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Description of the course

A classical subject in themathematical theory of hydrodynamics consists in studying
the evolution of the free surface separating the air from a perfect incompressible
fluid. We will examine this question for two important sets of equations: the water-
wave equations and the Hele-Shaw equations, including the Muskat problem. They
are of a different nature, dispersive or parabolic, but we will see that they can be
studied by related tools.

This course is intended for graduate students with a general interest in analysis
and no prerequisites for advanced theory are required. A second and major part
of the courses will consist of short self-contained introductions to the following
topics: paradifferential calculus, study of the fractional Laplacian and Morawetz
and Lions multiplier methods. I will give a detailed analysis of the Cauchy problem
for the water-wave, Hele-Shaw and Muskat equations, and discuss some qualitative
properties of their solutions.

Grading: 2-3 homeworks.

No required text. Lecture notes will be posted at the url

http://talazard.perso.math.cnrs.fr/CL.pdf

These lecture notes will be included in a book in preparation with Quoc-Hung
Nguyen. It is based on several recent results with him as well as with Pietro Baldi,
Didier Bresch, Nicolas Burq, Jean-Marc Delort, Daniel Han-Kwan, Mihaela Ifrim,
Omar Lazar, Guy Métivier, Nicolas Meunier, Didier Smets, Daniel Tataru and
Claude Zuily.
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http://talazard.perso.math.cnrs.fr/CL.pdf
https://nguyenquochung1241.wixsite.com/qhung
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Part I

The equations
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Chapter 1

The water-wave equations

The purpose of this chapter is to introduce the free surface Euler equation. We will
begin by briefly explaining the meaning of these equations. I will also introduce the
Dirichlet-to-Neumann operator and state some results about the Cauchy theory.

1.1 The equations

A heavy fluid mass, originally at rest, and of indefinite depth, has been
set in motion by the effect of a given cause. One asks, after a given time,
the shape of the external surface of the fluid and the velocity of each of
the molecules located on the same surface.

Figure 1.1: Question by the French Academy of Sciences in 1813.

Let us consider an ocean of infinite depth primarily at rest. For the sake of simplicity,
let us suppose that this ocean is unbounded laterally as well as in depth. To visualize
this, let us assimilate the space domain to R3, which is assumed to be divided into
two distinct parts: the upper half-space occupied by air and the lower half-space
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occupied by water. Let us imagine that the wind is blowing over this ocean. Under
certain conditions, this wind will generate waves, called wind waves. It is observed
that they can propagate over immense distances until they reach the shore. We are
going to be interested in the propagation of these waves far from the wind zone and
far from the shore. We then speak of swell or gravity waves, because the waves
propagate thanks to the restoring force of gravity.

To describe a wave, we need to introduce some notations. In the following, the fluid
will always be referred to the rectangular coordinates of G1, G2, H, the plane ($G1G2)
being horizontal, and coinciding with the surface of the fluid when in equilibrium,
the axis ($H) being directed upwards. We write G = (G1, G2) and assume that the
gravity is oriented along the axis ($H).

G1

G2

H
6

We introduce also the elevation of the surface of the sea, denoted by [ and the
velocity field of the fluid, denoted by D. The unknown [ depends on the time C and
the spatial variable G = (G1, G2) ∈ R2. At a given time C, the graph of the function [,
denoted by Σ(C), is what we call the free surface. The domain occupied by water at

4



H

G1

G2

Figure 1.2: 3D and 2D waves

time C is the half-space, denoted by Ω(C), located underneath the free surface1:

Σ(C) =
{
(G, H) ∈ R2 × R : H = [(C, G)

}
,

Ω(C) =
{
(G, H) ∈ R2 × R : H < [(C, G)

}
.

In the following we will use the following notations.

Notation 1.1.1. 1. Given a function 5 = 5 (G, H) and a function ℎ = ℎ(G), we
use 5 |H=ℎ as a short notation for the function G ↦→ 5 (G, ℎ(G)).

2. We set

∇ = (mG1 , mG2), ∇G,H = (∇, mH), Δ = m2
G1 + m

2
G2 , ΔG,H = Δ + m2

H .

