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Journées Équations aux dérivées partielles
Biarritz, 6 juin–10 juin 2011
GDR 2434 (CNRS)

Low regularity Cauchy theory for the water-waves
problem: canals and swimming pools

T. Alazard N. Burq C. Zuily
Abstract

The purpose of this talk is to present some recent results about the Cauchy
theory of the gravity water waves equations (without surface tension). In par-
ticular, we clarify the theory as well in terms of regularity indexes for the initial
conditions as fin terms of smoothness of the bottom of the domain (namely
no regularity assumption is assumed on the bottom). Our main result is that,
following the approach developed in [1, 2], after suitable para-linearizations,
the system can be arranged into an explicit symmetric system of quasilinear
waves equation type, and consequently can be solved at the usual levels of reg-
ularity (initial data in Hs, s > 1+d/2). In particular, the system can be solved
for initial surfaces having undounded curvature. As another illustration of this
reduction, we show that in fact following the analysis by Bahouri-Chemin and
Tataru for quasi-linear wave equations, using Strichartz estimates, the regu-
larity threshold can be further lowered, which allows to obtain well posedness
for non lipschitz initial velocity fields. We also take benefit from our low regu-
larity result and an elementary (though seemingly yet unknown) observation
to solve a question raised by Boussinesq on the water-wave system in a canal.

1. The equations

We are interested in the study of the Cauchy problem for the water waves system
in arbitrary dimension. Water waves are waves on the free surface of a fluid (think
of the interface between air and water for the oceans, lakes, canals and swimming
pools...). Here we consider an incompressible inviscid liquid, having unit density,
occupying a domain with a free surface, of the form

Ω = { (t, x, y) ∈ [0, T ]×Rd ×R : (x, y) ∈ Ω(t) },

where Ω(t) is a domain comprised between the free surface

Σt = {(x, y); y = η(t, x)}
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and the bottom Γ. More precisely, starting from a fixed connected domain O ⊂ Rd

containing a strip of positive length, we define
Ωh(t) :=

{
(x, y) ∈ Rd ×R : η(t, x)− h < y < η(t, x)

}
⊂ O, (1.1)

and we assume that the domain Ω(t) has the form
Ω(t) = {(x, y) ∈ O; y < η(t, x)},

and
Ωh ⊂ Ω(t) (1.2)

We will denote by Σ the free surface
Σ = {(t, x, y); y = η(t, x)},

and by Γ = ∂Ω \ Σ the bottom .

Remark 1.1. (i) Notice that no regularity assumption is made on the bottom.
(ii) Our method applies in the case where the bottom is time dependent (with

the additional assumption in this case that the bottom is Lipschitz).

Hereafter, d ≥ 1, t denotes the time variable and x and y denote the horizontal
and vertical spatial variables. Below we use the following notations

∇ = (∂xi)1≤i≤d, ∇x,y = (∇, ∂y), ∆ =
∑

1≤i≤d
∂2
xi
, ∆x,y = ∆ + ∂2

y .

We thus consider the following system:

∂tv + v · ∇x,yv +∇x,yP = −gey, in [0, T ]× Ω

∂tη =
√

1 + |∇η|2v · n, on [0, T ]× Σ
v · n |Γ= 0, P |Σ= 0,
div(v) = 0, curl(v) = 0

(1.3)

This system describes a flow whose eulerian velocity field v : Ω → Rd+1 solves the
incompressible Euler equation subject to the acceleration of gravity, −gey (g > 0),
while the free surface Σ is displaced by fluid particles. The vanishing of the normal
velocity on Γ is simply the usual "solid-wall" condition and the pressure P vanishes
on the free surface because we assume that there is no surface tension. Finally, the
fluid is assumed to be incompressible and irrotational.

Notice that the pressure can be recovered from the velocity via the equation and
by taking the divergence of (1.3), it satisfies

∆x,yP = −∇2
x,y · (v ⊗ v).

As the motion of the liquid is supposed to be irrotational, the velocity field is
therefore given by v = ∇x,yφ for some velocity potential satisfying

∆x,yφ = 0 in Ω, ∂nφ = 0 on Γ.
Using the Bernoulli integral of the dynamical equations to express the pressure, the
condition P = 0 on the free surface implies that

∂tη = ∂yφ−∇η · ∇φ on Σ,

∂tφ+ 1
2 |∇x,yφ|2 + gy = 0 on Σ,

∂nφ = 0 on Γ,

(1.4)
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where recall that ∇ = ∇x.
Introduce the so-called Taylor coefficient

a(t, x) = −(∂yP )(t, x, η(t, x)).

