

The main difference between the Cauchy problem (8.4.1) and the same problem
without the operator �Y is that it is very easy to show that the problem (8.4.1) has a
solution.
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Lemma 8.4.2. For any D0 ∈ �B and all 5 ∈ � ( [0, )];�B), there exists a unique
solution DY belonging to �1( [0, )];�B) of the Cauchy problem (8.4.1).

Proof. We have already seen that if 0 = 0(G, b) and 1 = 1(b) (that is 1 is a symbol
independent of G) then Op(0) ◦ Op(1) = Op(01). We deduce that, for all Y > 0,

Op(0)�Y = Op(0Y)

where
0Y (G, b) = 0(G, b)j(Yb).

For all Y > 0, the symbol 0Y is compactly supported in b and in particular it belongs
to Γ0

0(R
3). The continuity theorem for pseudo-differential operators implies that

Op(0Y) is a bounded from �B (R3) to itself. Then the equation mCD +Op(0Y)D = 5 is
an ordinary differential equation in Banach spaces, for which the Cauchy-Lipschitz
theorem applies (one can also use the conclusion of Exercise 11.0.10). �

In the following we use the notation 0Y (G, b) = 0(G, b)j(Yb).

Lemma 8.4.3. There exists a constant � such that for any Y > 0 and any C ∈ [0, )],
and any function E ∈ �1( [0, )];�B (R3)),

‖E(C)‖�B ≤ � ‖E(0)‖�B + �
∫ C

0
‖(mCE + Op(0Y)E(g)‖�B dg.

Proof. Note that the symbol 0Y (G, b) = 0(G, b)j(Yb) is bounded in (1 uniformly
in Y, in the sense that { 01(G, b)j(Yb) : Y ∈]0, 1] } is a bounded in (1. Moreover
Re 0Y is uniformly bounded in (0. The desired inequality is therefore a consequence
of (8.3.1). �

Applying the previous inequality to E = DY, we obtain that there is a constant � such
that, for all Y > 0,

(8.4.2) sup
C∈[0,)]

‖DY (C)‖�B ≤ � ‖D0‖�B + �
∫ )

0
‖ 5 (C)‖�B dC.

This implies that (DY)Y∈]0,1] is a bounded family in�0( [0, )];�B (R3)). Then, using
the equation, we verify that (DY)Y∈]0,1] is a bounded family in �1( [0, )];�B−1(R3)).
Our goal is to show that DY converges when Y tends to 0 to a solution of the Cauchy
problem. For this we will show the following lemma.
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Lemma 8.4.4. The family (DY)Y∈]0,1] is a Cauchy sequence in�0( [0, )];�B−2(R3)).

Proof. Let Y and Y′ in ]0, 1]. Starting from

mCDY + Op(0)�YDY = 5 ,

mCDY′ + Op(0)�Y′DY′ = 5 ,

we deduce that E = DY − DY′ verifies

mCE + Op(0Y)E = 5Y avec 5Y = Op(0)
(
�Y′ − �Y

)
DY′ .

Since DY and DY′ coincide for C = 0, we have E(0) = 0 and we can then use the
inequality of the previous lemma to obtain that

‖E‖�0 ( [0,)];�B−2) ≤ �
∫ )

0
‖ 5Y (C)‖�B−2 dC.

Now

‖ 5 Y (C)‖�B−2 =


Op(0)

(
�Y′ − �Y

)
DY′ (C)




�B−2 ≤  



(�Y′ − �Y)DY′ (C)

�B−1 .

By definition

(�Y′ − �Y)DY′ (C)

2
�B−1 = (2c)−23

∫
〈b〉2(B−2) |j(Yb) − j(Y′b) |2 |D̂Y′ (C, b) |2 db.

We use the elementary inequality |j(Yb) − j(Y′b) | ≤  |Y − Y′| |b | to conclude that∫ )

0
‖ 5Y (C)‖�B−2 dC ≤  ′ |Y − Y′|

∫ )

0
‖DY′ (C)‖�B dC.

Since ‖DY′‖�0 ( [0,)];�B) is uniformly bounded according to (8.4.2), we obtain

‖E‖�0 ( [0,)];�B−2) = $ ( |Y − Y′|),

which is the desired result. �

We thus have seen that the family (DY)Y∈(0,1] is bounded in �0( [0, )];�B) and that
it is also a Cauchy sequence in �0( [0, )];�B−2). The following lemma will allow
us to deduce that (DY)Y∈(0,1] is a Cauchy sequence in �0( [0, )];�f) for any f < B.
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Lemma 8.4.5 (Interpolation in Sobolev spaces). Consider three real numbers

B1 < f < B2 with f = UB1 + (1 − U)B2 where U ∈ [0, 1] .

Then, for all D ∈ �B2 (R3),

(8.4.3) ‖D‖�f ≤ ‖D‖U�B1 ‖D‖
1−U
�B2 .

Proof. Let us write that

‖D‖2�B = (2c)−3
∫
〈b〉2B |D̂(b) |2 db

= (2c)−3
∫
〈b〉2UB1 |D̂(b) |2U 〈b〉2(1−U)B2 |D̂(b) |2(1−U) db

so that the desired inequality is a consequence of the Hölder inequality. �

As mentioned above, for any f ∈ [B − 2, B), the previous inequality applied with
(B1, B2, f) = (B − 2, B, f) leads to the fact that (DY)Y∈(0,1] is a Cauchy sequence in
�0( [0, )];�f). Using the equation, we further obtain that (mCDY)Y∈]0,1] is Cauchy
in �1( [0, )];�f−1). So DY converges in �0( [0, )];�f) ∩ �1( [0, )];�f−1) to a
limit denoted D. By passing to the limit, we find that D is a solution of the Cauchy
problem

mCD + Op(0)D = 5 , D(0) = D0.

To conclude the proof, we just have to show that D belongs to �0( [0, )];�B) ∩
�1( [0, )];�B−1). To do so, we regularize 5 and D0, construct a regular solution se-
quence a sequence of regular solutions and pass to the limit. More precisely, we intro-
duce two sequences ( 5 =)=∈N and (D=0)=∈N with 5

= ∈ �0( [0, )];�B+2) and D=0 ∈ �
B+2

which converges to 5 in �0( [0, )];�B) and to D in �B, respectively. The previous
work gives a sequence of solutions D= belonging to �1( [0, )];�B). The energy es-
timate (8.3.1) then shows that (D=) a is a Cauchy sequence in � ( [0, )];�B) and that
(mCD=) is a Cauchy sequence in � ( [0, )];�B−1) , so it converges in �0( [0, )];�B)
towards a solution of the Cauchy problem. By uniqueness of the solution of the
Cauchy problem, we deduce that D belongs to�0( [0, )];�B)∩�1( [0, )];�B−1). �

108



Chapter 9

The wave front set

In this chapter, we give an introduction to the study of microlocal singularities.

9.1 Local properties

Let D ∈ �∞0 (R
3) and 0 ∈ (< (R3) with < any real. The continuity theorem for

pseudo-differential operators implies that Op(0) is continuous from �B (R3) into
�B−< (R3) for all B ∈ R. Since �∞0 (R

3) is included in �B (R3) whatever B ∈ R, we
deduce that

Op(0)
(
�∞0 (R

3)
)
⊂ �∞(R3) ⊂ �∞1 (R

3),

where the second inclusion comes from the Sobolev injection theorem. One may
wonder if we have better. For instance is it true that Op(0)D is a function with
compact support? This result is true, trivially, if 0 is a polynomial in b (with
coefficients depending on G). Indeed, in this case, Op(0) is a differential operator
and Op(0)D is supported in supp D. Conversely, a classical result of differential
calculus states that local operators (which do not increase the support) are necessarily
differential operators (see Problem 23 in [1]). This means that, given a pseudo-
differential operator, it is false in general that if D belongs to�∞0 (R

3) then Op(0)D ∈
�∞0 (R

3). However, we have several results concerning the local theory of pseudo-
differential operators and we will describe them. Among these results, the simplest
one is given by the following proposition.

Proposition 9.1.1. Let 0 ∈ (< (R3) and D ∈ !2(R3) be a function with compact
support. Consider a function i ∈ �∞

1
(R3) which vanishes on a neighborhood of the
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support of D. Then iOp(0)D belongs to �∞
1
(R3).

Proof. Let us consider a function k ∈ �∞0 (R
3) which is 1 on the support of D and

whose support is included in i−1({0}).

Since i = i(G) is a function of the variable G only, we have iOp(0)D = Op(i0)D.
Moreover, by construction we have D = kD. The composition theorem implies that

iOp(0)D = Op(i0){kD} = Op
(
(i0)#k

)
D.

In addition

(i0)#k ∼
∑
U

1
8 |U |U!

i(mUb 0) (m
U
G k).

By hypothesis on i and k we have i(mUG k) = 0 for all U ∈ N= therefore (i0)#k ∼ 0.
We deduce that Op((i0)#k) is a regularizing operator, bounded from �B1 (R3) into
�B2 (R3) for all real numbers B1, B2. This concludes the proof. �

Remark 9.1.2. The result remains true, with the same proof, if we only suppose that
D belongs to the space E′(R3) of distributions with compact support. To see this it
is enough to know that any element D of E′(R3) belongs to a Sobolev space �B (R3)
for a certain B ∈ R.

Recall that

(+∞(R3) =
⋃
<∈R

(< (R3), (−∞(R3) =
⋂
<∈R

(< (R3).

Thus (∞(R3) is the space of all the symbols while (−∞(R3) is the space of regular-
izing symbols. We have of course (−∞(R3) ⊂ (+∞(R3).

We denote

�−∞(R3) =
⋃
B∈R

�B (R3), �+∞(R3) =
⋂
B∈R

�< (R3),

and we have this time �+∞(R3) ⊂ �−∞(R3).

We saw that if 0 ∈ (< (R3) with < ∈ R and D ∈ �B (R3) with B ∈ R then
Op(0)D ∈ �B−< (R3). If < ≤ 0 then Op(0)D is more regular than D. In particular

0 ∈ (−∞(R3), D ∈ �−∞(R3) =⇒ Op(0)D ∈ �∞(R3) ⊂ �∞1 (R
3).
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Proposition 9.1.3. Consider a regularizing pseudo-differential operator Op(0),
such that 0 ∈ (−∞(R3). Then Op(0) is continuous from E′(R3) into S(R3).

Proof. Let 0 ∈ (−∞(R3) and D ∈ E′(R3). Since E′(R3) ⊂ �−∞(R3), the above
proves that Op(0)D belongs to �∞(R3) and thus to �∞

1
(R3). Then we apply a

reasoning already met which tells us that, for all U ∈ N=, GU Op(0)D is a linear
combination of terms of the form Op(mX

b
0) (GU−XD), which belong to �∞

1
(R3) for

the same reasons (E′(R3) is stable by derivation and by multiplication by a smooth
function). Thus we conclude that Op(0)D ∈ S(R3). �

We recall the definition of the singular support of a distribution.