Let us insist on the fact that the operators ∇ and Δ contain only derivatives
with respect to the horizontal variable G.

3. Given a function 5 = 5 (C, G, H) and a time C, we have∬
Ω(C)

5 (C, G, H) dH dG =
∫
R2

( ∫ [(C,G)

−∞
5 (C, G, H) dH

)
dG.

1For the sake of simplicity, we assumed that the free surface Σ(C) is a graph, the domain Ω(C) is
bottomless and thatΩ has no lateral boundary (G ∈ R2). We refer to the review paper by Lannes [299]
for the general case.
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1.1.1 A word of caution

In this chapter we perform only formal computations and consider smooth enough
functions. This is intended to mean that the functions are sufficiently regular, and
decay sufficiently fast at spatial infinity, so that all the computations are justified.

In this direction, introduce the space

�∞(R3) =
{
D ∈ �∞(R3) ; mUG D ∈ !2(R3) for any U ∈ N3

}
.

1.1.2 The incompressible Euler equations

The fluid we will study will be assumed to be subjected to the force of gravity
and/or surface tension. Moreover, we assume that the eulerian velocity field D =
(D1, D2, D3) : Ω → R3 is solution to the incompressible Euler equations of fluid
mechanics:

(1.1.1)



mD1
mC
+ D1

mD1
mG1
+ D2

mD1
mG2
+ D3

mD1
mH

= − m%
mG1

,

mD2
mC
+ D1

mD2
mG1
+ D2

mD2
mG2
+ D3

mD2
mH

= − m%
mG2

,

mD3
mC
+ D1

mD3
mG1
+ D2

mD3
mG2
+ D3

mD3
mH

= −6 − m%
mH
,

mD1
mG1
+ mD2
mG2
+ mD3
mH

= 0,

where 6 > 0 is the acceleration of gravity and % : Ω → R is the pressure. This is
better formulated under the form

(1.1.2)

mD

mC
+ (D · ∇G,H)D + ∇G,H (% + 6H) = 0,

divG,H D = 0,

where · is the scalar product in R3, so that D · ∇G,H = D1mG1 + D2mG2 + D3mH.

1.1.3 Boundary conditions on the free surface

We need two boundary conditions on the free surface. The first one corresponds to a
balance of forces: it states that the pressure jump across the surface which separates
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the fluid from the air is proportional to the mean curvature of the interface. If in
addition we assume that the air pressure above the fluid is constant (and then this
constant can be chosen to be 0 without loss of generality) this results in the condition

(1.1.3) % |H=[ = _^([) ; ^([) = − div
(

∇[√
1 + |∇[ |2

)
,

where _ ∈ [0, 1] is a coefficient that measures the importance of surface tension.

The second boundary condition has to dowith the normal velocity of the free surface.
To introduce it, we need to introduce the outward pointing unit normal = to Ω. At a
point - = (G, [(C, G)) of Σ(C), it is given by

=(-) = 1√
1 + |∇[(C, G) |2

(
−∇[(C, G)

1

)
.

The dynamics of the free surface Σ(C) = {H = [(C, G)} is coupled to that of the fluid
through the following kinematic boundary condition:

(1.1.4)
m[

mC
=

√
1 + |∇[ |2* · = where * = D |H=[ .

This simplifies to
m[

mC
+*1mG1[ +*2mG2[ = *3.

Let us make two elementary observations about this equation.

Definition 1.1.2. A fluid particle is a curve R 3 C ↦→ <(C) ∈ R3 solution to
¤<(C) = d

dC<(C) = D(C, <(C)).

Proposition 1.1.3. Any fluid particle which is on the free surface of the fluid at the
initial time will remain on the free surface for any further time.

Proof. Consider a fluid particle <(C) = (G1(C), G2(C), H(C)) and introduce the func-
tion \ (C) = H(C) − [(C, G(C)). Then \ vanishes at C = 0 by assumption. Moreover,
using (1.1.4),

d
dC
\ = ¤H(C) − (mC[) (C, <(C)) − ¤G1(C) (mG1[) (C, <(C)) − ¤G2(C) (mG2[) (C, <(C))

=
(
*3 −*1mG1[ −*2mG2[ − mC[

) (G,H)=<(C) = 0,

and the result follows. �
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The following lemma allows in many situations to compute the evolution of global
quantities.