The stability of the waves is dictated by the Taylor sign condition, which is the
assumption that there exists a positive constant c such that

a(t, x) ≥ c > 0. (1.5)

This assumption is now classical and we refer to [13, 24, 42, 67, 68] for various
comments about this assumption. Here we only recall some basic facts. First of all,
it is known that this assumption is propagated by the equation, so that this is an
assumption about the initial data. Secondly, as proved by Wu, this assumption is
automatically satisfied in the infinite depth case (that is when Γ = ∅) or for flat
bottoms (when Γ = {y = −k}). There are two other cases where this assumption
is known to be satisfied. For instance under a smallness assumption. Indeed, if
∂tφ = O(ε2) and ∇x,yφ = O(ε) then directly from the definition of the pressure we
have P + gy = O(ε2). Secondly, it was proved by Lannes (see [42]) that the Taylor’s
assumption is satisfied under a smallness assumption on the curvature of the bottom
(provided that the bottom is at least C2). However, for general bottom we have to
make an assumption on the Taylor coefficient.

1.1. The Zakharov/Craig-Sulem-Sulem system
Following Craig, Sulem and Sulem [28], we reduce the analysis to a system on the
free surface Σ(t) = {y = η(t, x)}.

If ψ is defined by
ψ(t, x) = φ(t, x, η(t, x)),

then φ is the unique variational solution of

∆φ = 0 in Ω, φ|Σ = ψ, ∂nφ = 0 on Γ.

Define the Dirichlet-Neumann operator by

(G(η)ψ)(t, x) =
√

1 + |∇η|2 ∂nφ|y=η(t,x)

= (∂yφ)(t, x, η(t, x))−∇η(t, x) · (∇φ)(t, x, η(t, x)).

Now (η, ψ) solves (see [41, chapter 1])
∂tη −G(η)ψ = 0,

∂tψ + gη + 1
2 |∇ψ|

2 − 1
2

(
∇η · ∇ψ +G(η)ψ

)2

1 + |∇η|2 = 0.
(1.6)

1.2. Various unknowns
We shall work below with the horizontal and vertical traces of the velocity on the
free boundary, namely

B = (∂yφ)|y=η, V = (∇xφ)|y=η.
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These can be defined only in terms of η and ψ by means of the formula

B := ∇η · ∇ψ +G(η)ψ
1 + |∇η|2 , V := ∇ψ −B∇η. (1.7)

In turn, ∇xψ is expressed in terms of (V,B):
∇xψ = V +B∇xη

and consequently (1.6) can be viewed as an equation on (V,B).

1.3. Known results
Our goal is to prove the existence of classical solutions (η, v) defined on some time
interval [0, T ] such that there exist positive constants c and h such that conditions
(1.2) and (1.5) hold for 0 ≤ t ≤ T , assuming that these two conditions hold initially
for t = 0. In terms of regularity threshold, our results are optimal, as long as
dispersive effects are not taken into account.

Many results have been obtained on the Cauchy theory for the water-waves sys-
tem, starting from the pioneering works of Nalimov [51], Yoshihara [70], Craig [29]
(see also Hou, Teng and Zhang [36] and Beale, Hou and Lowengrub [14]). In the
framework of Sobolev spaces and without smallness assumptions on the data, the
well-posedness of the Cauchy problem was first proved by Beyer-Günther in [15] in
the case with surface tension (in any number of space dimensions) and by Wu for
the case without surface tension (see [67] for 2D water waves and [68] for the gen-
eral case d ≥ 1). Several extensions of their results have been obtained by different
methods. We refer to the survey by Bardos and Lannes [13], the book by Lannes [41]
and the survey paper of Craig and Wayne [31] for references and a short historical
survey of the background of these problems. Here, we only review results about
gravity water waves. For gravity-capillary waves, we refer the interested reader to
Ambrose-Masmoudi [8, 10, 9], Schneider-Wayne [54], Schweizer [55], Iguchi [38, 37],
Shatah-Zeng [57, 58], Coutand-Shkoller [27], Rousset-Tzvetkov [52], Christianson-
Hur-Staffilani [23] and also our previous papers [2, 3]. In [24], Christodoulou–Lindblad
proved a priori bounds in the case of nonvanishing vorticity in any number of space
dimensions. The estimates are given in terms of geometric quantities. Assuming
that an assumption similar to (1.5) is satisfied, they have shown that the Sobolev
norms remain bounded essentially as long as the second fundamental form of the
free surface is bounded, and the first-order derivatives of the velocity are bounded.
As pointed out in the review paper of Craig and Wayne [31], such geometric esti-
mates will be essential in the future progress of the study of singularity formation1 in
the fluid dynamics of free surface evolution. Based on the a priori estimates proved
in [24], the existence of C∞ solutions is proved in [46] together with an extension to
the compressible case in [45].

In view of Cauchy-Lipschitz theorem, the Lipschitz regularity threshold for the
velocity appears to be the natural assumption (as soon as no dispersion effects
are taken into account). Indeed, this is necessary for the “fluid particles” to be
well-defined. Our strategy is based on a direct analysis in Eulerian coordinates.