Definition 9.1.4. We say that a distribution 5 ∈ S′(R3) is of class �∞ in the
neighborhood of G0, if there exists a neighborhood l of G0 such that for all functions
i ∈ �∞0 (l) we have i 5 ∈ �

∞(R3).

The singular support of 5 , denoted supp sing 5 , is the complementary of the set of
points in the neighborhood of which 5 is �∞.

This notion allows to generalize Proposition 9.1.1.

Proposition 9.1.5. For all 0 ∈ (+∞(R3) and all D ∈ �−∞(R3) we have

supp sing Op(0)D ⊂ supp sing D.

Proof. Let 0 ∈ (+∞(R3), D ∈ S′(R3) andΩ = R3 \supp sing D. Thus kD ∈ �∞0 (R
3)

for all k ∈ �∞0 (Ω). Moreover for all i ∈ �∞0 (Ω) we can find k ∈ �∞0 (Ω) with
k = 1 on the support of i (because dist(supp(i), mΩ) > 0), and

iOp(0)D = iOp(0) (kD) + iOp(0) ((1 − k)D) .

The first term is in S(R3) since kD ∈ �∞0 (R
3) ⊂ S, and the second term can

be written Op(1)D where 1 = i0#(1 − k). As we have already seen, the sym-
bol 1 satisfies 1 ∼ 0 since supp(i) ∩ supp(1 − k) = ∅ by construction of k.
Moreover, if D ∈ �−∞(R3), then we also have (1 − k)D ∈ �−∞(R3). We de-
duce that iOp(0) ((1 − k)D) ∈ �+∞(R3). So, for all i ∈ �∞0 (Ω), we have
iOp(0)D ∈ �∞0 (Ω). We deduce that Op(0)D ∈ �∞(Ω) (regularity is a local
notion) which is the desired property. �
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9.2 Wave front set

The wave front set of a distribution 5 ∈ S′(R3), denoted WF( 5 ), is a subset of
R3 × (R3 \ {0}), which describes not only the points where 5 is singular, but but also
the co-directions in which it is singular. This set is defined by its complementary.

Definition 9.2.1. Let 5 ∈ S′(R3).

8) We say that 5 is microlocally of class �∞ at a point (G0, b0) ∈ R3 × (R3 \ {0})
if there exists an open set l ⊂ R3 containing G0 and an open cone Γ of R3 \ {0}
containing b0 such that we have

(9.2.1) ∀i ∈ �∞0 (l), ∀# ∈ N, ∃�# > 0 : ∀b ∈ Γ,
���î 5 (b)��� ≤ �# (1+ |b |)−# .

88) The set of points (G0, b0) where 5 is not microlocally �∞ is called the wave front
set of 5 and noted WF( 5 ).

The wave front set is a conical subset of R3 × (R3 \ {0}), which means that for all
C > 0,

(G, b) ∈ WF( 5 ) ⇐⇒ (G, Cb) ∈ WF( 5 ).

The wave front set allows to specify the notion of singular support. Indeed, we have
the following proposition.

Proposition 9.2.2. The projection on R3 of WF(D) is supp sing(D).

Proof. Consider a point G0 ∈ R3 that does not belong to supp sing(D). If i ∈
�∞0 (R

3) is supported in a sufficiently small ball centered at G0, then iD is a �∞

function with compact support and therefore belongs to the Schwartz class. As the
Fourier transform of a function of S(R3) belongs to S(R3), we deduce that îD is
rapidly decaying in all directions. In particular, no (G0, b0) belongs to WF(D).

Conversely, suppose that G0 is such that no (G0, b0) belongs to WF(D). For each b0
we can find an open set l containing G0 and a cone Γ containing b0 such that (9.2.1)
is valid. By compactness of the sphere, we can find a finite number of such couples
(l 9 , Γ 9 ) so that the Γ 9 cover R3 \ {0}. For i ∈ �∞0 (R

3) whose support is contained
in ∩ 9l 9 we deduce that the function îD is rapidly decreasing, which completes the
proof. �
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If % is a differential operator of order < whose coefficients ?U are real and �∞,

% =
∑
|U |≤<

?U (G)mUG .

An important question in PDE is to determine the wave front set of the distributions
of the equation % 5 = 0. The basic results relate the geometry of the operator to the
geometry of the singularities of its solutions. The two simplest geometrical objects
that we associate with the PDE %( 5 ) = 0 are the following.

i) The principal symbol

?< (G, b) = 8<
∑
|U |=<

?U (G)bU,

which is a homogeneous polynomial of degree < in b.

ii) The characteristic variety of %, denoted by Car(%), which is the closed set
(homogeneous in b) defined by

Car(%) =
{
(G, b) ∈ R3 × (R3 \ {0}) ; ?< (G, b) = 0

}
.

The first important result of the theory is the following.

Theorem 9.2.3 (Sato-Hörmander). Singularities are contained in the characteristic
variety: If % is a differential operator whose coefficients belong to �∞

1
(R3), then for

all D ∈ S′(R3),
%(D) = 0 =⇒WF(D) ⊂ Car(%).

Proof. We start with a technical lemma. Given a differential operator & and a
function i ∈ �∞0 (R

3), we look for k ∈ �∞0 (R
3) which satisfies, approximately, the

equation
&

(
k48G·b

)
= i48G·b .

Solving approximately means that we will have an error and that this error is mea-
sured in function of the natural parameter which is the frequency |b | (here |b | is
large). Let us also observe that 4−8G·b&( 5 48G·b) = @< (G, b) 5 + · · · where the dotted
lines hide a polynomial in b of degree less than<−1. Thus, as a first approximation,
we look for k as a perturbation of

i

@< (G, b)
.

113



Lemma 9.2.4. Consider a differential operator & =
∑
|U |≤< 0U (G)mUG of order <

and let us note @< (G, b) =
∑
|U |=< 0U (G) (8b)U its principal symbol. Let l be an open

set of R3 and + ⊂ R3 \ {0} an open cone such that

∃� > 0/ ∀(G, b) ∈ l ×+, |@< (G, b) | ≥ � |b |< .

For any integer # , for any i ∈ �∞0 (l) and any b ∈ + , there exists kb,# ∈ �∞0 (l)
and Ab,# ∈ �∞0 (l) such that

&

(
kb,# (G)
@< (G, b)

48G·b
)
= i(G)48G·b + Ab,# (G)48G·b

with supG∈R3 〈b〉#
��mUG Ab,# (G)�� < +∞ for all U ∈ N3 .

Proof. Let us introduce an operator 'b (which depends on b) by posing

&

( k

@< (G, b)
48G·b

)
= (k + 'b (k))48G·b .

It is then a question of solving, approximately, the equation k + 'b (k) = i. Let us

start by giving an expression of 'b (k). For that we compute 4−8G·b&
( k

@< (G, b)
48G·b

)
where & =

∑
U @U (G)�U

G , directly with Leibniz’s rule, by separating the expression
into several terms: the first term corresponds to the case where all derivatives are
of order |U | = < and act on the oscillatory factor 48G·b (the contribution of this term
is k); the sum of the other terms corresponds to 'b (k), it is the sum of terms for
which either |U | ≤ < − 1 and all derivatives act on 48G·b , or at least one derivative
acts on the factor k/@< (G, b). We find

4−8G·b&
( k

@< (G, b)
4−8G·b

)
= (�) + 'b (k) where

(�) = 4−8G·b
∑
|U |=<

k

@< (G, b)
0U (G)mUG (48G·b),

'b (k) = 4−8G·b
∑
|U |≤<−1

k

@< (G, b)
0U (G)mUG (48G·b),

+ 4−8G·b
∑

V+W=U, |V |>0
0U (G)mVG

( k

@< (G, b)

)
m
W
G 4

8G·b .

Then (�) = k because ∑
|U |=<

0U (G)mUG (48G·b) = @< (G, b)48G·b ,
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by definition of @<.

Let us set

kb,# :=
#−1∑
==0
(−'b)= (i), Ab,# = (−1)#+1'#b (i).

Then kb,# + 'b (kb,# ) = i + Ab,# and we check that Ab,# satisfies the desired
properties. �

Let us now prove the theorem. Let (G0, b0) ∉ Car(%). Then there exist an open set
l of R3 and a cone Γ ⊂ R3 \ {0} such that

∃� > 0 /(G, b) ∈ l × Γ ⇒ |?< (G, b) | ≥ � |b |< .

Then, with & = C%, we have

∃� > 0 /∀(G, b) ∈ l × Γ, |@< (G,−b) | ≥ � |b |< .

Let us fix a function i ∈ �∞0 (l). To show that (G0, b0) ∉ WF(D), we will estimate
îD(b). The previous lemma implies that, for all integers # and all b ∈ Γ, there exist
kb,# ∈ �∞0 (R

3) and Ab,# such that

&

(
kb,#

@< (G,−b)
4−8G·b

)
= i4−8G·b + Ab,#4−8G·b

with sup
��mUG Ab,# �� = $ ( |b |−# ).

Then we can write

îD(b) = 〈D, i4−8G·b〉 = 〈D, C%
(
(kb,#/@< (G,−b))4−8G·b

)
− Ab,#4−8G·b〉

= 〈%D, (kb,#/@< (G,−b))4−8G·b〉 − 〈D, Ab,#4−8G·b〉
= −〈D, Ab,#4−8G·b〉,

where we used that %D = 0.

Recall that by definition of tempered distributions, there exists an integer ? and a
constant � such that

∀^ ∈ S(R3), |〈D, ^〉| ≤ �
∑

|U |+|V |≤?
sup
G∈R3

���GUmVG ^(G)��� .
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As Ab,# is a �∞ function with compact support in l,��〈D, Ab,#4−8G·b〉�� ≤ � ∑
|U |≤?

sup
���mVG (

Ab,#4
−8G·b ) ���

but supG
���mVG (

Ab,#4
−8G·b ) ��� = $ ( |b | |V |−# ) so ��〈D, A4−8G·b〉�� ≤ �# 〈b〉?−# . (The constant

�# depends on l and i, but this is not a problem.) Taking # large enough, we
conclude the proof. �

9.3 Theorem of propagation of singularities

The theorem of propagation of singularities says that not only the wavefront set is
contained in the characteristic variety, but it is also necessarily a union of trajectories
for a natural dynamical system.

Let us recall one result proved in §7.5.

Proposition 9.3.1. Suppose 1 is a real-valued symbol with 1 ∈ (1(R3) and denote
by �1 the hamiltonian vector field

�1 =

3∑
9=1

( m1
mb 9

m

mG 9
− m1

mG 9

m

mb 9

)
.

(See (7.5.1).) Then the flowΦC
�1

: R23 → R23 is defined for all time C ∈ R. Moreover,
if ? ∈ (0(R3), then ?(ΦC

�1
(G, b)) defines a symbol that belongs to (0(R3) uniformly

in C.

Consider a symbol 0 ∈ (1(R3). It is assumed that 0 can be written as 01 + 00 where

1. 00 ∈ (0;

2. 01 ∈ (1 is a symbol with purely imaginary values.