Lemma 1.1.4. Consider two regular functions2 ([, D) satisfying (1.1.4). Then for
any regular function 5 = 5 (C, G, H), one has

d
dC

∬
Ω(C)

5 (C, G, H) dH dG =
∬
Ω(C)
(mC + D · ∇G,H) 5 dH dG.

Proof. Write

d
dC

∬
Ω(C)

5 (C, G, H) dH dG =
d
dC

∫
R2

( ∫ [(C,G)

−∞
5 (C, G, H) dH

)
dG

=

∬
Ω(C)

mC 5 (C, G, H) dH dG +
∫
R2
(mC[) 5 (C, G, [) dG

and then use (1.1.4) and Stokes’ theorem3 to verify that∫
R2
(mC[) 5 (C, G, [) dG =

∫
R2
(* · =) 5 (C, G, [)

√
1 + |∇[ |2 dG

=

∫
mΩ(C)

= · ( 5 D) df =
∬
Ω(C)

divG,H ( 5 D) dH dG,

where df =
√

1 + |∇[ |2 dG. Since divG,H D = 0, this implies that∫
R2
(mC[) 5 (C, G, [) dG =

∬
Ω(C)

D · ∇G,H 5 dH dG,

which concludes the proof. �

2See the warning in §1.1.1.
3Let us recall a fomulation of Stokes’ theorem.

Definition 1.1.5. We say that a domain � ⊂ R3 is �1 if for each point < belonging to the boundary
m� there is a cartesian coordinate system, a radius A > 0 and a �1 function Z : R3 → R with
compact support such that

� ∩ �(<, A) = {(G, H) ∈ R3 × R ; Z (G) < H} ∩ �(<, A).

Theorem 1.1.6. Suppose that � is a bounded �1 domain and consider a function D ∈ �1 (�). Then∫
�

div D dG =
∫
m�

= · D df,

where = is the outward pointing unit normal.

We can apply this result in the unbounded domain Ω(C) provided that the functions at stake decay
sufficiently at spatial infinity to justify a standard truncation argument.
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1.1.4 Conserved quantities

Consider a solution ([, D) of the free surface Euler equations. At a given time C, we
define its kinetic energy �: (C) and its potential energy �? (C) by

�: (C) =
1
2

∬
Ω(C)
|D(C, G, H) |2 dH dG ( |·| denotes the Euclidean norm on R3)

�? (C) =
6

2

∫
R2
[(C, G)2 dG + _

∫
R3

(√
1 + |∇[ |2 − 1)

)
dG.

The total energy is then by definition the function � = �: + �?.

Proposition 1.1.7. For any regular solution, there holds
d
dC
� = 0.

Proof. It follows from Lemma 1.1.4 that

d
dC
�: =

∬
Ω(C)

1
2
(mC + D · ∇G,H) |D |2 dH dG.

Now observe that
1
2
(mC + D · ∇G,H) |D |2 = D · (mCD + (D · ∇G,H)D) (Leibniz rule)

= −D · ∇G,H (% + 6H) (by (1.1.2))
= − divG,H ((% + 6H)D) (since divG,H D = 0).

Consequently, Stokes’ theorem implies that

d
dC
�: = −

∬
Ω(C)

divG,H ((% + 6H)D) dH dG = −
∫
mΩ(C)
(% + 6H)D · = df.

Now, by assumption on the pressure (see (1.1.3)), on the free surface mΩ(C) we
have % + 6H = 6[ + _^. Also the kinematic boundary condition (1.1.4) implies that
D · = df = mC[ dG (since df =

√
1 + |∇[ |2 dG). It follows that

d
dC
�: = −

∫
R2
(6[ + _^([))mC[ dG = − d

dC
�? .