1At present, the only result about singularity formation is the recent breakthrough of Castro–
Córdoba–Fefferman–Gancedo–Gómez Serrano [26] who exhibited smooth initial data for the 2D
water wave equation for which smoothness of the interface breaks down in finite time (see also [25]).
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In this direction it is influenced by the important paper by Lannes [42]. To some
extent, our approach also contains the idea of using good vector fields. Thanks to the
introduction of a new simple formulation of the equations, this reduces to proving
good commutators estimated between a paraproduct and the convective derivative
∂t + V · ∇.

Here we shall use tools from singular integrals analysis. In this direction, we fol-
low the approach initiated by Craig–Schanz–Sulem [30] and further developped by
Lannes [42]and Iooss–Plotnikov [39]. More precisely, we use paradifferential calculus,
following Alazard-Métivier [1]. This approach is closely related to papers of Alin-
hac [4, 6] on rarefaction waves for hyperbolic systems. In particular, a key point in
our analysis is to work with the so-called good unknown of Alinhac (see [1, 65]).

In the Half space, the Dirichlet Neumann operator takes the form
G(η)Ψ = |Dx|Ψ,

and it is easy to see that linearizing the system (1.6) at η = 0,Ψ = 0, we obtain
∂tη = |Dx|Ψ, ∂tΨ = −gη,

and consequently the function
U = η + ig−1/2|Dx|1/2Ψ

satisfies the equation
∂tU = −ig1/2|Dx|1/2U. (1.8)

In view of the dispersive properties of the linearized system (1.8), one can infer
that solutions to whole water-waves system should enjoy similar properties. In [23],
Christianson, Hur, and Staffilani initiated the study of the dispersive properties of
the solutions of the water-wave system with surface tension and proved Strichartz-
type estimates, for smooth-enough initial data. In [3], we prove such semi-classical
Strichartz estimates (i.e. on time intervals tailored to the frequency), at the same
low level of regularity we were able to construct the solutions in [2]. The proof of
such estimates for dispersive equations with rough coefficients goes back to works
of Smith [59], Tataru [61, 62, 63], Bahouri–Chemin [11], Staffilani–Tataru [60], and
are also related to Burq–Gérard–Tvzetkov [20].

On the other hand, for smoother initial data, we proved that the solutions enjoy
the optimal Strichartz estimates (i.e, without loss of regularity compared to the
system linearized at the origin). Here our purpose is to go a little further and to take
benefit of these Strichartz-type estimates to improve the regularity thresholds for the
Cauchy theory. Notice finally that dispersive properties of the operator linearized at
the origin together with normal form transforms, were used recently by Wu [69, 66]
and Germain-Masmoudi-Shatah [32] to prove global existence results for for small
localized waves.

2. Main results

2.1. Classical Cauchy theory
As explained above, a natural question is to prove well posedness under assump-
tions (in Sobolev spaces) which only ensure that the initial velocity has Lipschitz
regularity (notice that in this problem, the notion of regularity has to be understood
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up to the free surface, as of course, the velocities field is analytic in the interior of
the domain). This is the purpose of our first result, which reads as follows (let us
recall that v is the velocities field in the interior of the domain, while V and B are
the travces of the horizontal and vertical components of this velocities field).

Theorem 1. Let d ≥ 1, s > 1 + d/2 and consider an initial data (η0, v0) such that

1. η0 ∈ Hs+ 1
2 (Rd), V0 ∈ Hs(Rd), B0 ∈ Hs(Rd),

2. there exists h > 0 such that condition (1.2) holds initially for t = 0,

3. there exists a positive constant c such that, for all x ∈ Rd, a0(x) ≥ c.

Then there exists T > 0 such that the Cauchy problem for (1.6) with initial data
(η0, ψ0) has a unique solution such that

(η, V,B) ∈ C0
(
[0, T ];Hs+ 1

2 (Rd)×Hs(Rd)×Hs(Rd)
)

such that

1. the condition (1.2) holds for 0 ≤ t ≤ T , with h replaced with h/2,

2. for all 0 ≤ t ≤ T and for all x ∈ Rd, a(t, x) ≥ c/2.

2.2. Strichartz result
We can in fact take benefit of the dispersive properties of the water-waves system
and improve the regularity thresholds just exhibited. Here for the sake of simplicity
we only state our result in dimension d = 2 (recall that d is the dimension of the
interface) without bottom (infinite depth) and we restrict our attention to a priori
estimates (i.e. are not interested here in uniqueness issues).

Theorem 2. Let d = 2, s > 1 + d/2− 1
12 and consider an initial data (η0, v0) such

that
η0 ∈ Hs+ 1

2 (Rd), V0 ∈ Hs(Rd), B0 ∈ Hs(Rd).
Then there exists T > 0 such that the Cauchy problem for (1.6) with initial data
(η0, v0) has a solution (η, v) such that

(η, V,B) ∈ C0
(
[0, T ];Hs+ 1

2 (Rd)×Hs(Rd)×Hs(Rd)
)

(notice that in infinite depth, the Taylor sign condition is always satisfied).