For instance, 0(G, b) = 8+ (G)b with + ∈ �∞
1
(R3) a real valued function.

We have shown in the previous chapter how to solve the Cauchy problem for the
equation

mCD + Op(0)D = 0.
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We denote ((C, B) = 4(B−C) Op(0) : !2 → !2 the solution operator which to a given
function D0 ∈ !2(R3) associates the value at time C of the unique solution of the
Cauchy problem which is D0 at time B. That is: D(C) = ((C, B)D0 is the unique
function D ∈ �0(R; !2(R3)) such that

mCD + Op(0)D = 0, D(B) = D0.

Theorem 9.3.2. Consider a symbol ?0 ∈ (0 and set %0 = Op(?0). Then, for all
C ∈ R, modulo a regularizing operator, ((C, 0)%0((0, C) is a pseudo-differential
operator: there exists a symbol @C ∈ (0(R3) such that, for all D0 ∈ !2(R3),

((C, 0)%0((0, C)D0 − Op(@C)D0 ∈ �+∞(R3).

In addition
@C (G, b) − ?0(Φ−C� (G, b)) ∈ (

−1(R3)

where ΦC
�
is the flow associated to the vector field

� =
1
8

3∑
9=1

(m01

mb 9

m

mG 9
− m0

1

mG 9

m

mb 9

)
.

Proof. Deriving with respect to C we find that %(C) = ((C, 0)%0((0, C) satisfies

%′(C) +
[

Op(0), %(C)
]
= 0, %(0) = %0.

We will construct an approximate solution &(C) of this equation and show that
%(C) − &(C) is a regularizing operator. So we look for &(C) = Op(@C) with @ ∈ (0

solution of
&′(C) +

[
Op(0C), &(C)

]
= '(C), &(0) = %0,

where '(C) is a family of regularizing operators. We will construct @ of the form

@(C, G, b) ∼ @ (0) (C, G, b) + @ (−1) (C, G, b) + · · ·

where @ (−:) is a symbol of order −: . Then the commutator [Op(0C), &(C)] is a
pseudo-differential operator of order 0, and in addition its symbol satisfies

0#@ − @#0 ∼ �@ + 1
8
{Op(00), @} +

∑
|U |=2+:

1
8 |U |U!

[
(mUb 0) (m

U
G @) − (mUb @) (m

U
G 0)

]
.

This suggests defining @ (0) by( m
mC
+ �

)
@ (0) (C, G, b) = 0, @ (0) (0, G, b) = ?0(G, b).
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Thus @ (0) (C, G, b) = ?0(Φ−C� (G, b)), the symbol given by the theorem statement. We
have @ (0) (C, G, b) ∈ (0(R3). By induction we solve( m

mC
+ �

)
@ (− 9) (C, G, b) = 1 (− 9) (C, G, b), @ (− 9) (0, G, b) = 0,

where 1− 9 is determined by induction, so as to obtain a solution of (??).

Finally, it remains to prove that %(C) −&(C) is a regularizing operator. Equivalently,
we will show that E(C) − F(C) = ((C, 0)%0 5 −&(C)((C, 0) 5 ∈ �∞(R3). Note that

mE

mC
+ Op(0)E = 0, E(0) = %0 5 ,

and
mF

mC
+ Op(0)F = 6, F(0) = %0 5 ,

where 6 := '(C)((C, 0) 5 ∈ �0(R;�∞(R3)). Taking the difference of the two
equations we find

m

mC
(E − F) + Op(0) (E − F) = −6, E(0) − F(0) = 0.

Then the theorem about the Cauchy problem for hyperbolic equations implies that
E(C) −F(C) ∈ �∞(R3) for all C and all 5 ∈ �−∞(R3). This completes the proof. �

We can now calculate the action of the solution operator exp(C Op(0)) on the wave
front set of the initial data.

Let us recall that in the previous section we proved the following

Proposition 9.3.3. Let < ∈ R, 0 ∈ (< and D ∈ S′(R3). Assume that Op(0)D ∈
�∞(R3) and that |0(G, b) | ≥ |b |< for all (G, b) ∈ l × Γ where l is a neighborhood
of G0 and Γ is a cone containing b0. Then (G0, b0) ∉ WF(D).

Theorem 9.3.4. If D satisfies

mCD + Op(0)D = 0, D |C=0 = D0

with D0 ∈ !2(R3) then D ∈ �0( [0, )]; !2(R3)) and, for all 0 ≤ C ≤ ) ,

WF(D(C, ·)) = ΦC� (WF(D0)).
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Proof. Suppose that (G0, b0) ∉ WF(D0). Then there exists a neighborhood l of
G0, a cone Γ containing b0 and a symbol ?0 ∈ (0 such that |?0(G0, b0) | ≥ 1 for all
(G, b) ∈ l × Γ such that Op(?0)D0 ∈ S(R3).

Using the operator& introduced in the proof of the previous theorem we obtain that

(mC + Op(0))&D = 'D ∈ �0( [0, )];�∞), &D |C=0 ∈ S(R3).

We deduce that &(C)D(C) ∈ �∞(R3) ⊂ �∞(R3).

Since&(C) is a pseudo-differential operatorwhose principal symbol is ?0(Φ−C� (G, b)),
we deduce that ΦC

�
(G0, b0) ∉ WF D(C, ·). Since we can reverse the direction of time,

we find the desired result. �
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Chapter 10

Paradifferential operators

In this chapter we introduce Bony’s paradifferential calculus. It allows to study the
regularity of the solutions of nonlinear partial differential equations. This theory
lies at the interface between harmonic analysis and microlocal analysis. It has a long
history that owes a lot to Calderón and Zygmund, Coifman and Meyer, Kohn and
Nirenberg, as well as Hörmander.

We refer to [6, 16, 19, 20, 26] for the general theory. Here we follow the presentation
byMétivier in [19]. We refer also to the recent book of Benzoni-Gavage and Serre [5]
for applications of paradifferential calculus to hyperbolic systems.

10.1 Spectral localization

Theorem 10.1.1. Let Y ∈ [0, 1) and consider a function 0 ∈ �∞(R23;C) such that

" := sup
|V |≤[ 32 ]+1

sup
(G,b)∈R23

��(1 + |b |) |V |mV
b
0(G, b)

�� < +∞.
Assume in addition that, for all b ∈ R3 , the partial Fourier transform

0̂([, b) =
∫
R3
4−8H·[0(H, b) dH

is supported in the ball {[ ∈ R3 ; |[ | ≤ Y |b |}. Then Op(0) ∈ L(!2(R3)) and

‖Op(0)‖!2→!2 ≤ �",
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for some constant � depending only on Y.

Remark 10.1.2. We will see in the proof that 0 belongs to (0
1,1(R

3).

Proof. Set # = 1 + [3/2].

Step 1: Littlewood-Paley decomposition. We use the decomposition of the unity
introduced in Lemma 4.1.1. Write

(10.1.1) 0(G, b) = 0(G, b)k(b) +
∞∑
?=0

0(G, b)i(2−?b),

and then set

0−1(G, b) = 0(G, b)k(b) ; 0? (G, b) = 0(G, b)i(2−?b) for ? ≥ 0.

Step 2: Bernstein Lemma. We claim that, for any multi-indices U ∈ N3 and V ∈ N3
with |V | ≤ # , there exists a positive constant � such that,

(10.1.2)
���mUG mVb 0−1(G, b)

��� ≤ �",
and, for ? ≥ 0, ���mUG mVb 0? (G, b)��� ≤ �"2?( |U |−|V |) .

Since |b | ∼ 2? on the support of i(2−?b) (resp. |b | . 1 for ? = −1), this follows
from the assumption that the partial Fourier transform 0̂([, b) is supported in the
ball {|[ | ≤ Y |b |}, by using the following

Lemma 10.1.3. Consider a function 5 ∈ !∞(R3) whose Fourier transform is
included in the ball {|b | ≤ _}. Then 5 ∈ �∞(R3) and, for all U ∈ N3 , there exists a
constant � = � (3, U) such that

mUG 5 

!∞ ≤ �_ |U | ‖ 5 ‖!∞ .
Proof. Introduce \ ∈ �∞0 (R

3) such that \ (b) = 1 for |b | ≤ 1 and set \_ (b) = \ (b/_).
Then \_ 5̂ = 5̂ , which implies that

5 = ^_ ∗ 5 , where ^_ = F −1(\_).

We are now in position to estimate the derivatives of 5 by exploiting the relation

mUG 5 = (mUG ^_) ∗ 5 .

122



Observing that ^_ (G) = _3^(_G) with ^ = F −1(\), we obtain that

mUG ^_

!1 (R3) = _
|U | 

mUG ^

!1 (R3) ,

and the result follows. �

Step 3: low frequency component. In view of (10.1.2), it follows directly from the
Calderón-Vaillancourt theorem (see Theorem 5.2.1), that Op(0−1) is bounded from
!2(R3) to !2(R3), and satisfies the estimate

‖Op(0−1)‖!2→!2 ≤ �".

Step 4: rescaling. We want to prove that the operators Op(0?) are also bounded
from !2(R3) to !2(R3). To do so, we use a rescaling argument. More precisely,
given a positive real-number _ > 0, introduce the operator �_ defined by

(�_D) (G) = _
3
2 D(_G).

Then
‖�_D‖!2 = ‖D‖!2 .

In addition, for any symbol ? = ?(G, b), we have

Op(?) (�_D) = �_ (Op(?_)D) where ?_ (G, b) = ?
( G
_
, _b

)
.

This implies that Op(0?) ∈ L(!2(R3)) if and only if Op(1?) ∈ L(!2(R3)) where

1? (G, b) = 0?
(
2−?G, 2?b

)
,

and then


Op(0?)




!2→!2 =



Op(1?)



!2→!2 .

Step 5: boundedness of the rescaled operators. Notice that, for any multi-indices
U ∈ N3 and V ∈ N3 with |V | ≤ # , there holds���mUG mVb 1? (G, b)��� ≤ �".
Then, as already explained above, it follows from the Calderón-Vaillancourt theorem
(see Theorem 5.2.1) that

Op(0?)




!2→!2 =



Op(1?)



!2→!2 ≤ �".
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Step 6: spectral localization. Notice that

�Op(0?)D([) =
1
(2c)3

∫
R3
0̂([ − b, b)i(2−?b)D̂(b) db.

Introduce the function D? defined by

D̂? (b) = D̂(b) if b ∈ Γ? := {3−1 · 2? ≤ |b | ≤ 3 · 2?},

and D̂? (b) = 0 whenever b ∉ Γ?. Then i(2−?b)D̂(b) = i(2−?b)D̂? (b), which in
turn implies that

Op(0?)D = Op(0?)D? .

Exploiting again that the partial Fourier transform 0̂([, b) is supported in the ball
{|[ | ≤ Y |b |}, we verify that the support of F (Op(0)D?) is included in the larger
shell

Γ′? =
{
[ ∈ R3 ;

1 − n
3

2? ≤ |[ | ≤ 3 · (1 + n)2?
}
.

