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Introduction
skskoskoskoskskskskeksk

The aim of this book is to present, through sixty completely solved long problem:s,
various aspects of the current theory of partial differential equations (pde). It
is intended for graduate students who would like, through practice, to test their
understanding of the theory.

Even though the main purpose of this book is to present these problems, for
the reader’s convenience, we have recalled some of the main theoretical results
concerning each topic. This is why each chapter of problems is preceded by a short
introduction recalling without proof the basic facts. This makes the book essentially
self-contained for the reader. At the end of each introduction a short bibliography is
given where one may find the details of proofs. The solutions of the problems are
gathered at the end of the book.

Since the theory of partial differential equations is a very wide subject, it is by
no means realistic to hope to describe all the topics in a single volume. Therefore
choices have to be made and we have chosen to focus on a few of them.

Let us now describe more precisely the contents of this book.

In the first chapter we have recalled some essential tools which are commonly
used in pde: main theorems in functional analysis, distributions, Fourier analysis.
Problems follow. The second chapter is devoted to the description of the main
function spaces used in pde and it contains problems on Sobolev, Holder, Zygmund
(including their Littlewood-Paley description), weak Lebesgue spaces, space of
bounded mean oscillation as well as other spaces. Other tools, such as interpolation
theory and paraproducts, are also discussed and used. The third chapter is concerned
with the theory of microlocal analysis and contains problems on pseudo-differential
operators, para-differential operators, microlocal defect measures etc. The forth
chapter is devoted to the main partial differential equations currently discussed in
the literature. It contains problems on the Laplace operator and its spectral theory,
on the heat equation, on the linear and non linear wave and Schrodinger equations
as well as problems on Kinetic, Benjamin-Ono, Burgers and Euler equations.

The detailed solutions to all the problems are gathered in the last and main part
of the book.

In an appendix we have gathered several fundamental results concerning the
basics of classical analysis, such as Lebesgue integration, differential calculus,
differential equations and holomorphic functions.

T. Alazard and C. Zuily