2.3. Three-dimensional waves in a non-rectangular canal
We give here an illustration of the analysis of low regularity solutions in a domain
with a rough boundary. We claim that the above analysis allows to prove the exis-
tence of 3D water gravity waves in a canal with vertical walls near the free surface.
The propagation of waves whose crests are orthogonal to the walls is one of the
main motivation for the analysis of 2D waves. It was historically at the heart of
the analysis of water waves. The study of the propagation of three-dimensional wa-
ter waves for the linearized equations goes back to Boussinesq (see [19]). However,
there are no study of the the general case where the waves can be reflected on the
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walls of the canals, except the analysis of 3D-periodic travelling waves which cor-
respond to the reflexion of a 2D-wave off a vertical wall (see Reeder-Shinbrot [53]
and Iooss-Plotnikov [39]).

More precisely, we consider a fluid domain which at time t is of the form
Ω(t) = {(x1, x2, y) ∈ (0, 1)×R ×R : b(x) < y < η(t, x)} ,

for some given function b. We do not make any regularity assumption on b; again, our
only assumption is that there exists a positive constant h such that η(t, x) ≥ b(x)+h.
We denote by Σ the free surface and by Γ the fixed boundary of the canal:

Σ(t) = {(x1, x2, y) ∈ (0, 1)×R ×R : y = η(t, x)},
and we set Γ = ∂Ω(t) \ Σ(t) (which does not depend on time).

Figure 2.1: A non rectangular canal with vertical walls near the free
surface.

Denote by n the normal to the boundary Γ and denote by ν the boundary to
the free surface Σ. We begin with the following (elementary but seemingly new)
observation: in the case of vertical walls, as long as the Taylor sign condition is
satisfied, for the system (1.3) to be well posed, it is necessary that at the points
where free surface and the boundary of the canal meet, the scalar product between
the two normals (to the free surface and to the boundary of the canal) vanishes
: ν · n = 0 on Σ ∩ Γ, which means that the free surface Σ necessarily makes a
right-angle with the rigid walls (see Figure 2.2).

Proposition 2.1. Let (η, φ) be a solution of System (1.4) such that the Taylor
coefficient a is continuous and positive. Then the angle between the free surface,
Σ(t) and the boundary of the canal Γ is a right angle:

∀t ∈ [0, T ],∀x ∈ Σ(t) ∩ Γ, n · ν(x) = 0.

Proof. Since ∇x,yn = 0 near the free surface, the boundary condition ∂nφ = v ·n = 0
implies that [∂tv+ (v ·∇x,y)v] ·n = 0 near the free surface. It follows from the Euler
equation that

∇x,yP · n = 0 near Γ.
On the other hand, by assumption, the pressure is constant on the free surface
and hence ∇x,yP is proportional to the normal to Σ, ν. Notice now that Taylor
sign condition reads ∂yP |Σ< 0 and concequently ∇x,yP |Σ 6= 0. This implies that
ν · n = 0 on Σ ∩ Γ. �

Remark 2.2. Notice that the calculation above uses crucially that on the free
surface the pressure P is constant. It does not apply in the presence of surface
tension. Notice also that we used that along the flow, the time derivative of the
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normal to the canal vanishes: this result is also specific to the case of a flat vertical
wall: it does not apply in the case of a curved wall.

Σ

Γ

ν

Figure 2.2: Two-dimensional section of the fluid domain, exhibiting
the right-angles at the interface Σ ∩ Γ

This suggests, following Boussinesq (see [19, page 37]) to perform a symmetriza-
tion process. Denote by (η, V ) the functions thus obtained by symmetry and peri-
odization (following the process which is illustrated on Figure 2.3). Of course, the
symmetry would yield in general a Lipschitz singularity. However, that the possible
singularities are weaker since

• the above physical observation about the right angles at the interface implies
that ∂x1η(t, 0, x2) = 0,

• the solid wall boundary condition means that similarly ∂x1ψ(t, 0, x2) = 0.

Figure 2.3: Two-dimensional section of the fluid domain after symme-
try and periodization.

Theorem 3. Let σ ∈ (3, 7/2) and consider two functions η0, ψ0 : (0, 1) × R → R
such that

1. η0 ∈ Hσ((0, 1)×R), ψ0 ∈ Hσ((0, 1)×R),

2. ∂x1η0(0, x2) = ∂x1η0(1, x2) = 0 for all x2 ∈ R,

3. ∂x1ψ0(0, x2) = ∂x1ψ0(1, x2) = 0 for all x2 ∈ R.