Now, since any [ is included in at most 2 log(3/(1 − Y))/log(2) dyadic shells Γ′?,
we deduce from the elementary inequality (0 + 1)2 ≤ 2(02 + 12) that

(10.1.3)
���∑
?

�Op(0?)D([)
���2 ≤ � (Y)∑

?

��� �Op(0?)D([)
���2 .

It follows from Plancherel’s theorem that

‖Op(0)D‖2
!2 ∼




∑
?

�Op(0?)D



2

!2
.

∑
?




 �Op(0?)D



2

!2
∼

∑
?



Op(0?)D


2
!2 .

Remembering thatOp(0?)D = Op(0?)D? and using the fact thatOp(0?) ∈ L(!2(R3)),
we get from (10.1.3) that

Op(0?)D



2
!2 =



Op(0?)D?


2
!2 . "

2 

D?

2
!2 ,

we conclude that ∑
?



Op(0?)D


2
!2 . "

2
∑
?



D?

2
!2 .

Eventually, since each b is contained in at most a fix number of dyadic shells Γ?, we
have ∑

?



D?

2
!2 . ‖D‖2!2 .

This concludes the proof. �
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10.2 Notations

Given an integer : ∈ N, we note , :,∞(R3) the Sobolev space of distributions 5
such that mUG 5 ∈ !∞(R3) for |U | ≤ : . This space is equipped with the norm

‖D‖, :,∞ =
∑
|U |≤:



mUG D

!∞ .
Given d ∈]0, +∞[\N,, d,∞(R3) is the space of bounded functionswhose derivatives
of order [d] ∈ N are uniformly Hölder continuous with exponent d − [d]. This
space is provided with the norm

‖D‖,d,∞ = ‖D‖, [d],∞ +
∑
|U |=[d]

��mUG D(G) − mUG D(H)��
|G − H |d−[d]

.

Definition 10.2.1. Consider d in [0, +∞) and < in R. One denotes by Γ<d (R3) the
space of locally bounded functions 0(G, b) on R3 ×R3 , which are �∞ functions of b
and such that, for any U ∈ N3 and any b ∈ R3 , the function G ↦→ mU

b
0(G, b) belongs

to, d,∞(R3) and there exists a constant �U such that,

(10.2.1) ∀b ∈ R3 ,


mUb 0(·, b)

,d,∞ ≤ �U (1 + |b |)<−|U | .

Given a symbol 0, to define the paradifferential operator )0 we need to introduce a
cutoff function \.

Definition 10.2.2. A function \ ∈ �∞(R3 × R3) is said to be an admissible cut-iff
function if it satisfies the three following properties:

(i) There exists Y1, Y2 satisfying 0 < 2Y1 < Y2 < 1/2 such that

\ ([, b) = 1 if |[ | ≤ Y1 |b | and |b | ≥ 2,
\ ([, b) = 0 if |[ | ≥ Y2 |b | or |b | ≤ 1.

(ii) For all (U, V) ∈ N3 × N3 , there is �U,V such that

∀([, b) ∈ R3 × R3 ,
��mU[ mVb \ ([, b)�� ≤ �U,V (1 + |b |)−|U |−|V | .

(iii) \ satisfies the following symmetry conditions:

(10.2.2) \ ([, b) = \ (−[,−b) = \ (−[, b).
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Proposition 10.2.3. For any 0 < Y1 < Y2 < 1, there exists an admissible cut-off
function \ satisfying the three properties above.

Proof. Let � ∈ �∞(R23 \ {0}) be positively homogeneous function of order 0 and
such that

� ([, b) = 1 for |[ | ≤ Y1 |b | ,
� ([, b) = 0 for |[ | ≥ Y2 |b | .

By homogeneity, we have��mU[ mVb � ([, b)�� ≤ �U,V (1 + |[ | + |b |)−|U |−|V | ≤ �U,V (1 + |b |)−|U |−|V | .
Then consider k ∈ �∞(R3) such that

k(b) = 1 for |b | ≥ 2,
k(b) = 0 for |b | ≤ 1,

and set \ ([, b) = � ([, b)k(b). The symmetry condition (10.2.2) is satisfied if one
assumes that � and k are even in [ and b. �

Example 10.2.4. As an example, fix 3 = 1 and Y1, Y2 such that 0 < 2Y1 < Y2 < 1/2
and a function 5 in �∞0 (R) satisfying 5 (C) = 5 (−C), 5 (C) = 1 for |C | ≤ 2Y1 and
5 (C) = 0 for |C | ≥ Y2. Then set

\ ([, b) = (1 − 5 (b)) 5
(
[

b

)
.

Properties (8), (88) and (888) are clearly satisfied.

Lemma 10.2.5. Consider an admissible cut-off function \ and set

� (H, b) = 1
(2c)3

∫
R3
48H·[\ ([, b) d[.

Then, for all b ∈ R3 and all V ∈ N3 ,

mV
b
� (·, b)




!1 (R3H )

≤ �V (1 + |b |)−|V | .

Proof. We use the identity

HU48H·[ =

(
1
8
m[

)U
48H·[,
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and integrate by parts to obtain���HUmVb � (H, b)��� = 1
(2c)3

����∫ (
1
8
m[

)U
48H·[mV

b
\

����
=

1
(2c)3

����∫
|[ |≤Y2 |b |

48H·[mU[ m
V

b
\

����
≤ � |b |3 (1 + |b |)−|U |−|V | .

It follows that ���HU |b | |U | mVb � (H, b)��� ≤ � |b |3 (1 + |b |)−|V | .
We then use the previous inequality with U = 0 and |U | = 3 + 1 to get that���HU |b | |U | mVb � (H, b)��� ≤ � (1 + |b |)−|V | (1 + |b |)3

(1 + |G | (1 + |b |))3+1
.

By integrating in G, we obtain the desired estimate for the !1-norm of mV
b
� (·, b). �

Proposition 10.2.6. Let 0 ∈ Γ<` with < ∈ R and ` ∈ [0, +∞). Then the following
three definitions of f = f(G, b) are equivalent:

(i) f(·, b) = \ (�G , b)0(·, b),

(ii) f(G, b) =
∫
� (G − H, b)0(H, b) dH,

(iii) (FGf) ([, b) = \ ([, b) (FG0) ([, b).

In addition,
f ∈ Σ<` .

Consider a symbol 0 ∈ Γ<0 for some < ∈ R. Then the paradifferential operator )0
with symbol 0 is defined by

)0 = Op(f),

where f is given by Proposition 10.2.6. It follows that

(10.2.3) )̂0D(b) = (2c)−3
∫

\ (b − [, [)0̂(b − [, [)D̂([) d[,

where 0̂(\, b) =
∫
4−8G·\0(G, b) dG is the Fourier transform of 0 with respect to G.
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b

[

Figure 10.1: The support of the cut-off function \ ([, b) is in grey. The set of points
([, b) where \ ([, b) = 1 is in darker grey.

Remark 10.2.7. For a pseudo-differential operator Op(0), notice that

(10.2.4) �Op(0)D(b) = (2c)−3
∫

0̂(b − [, [)D̂([) d[.

where again 0̂(\, b) =
∫
4−8G·\0(G, b) dG is the Fourier transform of 0 with respect

to the first variable. Note that the only difference betwenn (10.2.3) and (10.2.4) is
the cut-off function \; this cut-off allows to define operators for non smooth symbols
by means of symbol smoothing.

10.3 Symbolic calculus

In this paragraph, we gather quantitative results about paradifferential operators
from [19].

Introduce the following semi-norms.

Definition 10.3.1. For < ∈ R, d ≥ 0 and 0 ∈ Γ<d (R3), we set

(10.3.1) "<
d (0) = sup

|U |≤ 32 +1+d
sup
b∈R3




(1 + |b |) |U |−<mUb 0(·, b)



,d,∞ (R3)

.

Let< ∈ R. Recall that an operator ) is said of order< if, for all ` ∈ R, it is bounded
from �` to �`−<.
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Theorem 10.3.2. Let < ∈ R. If 0 ∈ Γ<0 (R
3), then )0 is of order <. Moreover, for

all ` ∈ R there exists a constant  such that

(10.3.2) ‖)0‖�`→�`−< ≤  "<
0 (0).

The main features of symbolic calculus for paradifferential operators are given by
the following theorems.

Theorem 10.3.3 (Composition). Let< ∈ R and d > 0. If 0 ∈ Γ<d (R3), 1 ∈ Γ<
′

d (R3)
then )0)1 − )0#1 is of order < + <′ − d where

0#1 =
∑
|U |<d

1
8 |U |U!

(
mUb 0

) (
mUG 1

)
.

Moreover, for all ` ∈ R there exists a constant  such that

(10.3.3) ‖)0)1 − )0#1‖�`→�`−<−<′+d ≤  "<
d (0)"<′

d (1).

Remark 10.3.4. Note that the definition of the symbol 0#1 depends on the regularity
of the symbols at stake. To clarify possible confusion, we will sometimes use a
notation with an index d and write

0#d1 =
∑
|U |<d

1
8 |U |U!

(
mUb 0

) (
mUG 1

)
.

Theorem 10.3.5 (Adjoint). Let < ∈ R, d > 0 and 0 ∈ Γ<d (R3). Denote by ()0)∗ the
adjoint operator of )0 and by 0 the complex conjugate of 0. Then ()0)∗ − )0∗ is of
order < − d where

0∗ =
∑
|U |<d

1
8 |U |U!

mUb m
U
G 0.

Moreover, for all ` there exists a constant  such that

(10.3.4) ‖()0)∗ − )0∗ ‖�`→�`−<+d ≤  "<
d (0).

10.4 Paraproducts

If 0 = 0(G) is a function of G only, then )0 is a called a paraproduct.
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If 0 ∈ !∞(R) then )0 is an operator of order 0, together with the estimate

(10.4.1) ∀f ∈ R, ‖)0D‖�f . ‖0‖!∞ ‖D‖�f .

A paraproduct with an !∞-function acts on any Hölder space , d,∞(R) with d in
R∗+ \ N,

(10.4.2) ∀d ∈ R∗+ \ N, ‖)0D‖,d,∞ . ‖0‖!∞ ‖D‖,d,∞ .

If 0 = 0(G) and 1 = 1(G) are two functions then 0♯1 = 01 and hence (10.3.3)
implies that, for any d > 0,

(10.4.3) ‖)0)1 − )01‖�`→�`+d ≤  ‖0‖,d,∞ ‖1‖,d,∞ ,

provided that 0 and 1 belong to, d,∞(R).

A key feature of paraproducts is that one can replace nonlinear expressions by
paradifferential expressions, to the price of error terms which are smoother than the
main terms. As an illustration, we give the following result of Bony [6].

Definition 10.4.1. Given two functions 0, 1, we define the remainder

(10.4.4) 'B (0, D) = 0D − )0D − )D0.

We record here two estimates about the remainder 'B (0, 1) (see chapter 2 in [4]).