The identity is proven. �

Exercise 1.1.8. Write D = (D1, D2, D3), and introduce for 9 ∈ {1, 2} the momentum

M 9 =

∬
Ω(C)

D 9 dH dG

Prove that they are also conserved quantity (by formal computations).
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1.1.5 Wave propagation

Another observation is in order. In the introduction of an article very famous [379]
where he describes his discovery of the solitary wave, J. Scott Russell explains why
it is fundamental to understand that this is a wave propagation problem. One of his
arguments is

Figure 1.3: From Russell [379]

In other words: we can see that there is energy transfer without mass transfer, which
is a circumstance of all wave phenomena.

Let us illustrate Russell’s argument with a figure which represents the movement of
a floating object (red dot) at successive times at the passage of a wave on the surface
of the water moving to the right (naively represented by the graph of the function
H = cos(G − C)):

C = 0
1<B−1 : H = cos(G − C)

C = c/2

C = c

C = 3c/2

C = 2c

Figure 1.4: Russell’s argument
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1.2 Zakharov equations

1.2.1 Velocity potential

Figure 1.5: From Zakharov’ first paper [453]

In the sequel, we will always assume that the fluid was initially irrotational and
furthermore has been set in motion by the action of conservative forces. This
implies that the flow will remain irrotational for all time, that is

curlG,H D = ∇G,H ∧ D = 0.

Since the domain is simply connected and that the fluid is incompressible, there is
a function q defined on Ω with real values such that

(1.2.1) D = ∇G,Hq ; ΔG,Hq = 0 in Ω.

The function q is called the velocity potential. The equation ΔG,Hq = 0 means that
q is an harmonic function, which is a crucial property.

In view of (1.1.2), we see that up to translating q by a factor that depends only on
time, q satisfies the following equation in Ω,

(1.2.2)
mq

mC
+ 1

2
��∇G,Hq��2 + % + 6H = 0.

This equation is called the Bernoulli’s equation. When D = ∇G,Hq, the kinematic
boundary condition (1.1.4) can be written under the form

m[

mC
=

[mq
mH
− ∇[ · ∇q

]H=[ .
11



1.2.2 The Dirichlet-to-Neumann operator

Rather than studying the system in ([, q), Zakharov ([453, 454]) suggests working
with the unknown ([, k) where

k(C, G) = q(C, G, [(C, G))

is the trace of q at the free surface Σ. The observation is that one can then subse-
quently deduct the properties of q and D given that the function q is harmonic in Ω
(cf. (1.2.1)). An interest of this notation is that now the problem only depends on
two unknowns which are functions of time C and G ∈ R2.

To state the equations that govern the propagation of ([, k), we need to introduce the
Dirichlet–Neumann operator. This operator intervenes in many problems in analysis
(harmonic analysis, inverse problem, spectral theory...). It plays a central role in
the study of the water-waves problem since the work of Craig4, C. Sulem [171].
By definition, this is the operator that associates to a function 5 , defined on the
boundary of an open set Ω, the normal derivative of its harmonic extension. Here,
it is more convenient to introduce a coefficient in the definition.

Definition 1.2.1. 8) Consider two smooth functions [, k defined on R2 with real
values. Introduce the domain Ω := { (G, H) ∈ R2 × R ; H < [(G) } and denote by q
the harmonic extension of k in Ω, so that q = q(G, H) satisfies

(1.2.3)
ΔG,Hq = 0 in Ω,

q(G, [(G)) = k(G), ∇G,Hq(G, H) → 0 when H → −∞.

Then the Dirichlet-to-Neumann operator, denoted by � ([), is defined by

� ([)k(G) =
√

1 + |∇[ |2 m=q|H=[(G) ,

where m= is the normal derivative: m= = = · ∇G,H.

88) We also define the operators

�([)k = (mHq) |H=[(G) ,
+ ([)k = (∇Gq) |H=[(G) .

Remark 1.2.2. 8) We will always use � and + as compact notations for �([)k and
+ ([)k.

4See the memorial tribute here.

12

https://www.ams.org/journals/notices/202004/rnoti-p520.pdf


88) To clarify the notations, note that

(1.2.4)

√
1 + |∇[ |2 m=qH=[(G) = mHq − ∇[ · ∇qH=[(G)

= (mHq) (G, [(G)) − ∇[(G) · (∇q) (G, [(G)).

888)If [ andk belong to�∞(R3), then� ([)k is well-defined and belongs to�∞(R3).
We shall see later on that one can consider functions with limited regularity.