Then there exists a time T > 0 and two functions η, ψ : [0, T ]×R2 → R such that

(a) (η, ψ) is a classical solution of (1.6);

(b) η(t, x1, x2) and ψ(t, x1, x2) are 2-periodic in x1;
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(c) with s = σ − 1 we have

η ∈ C0([0, T ];Hs+ 1
2 (T×R), ψ ∈ C0([0, T ];Hs(T×R)),

(d) for all (t, x2) ∈ [0, T ]×R, we have
∂x1ψ(t, 0, x2) = ∂x1ψ(t, 1, x2) = 0;

(e) for all (x1, x2) ∈ R2, we have
η(0, x1, x2) = η0(x1, x2), ψ(0, x1, x2) = ψ0(x1, x2).

Proof. The proof is elementary : it consists in extending the initial data η0, ψ0, which
are defined on (0, 1) × R to functions (η0, ψ0) defined on the whole space R2. To
do so, we proceed by a symmetry and a periodization. Then we apply our Cauchy
theorem to these extended initial data. The key point is that, since we are able to
prove the uniqueness for low regularity solutions, we can prove that the symmetry
is propagated, which implies that the solutions satisfy the same symmetry as the
initial data do. This implies that η, ψ are even in x1 which implies that conclusion
(d) holds.

There are various remarks that have to be made to see that one can apply the
previous Cauchy theory.

1. First and foremost, we have to check that the symmetry/periodization process
preserves the Sobolev norms. Of course, the symmetry would yield in general
a Lipschitz singularity. However, the above physical observation about the
right angles at the interface implies that ∂x1η0(0, x2) = 0, and hence that
the possible singularities are weaker. More precisely, given any function η0 ∈
Hµ((0, 1)×R), denote by η0 the periodic function in x1, with period 2, such
that

η0(x1, x2) = η0(x1, x2) for x1 ∈ [0, 1),
η0(x1, x2) = η0(−x1, x2) for x1 ∈ (−1, 0].

The condition ∂x1η0(0, x2) = 0 implies that
η0 ∈ Hµ((0, 1)x1 × Rx2)⇒ η0 ∈ H

µ((−1, 1)x1 × Rx2)

as long as µ < 7/2. Here the assumptions coming from Theorem 1 are η0 ∈
Hs+ 1

2 , s > 2. So that for 2 < s < 3, we have η0 ∈ H
s+ 1

2 (T × R). A similar
argument can be done for the velocities field.

2. To handle non rectangular canal, we have to work with rough bottoms. Here,
even though initially the bottom is smooth, after symmetry/periodization this
is no more the case, as Lipshitz or even cusps singularities can occur.

3. We cannot immediately apply Theorem 1, as of course, the only function in
the space Hs(R2

x1,x2) which is periodic in the x1 variable is the null function.
However, an inspection of the proof of Theorem 1 shows that the result applies
when the spatial variable x belongs to T×R instead of R2. Then we obtain
the existence of a classical solution (η, ψ) to the water-wave system such that,
initially η|t=0,x∈(0,1)×R = η0 and V |t=0 = V0.
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4. One has to check that the symmetries are propagated, which ensures that the
"solid wall" condition is satisfied. By the uniqueness part of the theorem, and
the fact that the equations are invariant under the symmetrization process,
we see that in (−1, 1)x1 ×Rx2 , since the initial data η0, ψ0 are even in the x1
variable, the solution (η, ψ) satisfies the same symmetry property. In partic-
ular, we easily check that, by restricting this solution to (0, 1)×R, we obtain
a solution of the water wave equation in the above canal (i.e. the condition
v · n |Γ= 0 holds).

�

2.4. Swimming pools
The same analysis can be performed if instead of considering a canal (i.e. a free
surface which is a graph over an infinite band (0, 1)×R, on considers a swimming
pool (i.e. a free surface which is a graph over (0, 1)× (a, b).

3. Paradifferential calculus: a brief overview

Let us review notations and results about Bony’s paradifferential calculus. We refer
to [18, 35, 48, 50, 64] for the general theory. Here we follow the presentation by
Métivier in [48] (which gives sharp operator norm estimates in terms of the semi-
norms of the symbols).

3.1. Paradifferential operators
For k ∈ N we denote byW k,∞(Rd) the usual Sobolev spaces. For ρ ∈]0, 1[ we denote
byW ρ,∞(Rd) the space of bounded functions which are uniformly Hölder continuous
with exponent ρ.
Definition 3.1. Given ρ ∈ [0, 1] and m ∈ R, Γmρ (Rd) denotes the space of locally
bounded functions a(x, ξ) on Rd× (Rd \0), which are C∞ with respect to ξ for ξ 6= 0
and such that, for all α ∈ Nd and all ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) belongs to
W ρ,∞(Rd) and there exists a constant Cα such that,

∀ |ξ| ≥ 1
2 ,

∥∥∥∂αξ a(·, ξ)
∥∥∥
W ρ,∞

≤ Cα(1 + |ξ|)m−|α|. (3.1)

Then Γ̇mρ (Rd) denotes the subspace of Γmρ (Rd) which consists of symbols a(x, ξ)
which are homogeneous of degree m with respect to ξ.