Theorem 10.4.2. Let U ∈ R+ and V ∈ R be such that U + V > 0. Then

‖'B (0, D)‖
�
U+V− 32 (R)

≤  ‖0‖�U (R) ‖D‖�V (R) ,(10.4.5)

‖'B (0, D)‖�U+V (R) ≤  ‖0‖, U,∞ (R) ‖D‖�V (R) .(10.4.6)

We next recall a well-known property of products of functions in Sobolev spaces
(see chapter 8 in [16]) that can be obtained from (10.4.1) and (10.4.6): If D1, D2 ∈
�B (R) ∩ !∞(R) and B > 0 then

(10.4.7) ‖D1D2‖�B ≤  ‖D1‖!∞ ‖D2‖�B +  ‖D2‖!∞ ‖D1‖�B .

Similarly, recall that, for B > 0 and � ∈ �∞(C# ) such that � (0) = 0, there exists a
non-decreasing function � : R+ → R+ such that

(10.4.8) ‖� (*)‖�B ≤ �
(
‖*‖!∞

)
‖*‖�B ,

for any* ∈ (�B (R) ∩ !∞(R))# .
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Theorem 10.4.3. For all �∞ function �, if 0 ∈ �U (R3) then

� (0) − � (0) − )� ′(0)0 ∈ �2U− 32 (R3).

Moreover, 

� (0) − � (0) − )� ′(0)0


�

2U− 32 (R3)
≤ �

(
‖0‖�U (R3)

)
,

for some non-decreasing function � depending only on �.
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Part IV

Exercises and Problems

133





Chapter 11

Exercises

Exercise 11.0.1 (Semi-classical operators). Consider a real number ℎ ∈ (0, 1] and
a symbol 0 = 0(G, b) which belongs to �∞

1
(R23). We define

Opℎ (0)D(G) =
1
(2c)3

∫
48G·b0(G, ℎb)D̂(b) db.

We want to show that 

Opℎ (0)



L(!2) ≤ � sup

R23
|0 | +$ (ℎ 1

2 ).

1. Show that
Opℎ (0)D(G) =

(
Op(0ℎ)Dℎ

)
(ℎ− 1

2 G)

where
0ℎ (G, b) = 0(ℎ

1
2 G, ℎ

1
2 b), Dℎ (H) = D(ℎ

1
2 H).

2. Deduce that there is a constant � and an integer " such that for all 0 ∈
�∞
1
(R23) and all ℎ ∈ (0, 1],

Opℎ (0)




L(!2) ≤ � sup

(G,b)∈R23
|0(G, b) |

+ � sup
1≤|U |+|V |≤"

sup
(G,b)∈R23

ℎ
1
2 ( |U |+|V |)

���mUG mVb 0��� .
Exercise 11.0.2 (Wave packet transformation). Let D : R → C in the class of
Schwartz S(R). The wave packet transform of D is the function ,D : R → C

135



defined by

,D(G, b) =
∫
R
48(G−H)b−

1
2 (G−H)

2
D(H) dH.

1. Show that (G, b) ↦→ G,D(G, b) and (G, b) ↦→ b,D(G, b) are bounded on R2.
Show more generally that,D belongs to the Schwartz class S(R2).

2. Show that, for any G ∈ R,∫
|,D(G, b) |2 db = 2c

∫
4−(G−H)

2/2 |D(H) |2 dH.

Deduce that there is a constant � > 0 such that, for every D in S(R), we have∬
|,D(G, b) |2 dG db = �

∫
|D(H) |2 dH.

(It is not required to calculate �.)

3. Show that for any function D in the Schwartz class S(R),

,D(G, b) = 2 48Gb (,D̂) (b,−G),

for a certain constant 2 (it is not required to calculate 2).

4. Let Y ∈ (0, 1] and D in Schwartz’s class S(R2). We introduce

,YD(G, b) = Y−3/4
∫
R
48(G−H)·b/Y−(G−H)

2/2YD(H) dH.

Check that �−1/2,Y is an isometry and then show that there is  such that for all
Y ∈ (0, 1] and all functions D and E in the Schwartz class S(R),

E,YD −,Y (ED)




!2 (R2) ≤  Y

1/2‖mGE‖!∞ (R) ‖D‖!2 (R) .

5. Show that there is  ′ such that, for all Y ∈ (0, 1] and for all function D in the
Schwartz class S(R),

8b,YD −,Y (YmGD)




!2 (R2) ≤  

′Y1/2‖D‖!2 (R) .

Exercise 11.0.3. Let j ∈ �∞0 (R) be such that

supp j ⊂ {b ∈ R , 2−1/2 ≤ |b | ≤ 21/2 }, j(b) = 1 for 2−1/4 ≤ |b | ≤ 21/4.

Set

0(G, b) =
+∞∑
9=1

exp(−82 9G)j(2− 9b).
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1. Show that 0 ∈ �∞(R2) satisfies

|mUG m
V

b
0(G, b) | ≤ �U,V (1 + |b |) |U |−|V | ∀U, V ∈ N2, ∀(G, b) ∈ R2.

Does 0 belong to (0 or �∞
1
(R2)?

2. Let 50 be a function in the Schwartz space whose Fourier transform 5̂0 is
supported in the interval [−1/2, 1/2]. Given # ∈ N we set

5# (G) =
#∑
9=2

1
9

exp(82 9G) 50(G).

Using Plancherel’s theorem, prove that

‖ 5# ‖2!2 =

( #∑
9=2

9−2
)
‖ 50‖2!2 ≤ 2.

3. Show that

Op(0) 5# =
( #∑
9=2

9−1
)
50.

4. Conclude.

Exercise 11.0.4. Let 0 ∈ �< (R# ). Show that

(2c)−#
∫

4−8H·G0(H) dH dG = (2c)−#
∫

4−8H·G0(G) dH dG = 0(0).

Exercise 11.0.5. Let U and V be in N# . Show that

(2c)−#
∫

4−8H·G
HU

U!
GV

V!
dH dG =

{
0 if U ≠ V,

(−8) |U |/U! if U = V.

Exercise 11.0.6 (Van der Corput’s Lemma). We are interested in the behavior, when
the parameter _ tends to +∞, of the oscillatory integrals

�0,1,q (_) =
∫ 1

0

48_q(G) dG,

where (0, 1) ∈ R2 and ?ℎ8 ∈ �2(R) is a real-valued function.
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1) Suppose that there exist two constants 2, � > 0 such that,

∀G ∈ [0, 1], |q′(G) | ≥ 2 et |q′′(G) | ≤ �.

Using the relation

48_q =
1
8_q′

d
dG

(
48_q

)
,

show that, for all _ > 0, we have���0,1,q (_)�� ≤ 1
_

(
2
2
+ � (1 − 0)

22

)
.

2) Show that for all (0, 1) ∈ R2, for all _ > 0 and for all functions q ∈ �2(R) such
that q′ is monotone and does not vanish on [0, 1],���0,1,q (_)�� ≤ 4

inf0≤G≤1 |q′(G) |
1
_
.

(One can use that
∫
| ( 5 (6(G))′| dG = |

∫
( 5 (6(G)))′ dG | if 5 and 6 are two monotone

functions).

3) Show that, for all (0, 1) ∈ R2, all _ > 0 and any function q ∈ �2(R) satisfying
q
′′ ≥ 1 on [0, 1], we have ���0,1,q (_)�� ≤ 10

_1/2 .

(One can use that {G ∈ [0, 1] : |q′(G) | ≤ _−1/2} is an interval of length at most
equal to 2_−1/2.)

Exercise 11.0.7. 1) Let k ∈ �1(R) be a real or complex valued function. Show that∫ 1

0

48_q(G)k(G) 3G = k(1)�0,1,q (_) −
∫ 1

0

k′(G)�0,G,q (_) 3G.

2) Deduce that, for all (0, 1) ∈ R2, all _ > 0, any phase such that q′′ ≥ 1 on [0, 1],
and any k ∈ �1(R),����∫ 1

0

48_q(G)k(G) dG
���� ≤ 10

_1/2

(
|k(1) | +

∫ 1

0

|k′(G) | 3G
)
.

3) (Application) Show that there exists a constant � such that, for all C ∈ R and for
all all ' > 0, ����∫ '

−'
48(b+Cb

2) |b |−1/2 db
���� ≤ �.
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Exercise 11.0.8 (An inequality of Kenig, Ponce and Vega). The aim of this exercise
is to prove the inequality



∫

R
|�G |−1/4 4−8Cm

2
G6(C, G) dC






!2
G

≤ � ‖6‖
!

4/3
G !1

C

.

In order to simplify, we can suppose that 6 ∈ S(R×R) and that its Fourier transform
6̂(B, b) with respect to G is supported in a compact � ⊂ R independent of B.

1) Show that it is sufficient to prove that



∫
R
|�G |−1/4 48(C−B)m

2
G6(B, G) dB






!4
G!
∞
C

≤ � ‖6‖
!

4/3
G !1

C

.

2) Show that∫
R
|�G |−1/4 48(C−B)m

2
G6(B, G) dB =

∬
 (B − C, G − H)6(B, H) dH dB,

with

 (C, G) =
∫
�

48(Gb+Cb
2) |b |−1/2 db.

3) Conclude by using the exercise 11.0.7 and the theorem of Hardy–Littlewood–
Sobolev.

4) Show that the inequality we have proved implies that the solution D = D(C, G) of

8mCD + m2
G D = 0, DAA>FE4ACC=0 = D0 ∈ S(R),

satisfies

(∗) ‖D‖!4
G!
∞
C
≤ �




|�G |1/4 D0





!2
.

Using the ))∗ argument, deduce the previous estimate from the one established in
question 1.

5) Compare (∗) with that obtained by an energy estimate.

Exercise 11.0.9. Show the following improvement of Proposition 6.6.3. Let < ∈ R+
and 0 ∈ (< (R3). Suppose that there exist two constants 2, ' such that,

|b | ≥ ' ⇒ Re 0(G, b) ≥ 2 |b |< .
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Then, for all # there exists a constant �# such that,

Re(Op(0)D, D) ≥ 2
2
‖D‖2

�</2
− �# ‖D‖2�−# ,

for all D ∈ S(R3). [We will use the following inequalities: 8) 2GH ≤ [G2 + (1/[)H2

and 88), for all Y > 0 and all # > 0, there exists �Y,# > 0 such that

‖D‖�−1 ≤ Y ‖D‖!2 + �Y,# ‖D‖�−# .

Which results from the easy inequality 〈b〉−2 ≤ Y2 + �Y,# 〈b〉−2# .

Exercise 11.0.10. Let � be a Banach space and let � : [0, +∞[×� → � be a
continuous application satisfying the following property: There exists � > 0 such
that,

∀C ∈ [0, +∞[, ∀(G, H) ∈ � × �, ‖� (C, G) − � (C, H)‖� ≤ � ‖G − H‖� .

The aim of this problem is to give two proofs of the fact that, for all D0 in � , there
exists a unique function D ∈ �1( [0, +∞[; �) solution of

dD
dC
= � (C, D), D |C=0 = D0.