A important observation is that the traces of the derivatives of an harmonic function
satisfy several identities. Recall that � and + as compact notations for �([)k and
+ ([)k. We will make extensive use of the following

Lemma 1.2.3. For any smooth functions, there holds

� =
� ([)k + ∇[ · ∇k

1 + |∇[ |2
,(1.2.5)

+ = ∇k − �∇[,(1.2.6)

� ([)� = − div+.(1.2.7)

Proof. 8) The chain rule implies that

∇k = ∇(q(G, [(G))) = (∇q + (mHq)∇[) |H=[ = + + �∇[

which implies that + = ∇k − �∇[. On the other hand, by definition of the operator
� ([), one has

� ([)k =
(
mHq − ∇[ · ∇q

)
|H=[ = � −+ · ∇[,

so the identity for � in (1.2.5) follows from + = ∇k − �∇[.

88) By definition, one has � = (mHq) |H=[. Therefore Φ(G, H) = mHq(G, H) satisfies

ΔG,HΦ = 0, Φ|H=ℎ = �.

Directly from the definition of � ([), we have

� ([)� = mHΦ − ∇[ · ∇ΦH=[ .
So it suffices to show that mHΦ − ∇[ · ∇ΦH=[ = − div+ . To do that we first write

that mHΦ = m2
H q = −Δq to obtain(

mHΦ − ∇[ · ∇Φ
)H=[ = −(Δq + ∇[ · ∇mHq)H=[ = − div(∇qH=[),

which proves statement 88). �
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Exercise 1.2.4. Assume that 3 = 1 and consider two functions [ and k in �∞(R)
and set � = �([)k and + = + ([)k.

8) Prove that mG� = � ([)+ .

88) Consider an harmonic function i = i(G, H). Verify that (mGi)2 − (mHi)2 is also
harmonic.

888) Denote by q the harmonic extension of k. The result of the previous question im-
plies that (mGq)2− (mHq)2 is the harmonic extension of+2−�2. Use this information
to obtain that

� ([) (+2 − �2) = 2mG (�+).

Craig and Sulem [172, 171] wrote the equations on [ and k in an explicit form.

Proposition 1.2.5. The water-wave equations can be written under the form


m[

mC
− � ([)k = 0,

mk

mC
+ 1

2
|∇k |2 − 1

2
(∇k · ∇[ + � ([)k)2

1 + |∇[ |2
+ 6[ + _^([) = 0.

Proof. By definition of � ([)k, we get the first equation from (1.1.4) and (1.2.4).

Now, by evaluating the equation

mCq +
1
2

��∇G,Hq��2 + % + 6H = 0,

on the free surface, we obtain

(mCk − �mC[) +
1
2
|+ |2 + 1

2
�2 + 6[ + _^([) = 0.

Since mC[ = � ([)k = � −+ · ∇[, it follows that

mCk + 6[ +
1
2
|+ |2 − 1

2
�2 + �+ · ∇[ = 0,

which gives the second equation. �
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1.2.3 Arbitrary space dimension

It is immediate to generalize the problem in case G belongs to R3 instead of R2. The
case 3 = 1 is particularly useful to describe waves that do not depend, say, on G2. We
then speak of two-dimensional waves because, at a given instant C, the domain Ω(C)
can be described by two variables only (here G1 and H). The equations being invariant
by rotation, we can reduce to this case the general case where all phenomena are
identical in planes parallel to a fixed vertical plane. In all the following we will use
the following notations:

∇ = (mG1 , . . . , mG3 ), ∇G,H = (∇, mH), Δ =
∑

1≤ 9≤3
m2
G 9
, ΔG,H = ΔG,H + m2

H .

1.2.4 The linearized equation around the rest state

It is important to determine the Dirichlet-to-Neumann operator in the simplest case
where Ω is the half-space

Ω = {(G, H) ∈ R3 × R : H < 0},

that is for the case [ = 0.

Proposition 1.2.6. There holds

� (0)k = |� | k,

where |� | is the square root of the opposite of the Laplacian, defined by

|� | 48b ·G = |b | 48b ·G where |b | =
√
b2

1 + · · · + b
2
3
.