Given a symbol a, we define the paradifferential operator Ta by

T̂au(ξ) = (2π)−d
∫
χ(ξ − η, η)â(ξ − η, η)ψ(η)û(η) dη, (3.2)

where â(θ, ξ) =
∫
e−ix·θa(x, ξ) dx is the Fourier transform of a with respect to the

first variable; χ and ψ are two fixed C∞ functions such that:
ψ(η) = 0 for |η| ≤ 1, ψ(η) = 1 for |η| ≥ 2, (3.3)

and χ(θ, η) is homogeneous of degree 0 and satisfies, for 0 < ε1 < ε2 small enough,
χ(θ, η) = 1 if |θ| ≤ ε1 |η| , χ(θ, η) = 0 if |θ| ≥ ε2 |η| .
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3.2. Symbolic calculus
We shall use quantitative results from [48] about operator norms estimates in sym-
bolic calculus. To do so, introduce the following semi-norms.

Definition 3.2. For m ∈ R, ρ ∈ [0, 1] and a ∈ Γmρ (Rd), we set

Mm
ρ (a) = sup

|α|≤ d2 +1+ρ
sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
W ρ,∞(Rd)

. (3.4)

The main features of symbolic calculus for paradifferential operators are given by
the following theorem.

Definition 3.3. Let m ∈ R. An operator T is said of order m if, for all µ ∈ R, it
is bounded from Hµ to Hµ−m.

Theorem 4. Let m ∈ R and ρ ∈ [0, 1].
(i) If a ∈ Γm0 (Rd), then Ta is of order m. Moreover, for all µ ∈ R there exists a

constant K such that
‖Ta‖Hµ→Hµ−m ≤ KMm

0 (a). (3.5)
(ii) If a ∈ Γmρ (Rd), b ∈ Γm′ρ (Rd) then TaTb − Tab is of order m + m′ − ρ. Moreover,
for all µ ∈ R there exists a constant K such that

‖TaTb − Tab‖Hµ→Hµ−m−m′+ρ ≤ KMm
ρ (a)Mm′

0 (b) +KMm
0 (a)Mm′

ρ (b). (3.6)
(iii) Let a ∈ Γmρ (Rd). Denote by (Ta)∗ the adjoint operator of Ta and by a the
complex-conjugated of a. Then (Ta)∗ − Ta is of order m − ρ. Moreover, for all µ
there exists a constant K such that

‖(Ta)∗ − Ta‖Hµ→Hµ−m+ρ ≤ KMm
ρ (a). (3.7)

Remark 3.4. With regards to symbolic composition (see the second point in the
theorem above), a difference with our previous work [2] is that we do not need here
to take into account sub-principal symbols. Therefore it is enough for our purposes
to consider the simplest case where symbolic composition reduces to the product of
symbols. Another difference is that we shall need sharp quantitative bounds which
are linear with respect to Mm

ρ (a) and Mm
ρ (b) instead of being quadratic (for the

proof of (3.6), we refer the reader to [48, Thm 6.1.4]).

Remark 3.5. We also have analogous results in Hölder spaces. For instance, for all
m,µ ≥ 0 such that µ 6∈ N and µ+m 6∈ N, there exists a constant K such that

‖Ta‖Wµ+m,∞→Wµ,∞ ≤ KM0
0 (a). (3.8)

3.3. Paraproducts and product rules
If a = a(x) is a function of x only, the paradifferential operator Ta is called a para-
product. A key feature of paraproducts is that one can replace nonlinear expressions
by paradifferential expressions, to the price of error terms which are smoother than
the main terms. Also, one can define paraproducts Ta for rough functions a which
do not belong to L∞ but merely Hd/2−m(Rd) with m > 0.

Definition 3.6. Given two functions a, b defined on Rd we define the remainder
R(a, u) = au− Tau− Tua.
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Definition 3.7. Consider a dyadic decomposition of the identity: I = ∆−1 +∑∞
q=0 ∆q. If s is any real number, we define the Zygmund class Cs

∗(Rd) as the space
of tempered distributions u such that

‖u‖Cs
∗

:= sup
q

2qs ‖∆qu‖L∞ < +∞.

Remark 3.8. It is known that Cs
∗ = W s,∞ if s > 0 is not an integer. Below, to

simplify notations, we drop the star and simply denote by Cs the Zygmund spaces.
We record here various estimates about paraproducts (see chapter 2 in [12] or [22]).