1. We are looking for a solution D of the equation Φ(D) = D with

Φ(D) = D0 +
∫ C

0
� (B, D(B)) dB.

Given ) > 0, we denote -) = �0( [0, )]; �). Show that Φ is a contraction of
-) in -) for ) small enough.

2. Deduce that, if ) is small enough, then for all D0 in � , there exists a unique
function D ∈ �1( [0, )]; �) solution of

dD
dC
= � (C, D), D |C=0 = D0.

Then deduce the existence of a solution defined for all time by fitting together
solutions defined on time intervals of length ) .
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3. We want to give another argument which allows us to obtain directly a global
existence result. Given a parameter _ > 0, let us introduce the space of
functions with at most exponential growth of factor _:

- =

{
D ∈ �0( [0, +∞[; �) , sup

C∈[0,+∞[
4−_C ‖D(C)‖� < +∞

}
.

Verify that it is a Banach space for the norm

‖D‖- = sup
C∈[0,+∞[

4−_C ‖D(C)‖� .

Let D belong to - . Show that Φ(D) also belongs to - . Show furthermore that
for all D and all E in - , we have

‖Φ(D) −Φ(E)‖- ≤
�

_
‖D − E‖- .

Conclude.

Exercise 11.0.11. Consider a Banach space (�, ‖·‖�) and a normed vector space
(+, ‖·‖+ ). Let us consider two continuous linear operators !0 : � ↦→ + and
!1 : � ↦→ + . For C in [0, 1], we define

!C = (1 − C)!0 + C!1.

It is assumed that there exists a constant � > 0 such that

∀C ∈ [0, 1], ∀D ∈ �, ‖D‖� ≤ � ‖!CD‖+ .

1. Suppose that !B is surjective for some B ∈ [0, 1]. Show that !B is bĳective
and that its inverse is a continuous linear application satisfying

!−1

B




+→� ≤ �.

2. Let 5 ∈ + and let B ∈ [0, 1] be such that !B is surjective. Observe that for all
C ∈ [0, 1],

5 = !CD ⇔ 5 = !BD + (C − B) (!1 − !0)D.
Introduce an application )B,C2>;>=� → � depending on 5 and B, C and veri-
fying the two properties:

(8) 5 = !CD ⇔ D = )B,C (D),

and

(88) )B,C is a contraction if |C − B | < X =
1

�(‖!0‖�→+ + ‖!1‖�→+ )
.
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3. Deduce that !C is surjective for all C8=[0, 1] such that |C − B | ∈ [0, X[. Then
show that if !0 is surjective then !1 is surjective.
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Chapter 12

Problems

12.1 The div-curl lemma of Murat and Tartar

Notations : LetΩ be an open ofR3 . Let�∞(Ω) be the space of functions D : Ω→ R
which are the restriction to Ω of functions �∞ on R3 . We denote by �∞0 (Ω) the set
of those functions �∞ with compact support in Ω.

Let us consider a bounded open Ω ⊂ R2 and two sequences of vector fields vectors,
�= : Ω → R2 and �= : Ω → R2. We note (�1

= , �
2
=) and (�1

=, �
2
=) the coordinates of

�= and �=. It is assumed that:

(H1) �= and �= belong to �∞(Ω)2 for any integer =.

(H2) We have

sup
=∈N

(
‖�=‖!2 (Ω)2 + ‖�=‖!2 (Ω)2 + ‖�=‖!2 (Ω) + ‖curl �=‖!2 (Ω)

)
< +∞,

where ‖�=‖!2 (Ω)2 =
√

�1

=



2
!2 (Ω) +



�2
=



2
!2 (Ω) , and where div �= and curl �=

are functions with values in R defined by

div �= = mG1�
1
= + mG2�

2
= , curl �= = mG2�

1
= − mG1�

2
=.

(H3) There exist � ∈ !2(Ω)2 and � ∈ !2(Ω)2 such that �= ⇀ � and �= ⇀ � in
!2(Ω)2, which means that each coordinate converges weakly (� 9

= ⇀ � 9 for
9 = 1, 2 and similarly for �=).

143



The goal of this exercise is to show that, for all i ∈ �∞0 (Ω),

(∗)
∫
Ω

i(G)�= (G) · �= (G) dG −→
=→+∞

∫
Ω

i(G)� (G) · �(G) dG,

where H · H′ is the scalar product of R2.

1. Let us fix a function i ∈ �∞0 (Ω) and consider j ∈ �∞0 (Ω) with j ≡ 1 on the
support of i, so that ji = i. We introduce

E= = i�=, F= = j�=, E = i�, F = j�.

Weextend these functions by 0 onR2\Ω (andwe always note them E=, F=, E, F).
Show that E= and F= belong to �1(R2)2. Show that E= converges weakly to E
in !2(R2)2 and that similarly F= converges weakly to F in !2(R2)2.

2. If 5 = ( 5 1, 5 2) is a function with values in R2, we note 5̂ = ( 5̂ 1, 5̂ 2) its
Fourier transform. Show that (Ê=) and (F̂=) are bounded in !2(R2)2 and in
!∞(R2)2.

3. Show that (∗) is equivalent to

(∗∗)
∫
R2
Ê= (b) · F̂= (b) db −→

=→+∞

∫
R2
Ê(b) · F̂(b) db.

4. Show that, for all b ∈ R2, the sequences (Ê= (b))=∈N and (F̂= (b))=∈N converge
to Ê(b) and F̂(b), respectively.

5. Let ' > 0. Let �(0, ') be the ball of center 0 and radius ' in R2. Show that∫
�(0,')

Ê= (b) · F̂= (b) db −→
=→+∞

∫
�(0,')

Ê(b) · F̂(b) db.

6. Let b = (b1, b2) ∈ R2 different from zero. Set b⊥ = (b2,−b1). Show that, for
all - ∈ R2, we have

- =

(
- · b|b |

)
b

|b | +
(
- · b

⊥

|b |

)
b⊥

|b | .

Then show that for all -,. in R2 we have

|- · . | ≤ 1
|b |

(
|. | |- · b | + |- |

��. · b⊥��) .
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7. Show that the sequences of functions b ↦→ b · Ê= (b) and b ↦→ b⊥ · F̂= (b) are
bounded in !2(R2).

8. Deduce that for all ' > 0 we have

sup
=∈N

∫
|b |>'

Ê= (b) · F̂= (b) db −→
'→+∞

0,

and conclude the demonstration of (∗).

12.2 Continuity on Hölder spaces

We denote�,�U, �U,V, . . . absolute constants (where�U depends on the multi-index
U...) which do not depend on the symbols, nor on the unknowns.

The aim of this problem is to study the action of a pseudo-differential operator

Op(?)D(G) = 1
(2c)=

∫
48G·b ?(G, b)D̂(b) db,

on the Hölder spaces �0,A (R3) with A ∈]0, 1[.

∗ ∗ ∗ Preliminary ∗ ∗ ∗

Let " > 0 be fixed. Let @(G, b) be a function �∞ on R3 × R3 , supported in
{(G, b) : |b | ≤ 3}. We suppose that, for all V ∈ N= such that |V | ≤ 3

2 + 2, we have

∀(G, b) ∈ R3 × R3 ,
��mV
b
@(G, b)

�� ≤ ".
1. Let us introduce &(G, I) = (2c)−=

∫
R3
48I·b@(G, b) db. Using the relation

mG84
8I·b = 8I48I·b , show that, for U ∈ N=, we can write the function I ↦→

IU&(G, I) in the form of a Fourier transform of a function that we will specify.

2. Deduce that, for all |U | ≤ (3/2) + 2, there exists a constant �U such that∫
|I |2U |&(G, I) |2 dI ≤ �U"2.

Then deduce that
∫
|&(G, I) | , 3I ≤ �" .
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3. Let 5 ∈ S(R3). Show that Op(@) 5 (G) =
∫

&(G, G − H) 5 (H) dH then deduce

‖Op(@) 5 ‖!∞ ≤ �" ‖ 5 ‖!∞ .

∗ ∗ ∗ Stein’s theorem ∗ ∗ ∗

Consider a symbol ? = ?(G, b) which is �∞ on R3 × R3 and such that

∀(G, b) ∈ R3 × R3 ,
���mUG mVb ?(G, b)��� ≤ �U,V (1 + |b |)−|V | .

We showed in class that Op(?) is bounded from !2(R3) in itself. We will show in
this problem that Op(?) is bounded by �0,A (R3) in itself for all A ∈ (0, 1[.

We recall that Hölder spaces can be studied using the Littlewood-Paley decomposi-
tion. To fix the notations, let us recall that there exist two functions j0 and j, �∞ on
R3 , supported respectively in the ball {|b | ≤ 1} and in the annulus {1/3 ≤ |b | ≤ 3}
and such that:

∀b ∈ R3 , j0(b) +
+∞∑
9=0

j(2− 9b) = 1.

Let’s introduce

?−1(G, b) = ?(G, b)j0(b), ? 9 (G, b) = ?(G, b)j(2− 9b) for 9 ∈ N.

1. Show that there exists " > 0 such that, for all V ∈ N= satisfying |V | ≤
(3/2) + 2, we have ��mV

b
?−1(G, b)

�� ≤ ",��mV
b
? 9 (G, b)

�� ≤ "2− 9 |V | (∀ 9 ∈ N).

2. Show that
‖Op(?−1) 5 ‖!∞ ≤ � ‖ 5 ‖!∞ .

3. Let 0 = 0(G, b) be a symbol and _ ∈ R+∗ . Let us set 1(G, b) = 0
( G
_
, _b

)
. Let

us note �_ the application which to the function D = D(G) associates

(�_D) (G) = D(_G).
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Show that Op(0) = �_ ◦ Op(1) ◦ �−1
_

and deduce that, if Op(1) is bounded
from !∞ to !∞, then Op(0) is also bounded and then they have the same
norm.

4. For all 9 ∈ N, show that we can choose _ 9 so that ?̃ 9 (G, b) = ? 9 (_−1
9
G, _ 9b) is

supported in {(G, b) : |b | ≤ 3}. Deduce that

Op(? 9 ) 5



!∞ ≤ � ‖ 5 ‖!∞ .

5. Let us introduce 5−1 = j0(�G) 5 and 5: = j(2−:�G) 5 for : ≥ 0. Show that

Op(? 9 ) 5 =
∑
| 9−: |≤3

Op(? 9 ) 5: .

6. Show that there exists � > 0 such that for all 9 ∈ N and all 5 ∈ S(R3), we
have 

Op(? 9 ) 5




!∞ ≤ � ‖ 5 ‖�0,A 2− 9A .

7. Let U ∈ N= satisfy |U | ≤ 1. Show that for all 9 ∈ N ∪ {−1}, we have

mUG Op(? 9 ) = Op(@ 9 ) where @ 9 (G, b) =
(
(8b + mG)U? 9

)
(G, b).

By repeating the previous steps, show that

mUG Op(? 9 ) 5



!∞ ≤ �U2 9 ( |U |−A) ‖ 5 ‖�0,A .