Theorem 5. (i) Let α, β ∈ R. If α + β > 0 then
‖R(a, u)‖

Hα+β− d2 (Rd)
≤ K ‖a‖Hα(Rd) ‖u‖Hβ(Rd) , (3.9)

‖R(a, u)‖Cα+β(Rd) ≤ K ‖a‖Cα(Rd) ‖u‖Cβ(Rd) , (3.10)
‖R(a, u)‖Hα+β(Rd) ≤ K ‖a‖Cα(Rd) ‖u‖Hβ(Rd) . (3.11)

(ii) Let m > 0 and s ∈ R. Then
‖Tau‖Hs−m ≤ K ‖a‖C−m ‖u‖Hs , (3.12)
‖Tau‖Cs−m ≤ K ‖a‖C−m ‖u‖Cs . (3.13)

(iii) Let s0, s1, s2 be such that s0 ≤ s2 and s0 < s1 + s2 − d
2 , then

‖Tau‖Hs0 ≤ K ‖a‖Hs1 ‖u‖Hs2 . (3.14)

4. The main steps in the proof

4.1. The main difficulties
Clearly, the main difficulty in our analysis is that we consider low regularity solu-
tions. As we shall see, this raises new interesting questions which would be easily
solved by considering s > 3/2 + d/2. Let us give three examples of problems which
we need to solve.

• Some problems come from the fact that many coefficients belong to the
Sobolev spaces Hs−1/2(Rd). For s > 3/2 + d/2, these terms belong to the
space of C1 functions. As a result, the commutator between these terms and
a differential operator of order m can be handled as an operator of order
m − 1. However, for s > 1 + d/2 these terms only belong to C1/2 and hence
the commutators can only be handled as operators of order m− 1/2.

• If V ∈ Hs then ∇V ∈ Hs−1. However, Hs−1 is not an algebra.

• We use in an essential way the fact that ∂t + V · ∇ has the same weight as
|Dx|1/2. Indeed, we have many coefficients which belong only to C1/2. Then
the derivatives with respect to time, or with respect to the vector field V · ∇
only belong to C−1/2, which lead to loss of derivative. Instead we shall see
that the convective derivative of these coefficients belongs to L∞.

• In view of the Strichartz result (Theorem 2, we cannot assume that s > 1+d/2.
Instead we only assume that s > a+ d/2 for some a < 1 and we assume an a
priori estimate of the Lipschitz norm (which comes from Strichartz estimates).
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4.2. The strategy
4.2.1. Paralinearisation of the Dirichlet Neumann operator

Introduce
U = V + T∇xηB.

A crucial step in the proof is the following

Proposition 4.1. Assume that (η, V,B) are smooth solutions of the system (1.6).
Then There exists a non decreasing function C such that

(∂t + TV · ∇)U + Taζ = f1,

(∂t + TV · ∇)ζ = TλU + f2,

where, for each time t ∈ [0, T ],

‖(f1(t), f2(t))‖
Hs×Hs− 1

2

≤ C
(
‖η(t)‖

Hs+ 1
2
, ‖(V,B)(t)‖Hs

) {
1 + ‖η(t)‖

C
3
2

+ ‖(V,B)(t)‖Cr
}
.

Remark 4.2. The new unknown U is related to what is called the good-unknown of
Alinhac in [1, 2]. It originates in the works by Alinhac [4, 6]. The proof of this result
requires a careful analysis of the Dirichlet-Neumann operator (see Section 4.3)

4.2.2. A priori estimates

To prove the well-posedness, we follow a standard approach. With regards to the
existence, we obtain solutions to the system (1.6) as limits of smooth solutions to
approximate systems. This approach has been detailed in [2]. One has to notice that
this step is actually much easier without surface tension. One reason is that with
surface tension, we require some mollifiers with various properties (good estimates
for commutators with the principal part of the operator). Here it is possible to use the
simplest ones (which are convolutions operators) since the reduced paradifferential
system involves only operator of order less than equal to 1.

The key point is to prove that solutions of the approximate system are uniformly
bounded with respect to ε. To do so, as in [2], it is enough to prove a priori estimates.

4.2.3. Convergence

Once it is granted that approximate solutions exist and are uniformly bounded on a
time interval independent of ε, one has to prove that they converge to a solution of
the original system. To do this, one cannot apply standard compactness results since
the Dirichlet-Neumann operator is not a local operator. To overcome this difficulty
we shall prove as in [2, 42] that

1. The solutions (ηε, ψε) form a Cauchy sequence in an appropriate bigger space
(by an estimate of the difference of two solutions (ηε, ψε) and (ηε′ , ψε′)).

2. (η, ψ) is a solution to (1.6).