8. (∗) Let ( 5 9 ) be a sequence of functions �1(R3) which satisfy

mUG 5 9

!∞ ≤ "2 9 ( |U |−A) pour tout |U | ≤ 1.

Show that 5 =
∑
5 9 belongs to �0,A (R3) and that its norm is bounded by �" .

9. Conclude: Op(?) is bounded from �0,A (R3) in itself for all A ∈ (0, 1[. What
can we say for A = 0?

∗ ∗ ∗ Relation between !∞ and �0
∗ ∗ ∗ ∗

i) Show that there exists a constant � such that, for all Y ∈ (0, 1) and any function
5 belonging to the Hölder space �0,Y (R3), we have

‖ 5 ‖!∞ ≤
�

Y
‖ 5 ‖�0

∗
log

(
4 +
‖ 5 ‖�0, Y

‖ 5 ‖�0
∗

)
.
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Hint: use the Littlewood-Paley decomposition and, for # ∈ N to choose, write
that

‖ 5 ‖!∞ ≤
∑

@≤#−1



Δ@ 5 

!∞ +∑
@≥#



Δ@ 5 

!∞ .
ii) Consider the distribution

D =

∞∑
@=0

482
@G .

Show that D ∈ �0
∗ \ !∞.

12.3 Sums of squares of vector fields

Warning : this problem is very difficult. The goal is to show a famous result of Lars
Hörmander on the hypoellipticity of some sums of squares of vector fields.

∗ ∗ ∗ Notations ∗ ∗ ∗

We consider only real-valued functions defined on an open set of R3 with = ≥ 1 an
arbitrary integer. Given B ∈ R, we denote �B (R3) the Sobolev space of order B and
〈�G〉B the Fourier multiplier of symbol 〈b〉B = (1 + |b |2)B/2. We denote 〈D, E〉 the
scalar product on !2(R3), 〈D, E〉 =

∫
R3
D(G)E(G) 3G.

Given two operators � and �, we denote �� the compound � ◦ � (so �2 = � ◦ �)
and [�, �] = �� − �� their commutator.

In this problem we are interested in the second order operator

! =
∑

1≤ 9≤<
-2
9 ,

or -1, . . . , -< are differential operators of order 1 : for 1 ≤ 9 ≤ <, - 9 is defined by

(- 9D) (G) =
∑

1≤8≤=
08, 9 (G)

mD

mG8
(G),

where 08, 9 is �∞ on R3 and has values in R for all 1 ≤ 8 ≤ =. Note that we
only assume that functions 08, 9 are �∞ (and not �∞ and bounded as well as their
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derivatives). For instance, we wish to study the case ! = m2
G + G2m2

H = -
2
1 + -

2
2 with

-1 = mG and -2 = GmH.

∗ ∗ ∗ Preliminary questions ∗ ∗ ∗

1. Show that the adjoint -∗
9
of - 9 satisfies -∗9 D = −- 9D+2 9Dwhere 2 9 ∈ �∞(R3)

is a function that we will determine. That is, show that for all D, E ∈ �∞0 (R
3),∫

R3
(- 9D) (G)E(G) dG =

∫
R3

(
− D(G) (- 9E) (G) + 2 9 (G)D(G)E(G)

)
dG.

2. Show that there exists a constant � > 0 such that, for all D ∈ �∞0 (R
3),∑

1≤ 9≤<



- 9D

2
!2 ≤ � ‖!D‖2!2 + � ‖D‖2!2 .

∗ ∗ ∗ Study a class of operators ∗ ∗ ∗

Let us fix a bounded open set + .

We denote %B80
+
the set of operators % ∈ L(!2(R3)) which can be written as

%D = i1 Op(0)
(
i2D)

with

• i1, i2 ∈ �∞0 (R
3) and supp i: ⊂ + for : = 1, 2;

• 0 is a symbol with complex values belonging to (0.

Let Y ∈ (0, 1/2]. We denote AY the set of operators % ∈ Ψ0
+
such that

∃� > 0/ ∀D ∈ �∞0 (+), ‖%D‖2� Y ≤ � ‖!D‖2!2 + � ‖D‖2!2 .

1. Show that if %1 and %2 belong to Ψ0
+
then %1%2 ∈ Ψ0

+
and %∗1 ∈ Ψ

0
+
.

2. Show that if % ∈ AY then %∗ ∈ AY.
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3. Show that for all Y ∈ (0, 1/2], AY is stable by composition on the left or on
the right by a pseudo of Ψ0

+
: this means that if % ∈ AY and & ∈ Ψ0

+
, then

&% ∈ AY, %& ∈ AY .

4. Let \1 and \2 be two functions�∞with compact support such that supp \: ⊂ +
for : = 1, 2 and \1 ≡ 1 on the support of \2. Let us introduce the operator (
defined by

(D = \1〈�G〉−1(\2D).

Show that - 9( ∈ Ψ0
+
. Show moreover that, for all 1 ≤ 9 ≤ = and Y ∈ [0, 1/2],

we have
- 9( ∈ AY .

5. Let Y, X ∈ (0, 1/2] with X ≤ Y/2. Let us consider % ∈ AY. We want to show
in this question that

[- 9 , %] ∈ AX

for all 1 ≤ 9 ≤ =.
(0) Write



[- 9 , %]D

2
� X

in the form 〈[- 9 , %]D, )D〉 where ) = Op(g) is a
pseudo-differential operator with g ∈ (2X.

(1) Show that there exists a constant � > 0 such that��〈%- 9D, )D〉�� ≤ 

- 9D

2
!2 + ‖)%∗D‖2!2 + � ‖D‖2�2X−1 .

(2) Obtain a similar estimate for
��〈- 9%D,)D〉�� and conclude.

6. We denote A the set of operators % ∈ Ψ0
+
such that % ∈ AY for a certain

Y ∈ (0, 1/2]. That is % ∈ AY if and only if

∃Y ∈]0, 1/2], ∃� > 0/ ∀D ∈ �∞0 (+), ‖%D‖2� Y ≤ � ‖!D‖2!2 + � ‖D‖2!2 .

Let 1 ≤ 8, 9 ≤ <. Show that the commutator [-8, - 9 ] = -8- 9 − - 9-8 is a
differential operator of order 1.

Show that for all 1 ≤ 9 , : ≤ <, we have

[- 9 , -: ]( ∈ A.

(Hint: observe that [- 9 , -:(] belongs to A.)

∗ ∗ ∗ The sublaplacian on the Heisenberg group ∗ ∗ ∗
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Let us consider the case of the space dimension = = 3. Consider the operator

! = -2 + .2

with
- = mG2 + 2G1mG3 , . = mG1 − 2G2mG3 .

1. Let + be a bounded open set. Show that, for all 1 ≤ : ≤ 3,

∃Y ∈]0, 1/2], ∃� > 0/ ∀D ∈ �∞0 (+),


mG: ((D)

2

� Y
≤ � ‖!D‖2

!2 +� ‖D‖2!2 .

2. Deduce that for all compact  ⊂ R3 there exists Y > 0 and a constant � > 0
such that, for all D ∈ �∞0 (R

3) with supp D ⊂  ,

‖D‖2� Y ≤ � ‖!D‖2!2 + � ‖D‖2!2 .

∗ ∗ ∗ General case ∗ ∗ ∗

We identify a differential operator - =
∑

1≤8≤= 08mG8 , with the vector field 0 =

(01, . . . , 0=) : R3 → R3 . Given G ∈ R3 , we denote - (G) the vector 0(G) ∈ R3 .

We consider again a general operator ! =
∑

1≤ 9≤< -
2
9
and we suppose that there

exists A ∈ N∗ such that for all G ∈ R3 ,

vect
{(
[-81 , [-82 , . . . , [-8?−1 , -8? ] . . .]] (G) : ? ≤ A, 8: ∈ {1, . . . , <}

}
= R=.

(0) Show that this condition is satisfied for the following two examples:

• = = 2, -1 = mG and -2 = GmH.

• = = 4 (we denote (G, H, I, C) the coordinates of a point of R4), -1 = mG ,
-2 =

1
2G

2mC + GmI + mH.

(1) Show that
[-81 , [-82 , . . . [-8?−1 , -8? ] . . .]]( ∈ A

for all ?-uple of indices.

(2) Show that for all compact  ⊂ R3 there exists Y > 0 and a constant � > 0 such
that, for all D ∈ �∞0 (R

3) with supp D ⊂  ,

‖D‖2� Y ≤ � ‖!D‖2!2 + � ‖D‖2!2 .
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∗ ∗ ∗ Complement ∗ ∗ ∗

1) We now consider the operator

L =
∑

1≤ 9≤<
-2
9 + -0,

where -0, -1, . . . , -< are < + 1 vector fields as before.

Show that there exists a constant � such that, for all D ∈ �∞0 (R
3),∑

1≤8≤<
‖-8D‖2!2 ≤ � ‖LD‖2!2 + � ‖D‖2!2 .

We say that % ∈ Ψ0
+
belongs to AL if and only if

∃Y ∈]0, 1/2], ∃� > 0/ ∀D ∈ �∞0 (+), ‖%D‖2� Y ≤ � ‖LD‖2!2 + � ‖D‖2!2 .

Show that, with ( as before and % ∈ Ψ0
+
,

-0( ∈ AL , [-0, %] ∈ AL

and that, for all 0 ≤ 8, 9 ≤ <, we have [- 9 , -: ]( ∈ AL .

Deduce that AL = Ψ0
+
if there exists A ∈ N such that

vect
{(
[-81 , [-82 , . . . , [-8?−1 , -8? ] . . .]] (G) : ? ≤ A, 8: ∈ {0, . . . , <}

}
= R=.

2) We have thus shown that for all compact  ⊂ R3 there exist Y > 0 and � > 0
such that, for all D ∈ �∞0 (R

3) with supp D ⊂  ,

‖D‖2� Y ≤ � ‖LD‖2!2 + � ‖D‖2!2 .

We say that this is a subelliptic estimate. Using this estimate and the structure of !,
show that ! is hypoelliptic: which means that if D ∈ D′(Ω) satisfies !D ∈ �∞(l)
with l ⊂ Ω then D ∈ �∞(l).

Nevertheless, an operator can satisfy a subelliptic estimate without being hypoellip-
tic. Consider for instance the operator �D = (m2

C − m2
G )D. Then this operator is not

hypoelliptic (there exist non �∞ solutions of �D = 0) but it satisfies the previous
estimate. Show (in a direct way) that there exists a constant � such that for all
D ∈ �∞0 (R

2),
‖D‖2

�1 ≤ � ‖�D‖2!2 + � ‖D‖2!2 .
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12.4 Regularizing effect for Schrödinger and Airy

Let = ≥ 1 be. Let !2(R3) be the space of complex valued functions and integrable
square, with scalar product

( 5 , 6) =
∫
R3
5 (G)6(G) dG.

Given two operators � and �, let �� be the operator � ◦ � and [�, �] = �� − ��.
the commutator of � and �.

Let < ∈ N. Consider a symbol 0 ∈ (< (R3) and set � = Op(0). Let �∗ be the
adjoint of � and assume that � − �∗ is an operator of order 0, so that

(12.4.1) ∀ 5 ∈ �< (R3), ‖� 5 − �∗ 5 ‖!2 (R3) ≤  0 ‖ 5 ‖!2 (R3) .

We fix a time ) > 0 and consider a function D ∈ �1( [0, )];�< (R3)) solution of

(12.4.2) mCD = 8�D.

We admit the existence of such a solution.

1. Let us consider the following operators:

• �1 = Δ;

• �2 = div(W(G)∇·) where W ∈ �∞
1
(R3;R) (which means that W is a real-valued

function, �∞ and bounded on R3 , as well as all its derivatives);

• = = 1 and �3 = 8m
3
G + 8+ (G)mG where + ∈ �∞1 (R;R).

Write these operators in the form � 9 = Op(0 9 ) where 0 9 is a symbol of order < 9

(for a < 9 to specify). Then check that these operators verify the hypothesis (12.4.1).

2. Let 5 , 6 ∈ �1( [0, )];�) where � is a Hilbert space with scalar product (·, ·)� .
Show that the function ( 5 , 6)� : C ↦→ ( 5 (C), 6(C))� is �1 and that

d
dC
( 5 (C), 6(C))� =

(
d
dC
(C), 6(C)

)
�

+
(
5 (C), d 6

dC
(C)

)
�

.

Consider a symbol 1 = 1(G, b) belonging to (0(R3). We pose � = Op(1). Show
that

d
dC
(�D(C), D(C)) =

(
8[�, �]D(C), D(C)

)
+

(
�D(C), 8(� − �∗)D(C)

)
.
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3. Applying this with 1 = 1 show that

d
dC
‖D(C)‖2

!2 (R3) ≤  0 ‖D(C)‖2!2 (R3)

where  0 is defined by (12.4.1). Then deduce that there exists a constant  1
depending only on ) and  0 such that

sup
C∈[0,)]

‖D(C)‖2
!2 (R3) ≤  1 ‖D(0)‖2!2 (R3) .

4. Consider 1 ∈ (0(R3) and set

� = 8[�, �] .

From the previous questions, it can be deduced that there exists a constant  2
(depending only on ), �, �) such that∫ )

0
(�D(C), D(C)) dC ≤  2 ‖D(0)‖2!2 (R3) .

5. Suppose 3 = 1 and � = m2
G .

a. Write � in the form Op(?) + ' where ? ∈ (1(R) is a symbol depending on 1
to be calculated and ' is an operator of order 0. Deduce from the above that there
exists a constant  3 depending only on ), �, � such that∫ )

0
(Op(?)D(C), D(C)) dC ≤  3 ‖D(0)‖2!2 (R) .

b. Let us choose

1(G, b) = −1
2
b

〈b〉

∫ G

0

dH
〈H〉2

where 〈Z〉 = (1 + |Z |2)1/2.

Check that 1 ∈ (0(R) and that

Op(?) = −〈G〉−2Λ−1m2
G where Λ−1 = Op

(
〈b〉−1) .

c. Deduce that there is a constant  4 (depending only on ), �) such that∫ )

0




mGΛ− 1
2
(
〈G〉−1D(C)

)


2

!2 (R)
dC ≤  4 ‖D(0)‖2!2 (R) .
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Then show that

(12.4.3)
∫ )

0



〈G〉−1D(C)


2
�

1
2 (R)

dC ≤  4 ‖D(0)‖2!2 (R) .

6. Suppose = = 1 and � = 8m3
G + 8+ (G)mG . Let " > 0 and consider an increasing

function i ∈ �∞(R;R) such that i(G) = G if |G | ≤ " and i′(G) = 0 if |G | ≥ 2" .
Let 1(G, b) = i(G) (independent of b). Write � in the form Op(?) + ' where ' is
of order 0 (be careful to use the symbolic calculus with the right order) and check
that � = 3mG (i′(G)mG ·) + ' where ' is of order 0. Deduce that∫ )

0

∫ "

−"
|mGD(C, G) |2 dG dC ≤  

∫
R
|D(0, G) |2 dG,

for a constant  depending only on ) and " .

7. (∗) Show that the estimate (12.4.3) is true for � = Δ in any dimension 3.

155



156



Bibliography

[1] Thomas Alazard and Claude Zuily. Tools and problems in partial differential
equations. Universitext. Springer, Cham, [2020] ©2020.

[2] Serge Alinhac and Patrick Gérard. Pseudo-differential operators and the Nash-
Moser theorem, volume 82 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2007. Translated from the 1991 French
original by Stephen S. Wilson.

[3] Hajer Bahouri. The Littlewood-Paley theory: a common thread of many works
in nonlinear analysis. Eur. Math. Soc. Newsl., (112):15–23, 2019.

[4] Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin. Fourier analysis
and nonlinear partial differential equations, volume 343 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer, Heidelberg, 2011.

[5] Sylvie Benzoni-Gavage and Denis Serre. Multidimensional hyperbolic par-
tial differential equations. Oxford Mathematical Monographs. The Clarendon
Press Oxford University Press, Oxford, 2007. First-order systems and applica-
tions.

[6] Jean-Michel Bony. Calcul symbolique et propagation des singularités pour les
équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4),
14(2):209–246, 1981.

[7] Elia Brué and Quoc-Hung Nguyen. On the Sobolev space of functions with
derivative of logarithmic order. Adv. Nonlinear Anal., 9(1):836–849, 2020.

[8] Claudia Bucur and Enrico Valdinoci. Nonlocal diffusion and applications,
volume 20 of Lecture Notes of the Unione Matematica Italiana. Springer,
[Cham]; Unione Matematica Italiana, Bologna, 2016.

157



[9] Alberto-P. Calderón and Rémi Vaillancourt. A class of bounded pseudo-
differential operators. Proc. Nat. Acad. Sci. U.S.A., 69:1185–1187, 1972.

[10] Ronald R. Coifman and Yves Meyer. Au delà des opérateurs pseudo-
différentiels, volume 57 of Astérisque. Société Mathématique de France, Paris,
1978. With an English summary.

[11] Raphaël Danchin. Fourier analysismethods for the compressibleNavier-Stokes
equations. In Handbook of mathematical analysis in mechanics of viscous
fluids, pages 1843–1903. Springer, Cham, 2018.

[12] Guy David and Jean-Lin Journé. A boundedness criterion for generalized
Calderón-Zygmund operators. Ann. of Math. (2), 120(2):371–397, 1984.

[13] Charles Fefferman. !? bounds for pseudo-differential operators. Israel J.
Math., 14:413–417, 1973.

[14] Alain Grigis and Johannes Sjöstrand. Microlocal analysis for differential
operators, volume 196 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 1994. An introduction.

[15] Lars Hörmander. Pseudo-differential operators and hypoelliptic equations. In
Singular integrals (Proc. Sympos. Pure Math., Vol. X, Chicago, Ill., 1966),
pages 138–183, 1967.

[16] Lars Hörmander. Lectures on nonlinear hyperbolic differential equations,
volume 26 of Mathématiques & Applications (Berlin) [Mathematics & Appli-
cations]. Springer-Verlag, Berlin, 1997.

[17] Lars Hörmander. The analysis of linear partial differential operators. III.
Classics inMathematics. Springer, Berlin, 2007. Pseudo-differential operators,
Reprint of the 1994 edition.

[18] Nicolas Lerner. Metrics on the phase space and non-selfadjoint pseudo-
differential operators, volume 3 of Pseudo-Differential Operators. Theory and
Applications. Birkhäuser Verlag, Basel, 2010.

[19] Guy Métivier. Para-differential calculus and applications to the Cauchy prob-
lem for nonlinear systems, volume 5 of Centro di Ricerca Matematica Ennio
De Giorgi (CRM) Series. Edizioni della Normale, Pisa, 2008.

158



[20] Yves Meyer. Remarques sur un théorème de J.-M. Bony. In Proceedings of
the Seminar on Harmonic Analysis (Pisa, 1980), number suppl. 1, pages 1–20,
1981.

[21] YvesMeyer and R. R. Coifman. Ondelettes et opérateurs. III. Actualités Math-
ématiques. [Current Mathematical Topics]. Hermann, Paris, 1991. Opérateurs
multilinéaires. [Multilinear operators].

[22] Augusto C. Ponce. Elliptic PDEs, measures and capacities, volume 23 of EMS
Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2016.
From the Poisson equations to nonlinear Thomas-Fermi problems.

[23] Xavier Saint Raymond. Elementary introduction to the theory of pseudodiffer-
ential operators. Studies in Advanced Mathematics. CRC Press, Boca Raton,
FL, 1991.

[24] Terence Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional
Conference Series in Mathematics. Published for the Conference Board of
the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 2006. Local and global analysis.

[25] Michael E. Taylor. Pseudodifferential operators, volume 34 of Princeton
Mathematical Series. Princeton University Press, Princeton, N.J., 1981.

[26] Michael E. Taylor. Pseudodifferential operators and nonlinear PDE, volume
100 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1991.

[27] Michael E. Taylor. Tools for PDE, volume 81 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2000. Pseu-
dodifferential operators, paradifferential operators, and layer potentials.

[28] Michael E. Taylor. Partial differential equations III. Nonlinear equations,
volume 117 of Applied Mathematical Sciences. Springer, New York, second
edition, 2011.

[29] Maciej Zworski. Semiclassical analysis, volume 138 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2012.

159


	I The Fourier transform
	Functional analysis
	Stone–Weierstrass Theorem
	Hilbertian bases
	Fourier series

	The Fourier transform
	From sums to integrals
	Schwartz class
	Tempered distributions

	Fourier analysis and Sobolev spaces
	Definitions and first properties
	Sobolev embeddings

	Littlewood-Paley decomposition
	Dyadic decomposition
	Characterization of Sobolev spaces
	Characterization of Hölder spaces


	II Pseudo-differential calculus
	Definition of Pseudo-differential operators
	Continuity on the Schwartz class
	The Calderón-Vaillancourt theorem

	Symbolic calculus
	General symbol classes
	Classical symbols
	Introduction to symbolic calculus
	Oscillating Integrals
	Adjoint and composition
	Applications of the symbolic calculus


	III Propagation of singularities
	The Cauchy-Lipschitz theorem
	Reminders of differential calculus
	Banach fixed point theorem
	Inverse function theorem
	Cauchy-Lipschitz theorem
	Propagation along bicharacteristic curves

	Sobolev energy estimates for hyperbolic equations
	Introduction
	Pseudo-differential hyperbolic equations
	A priori estimate
	Proof of Theorem 8.2.3

	The wave front set
	Local properties
	Wave front set
	Theorem of propagation of singularities

	Paradifferential operators
	Spectral localization
	Notations
	Symbolic calculus
	Paraproducts


	IV Exercises and Problems
	Exercises
	Problems
	The div-curl lemma of Murat and Tartar
	Continuity on Hölder spaces
	Sums of squares of vector fields
	Regularizing effect for Schrödinger and Airy