5. (η, ψ) ∈ C0([0, T ];Hs+ 1
2 (Rd)×Hs(Rd)).
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4.2.4. Strichartz estimates

The proof of Theorem 2 relies also on Proposition 4.1. We need however to combine
additional reductions and a priori estimates with a bootstrap argument. The first
step is classical in the context of quasi-linear wave equations (see the works by
Lebeau [43], Smith [59], Bahouri-Chemin [11] and Tataru [61]). It consists, after
a dyadic decomposition at frequency h−1, in regularizing the coefficients at scale
h−δ, δ ∈ (0, 1). Then, we need to straighten the vector field ∂t + V∇x by means of a
para-change of variables (see [4]). Finally, we are able to write a parametrix for the
reduced system, which allows to prove Strichartz estimates using the usual strategy
(TT ∗ method) on a small time interval |t| ≤ hδ. To conclude, it suffices to glue the
estimates.

4.3. Paralinearization of the Dirichlet-Neumann operator
To simplify the reading, let us consider the case of infinite depth. It follows from
a variational analysis that, given a function f : Rd → R, one can define a unique
variational solution φ of

∆x,yφ = 0 in Ω, φ|y=η(x) = f. (4.1)
Then ∫

Ω
|∇x,yφ|2 dxdy ≤ K ‖f‖2

H1/2(Rd) , (4.2)

for some constant K depending only on the Lipschitz norm of η. See [41] for the case
without bottom. For the case with a general bottom, this follows from the analysis
in [2].

Then we define the Dirichlet-Neumann operator, denoted by G(η), by

G(η)f =
√

1 + |∇η|2 ∂nφ

y=η(x)

=
[
∂yφ−∇η · ∇φ

] 
y=η(x)

.

It is known that this operator is well defined under general assumptions (see [41]
or [30]). The fact that this operator is well-defined under general assumption on
the bottom was proved in our previous paper [2]. Using the Fourier transform, it is
easily seen that G(0) is the Fourier multiplier |Dx|. More generally, if η is a smooth
function, then it is known since Calderón that G(η) is a pseudo-differential operator
whose principal symbol is given by

λ(x, ξ) :=
√

(1 + |∇η(x)|2) |ξ|2 − (∇η(x) · ξ)2.

Notice that λ is well-defined for any C1 function η. The main result of this section
allows to compare G(η) to the para-differential operator Tλ when η has limited
regularity. Namely we want to estimate the operator

R(η) = G(η)− Tλ.
It follows from the analysis in [1, 2] that we have the following estimates.

Proposition 4.3. If s > 2 + d/2 then
‖R(η)f‖Hs ≤ C (‖η‖Hs+1) ‖f‖Hs , (4.3)

‖R(η)f‖
Hs− 1

2
≤ C

(
‖η‖

Hs+ 1
2

)
‖f‖Hs . (4.4)
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Remark 4.4. The first bound is related to the fact that R(η) is expected to be an
operator of order 0, which means that R(η)f and f are expected to have the same
regularity, at least when η is much smoother than f . The main interest of the first
bound is to show that R(η)f and f have the same regularity precisely when f is
only one derivative less regular than η. Now, if η is only one-half derivative smoother
than f , as assumed in (4.4), then the regularity of R(η)f is dictated by the regularity
of η instead of the regularity of f (as proved by the formulas given in [1, 2]).

Here we need a sharp result, where one only assumes that s > 3/4 + d/2, instead
of s > 2 + d/2, together with an a priori bound in Hölder spaces Cr (r > 1, r 6∈ N).
This is tailored to the Strichartz norm.

Theorem 6. Let d ≥ 1 and consider s, r ∈ R such that

s >
3
4 + d

2 , r > 1.

Consider η ∈ Hs+ 1
2 (Rd) ∩ C 3

2 (Rd) and f ∈ Hs(Rd) ∩ Cr(Rd), then

R(η)f ∈ Hs− 1
2 (Rd).

Moreover
‖R(η)f‖

Hs− 1
2
≤ C

(
‖η‖

Hs+ 1
2
, ‖f‖Hs

) {
1 + ‖η‖

C
3
2

+ ‖f‖Cr
}
, (4.5)

for some continuous function C : (R+)2 → R+ depending only on s and r.

Remark 4.5. The main interest of this result is that the right-hand side of (4.5) is
linear with respect to the "highest" norms. To compare, say, the norms ‖·‖

Hs+ 1
2
and

‖·‖C3/2 , the heuristic argument is that for s < 1 + d/2,∥∥∥∥u(xε
)∥∥∥∥

C
3
2
∼
(1
ε

)3/2
>>

(1
ε

)s+ 1
2−

d
2
∼
∥∥∥∥u(xε

)∥∥∥∥
Hs+ 1

2
.

Another issue in the proof is to deal with rough data. For example it would have
been much easier to prove that for s ≥ s0 with s0 large enough we have the following
tame estimate

‖R(η)f‖
Hs− 1

2
≤ C

(
‖η‖

Hs0+ 1
2
, ‖f‖Hs0

) {
1 + ‖η‖

Hs+ 1
2

+ ‖f‖Hs

}
. (4.6)

Notice that (4.6) would be useless for the purpose of improving the Cauchy theory
by means of Strichartz estimates.
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