(Notice that |� |2 48b ·G = −Δ48b ·G .)

Remark 1.2.7. More generally we define |� |B for B ≥ 0 as the Fourier multiplier
with symbol |b |B. This means that if D is in the Schwartz class S(R3), then

( |� |B D) (G) = 1
(2c)3

∫
R3
48G·b |b |B D̂(b) db.

Proof. Let us introduce the Fourier transform of q with respect to G:

D(b, H) =
∫
R3
4−8G·bq(G, H) dG.

15



Then

q(G, H) = 1
(2c)3

∫
R3
48G·bD(b, H) db.

Since ΔG,Hq = 0, we have m2
HD − |b |2 D = 0. The solution 4−H |b | being to be excluded

because H < 0, we find that D = 4H |b |D(b, 0) which leads to

(mHD) (b, 0) = |b | D(b, 0),

which in turn implies that (mHq) (G, 0) = ( |� | q) (G, 0) and thus the desired result. �

We can now derive the linearized equation around the trivial solution. Neglecting
terms that are at least quadratic with respect to the unknowns, we obtain the following
system {

mC[ = � (0)k,
mCk + 6[ − _Δ[ = 0.

Using that
� (0) = |� | , Δ = − |� |2 ,

and deriving in time we get the equation we are looking for:

(1.2.8) m2
C [ + 6 |� | [ + _ |� |3 [ = 0.

Notice that the Cauchy problem for this equation is well posed on Sobolev’s spaces
in two cases : 8) as soon as _ is strictly positive, for any real value 6; 88) in the case
of _ = 0, the Cauchy Problem remains well posed under the assumption that 6 is
positive or zero. To verify this it is sufficient to note that the equation (1.2.8) is
solved using the Fourier transform. For example, if _ = 0 and if mC[ |C=0 = 0, we find
that

[̂(C, b) = 48
√
6C |b |1/2 [̂(0, b) if 6 > 0,

[̂(C, b) = 4C
√−6 |b |1/2 [̂(0, b) if 6 < 0.

Note the stabilizing role of gravity : the case 6 > 0 is stable while the case 6 < 0 is
unstable; there is an exponential amplification of high frequencies. (The case 6 < 0
corresponds to the very unstable situation where a heavy fluid is placed over a light
fluid).
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1.2.5 Dispersive estimates

Assume that 3 = 1, 6 = 0 and _ = 1 so that the water-wave equations read{
mC[ − |� | k = 0,
mCk + |� |2 [ = 0.

We symmetrize this system by introducing i = |� |
1
2 [ + 8k, so that

(1.2.9) mCi + �i = 0 where � := 8 |� |
3
2 .

Notice that �∗ = −�, which means that

〈D, �E〉 =
∫
R
D(G)�E(G) dG = −

∫
R
�D(G)E(G) dG = −〈�D, E〉.

This is another way to obtain the conservation of energy: take the !2-scalar product
with i and then take the real part to obtain∫

R
|i(C, G) |2 dG =

∫
R
|i(0, G) |2 dG.

A first dispersive estimate is given by the following

Proposition 1.2.8. Let ) > 0. For any X > 0, there is � > 0 such that, for any
solution i of (1.2.9) with initial data i0 ∈ !2(R)2 we have,∫ +)

−)

∫
R
〈G〉−(1+X)

��|�G |
1
4i(C, G)

��2 dG dC ≤ �
∫
R
|i0(G) |2 dG,

where 〈G〉 = (1 + |G |2) 1
2 .

Sketch of the proof. Denote by 〈·, ·〉 the scalar product on !2(R). Consider an
operator C ∈ L(!2(R)), independent of time. We compute

d
dC
〈Ci, i〉 = 〈CmCi, i〉 + 〈Ci, mCi〉 = −〈C�i, i〉 − 〈Ci, �i〉

= 〈[�, C]i, i〉 where [�, C] = � ◦ C − C ◦ �.

The operator [�, C] is called the commutator. It vanishes if � and C commute. The
idea consists in constructing an operator C (bounded on !2(R)) such that [�, C]

17



is positive (the so-called positive commutator method). Then we will conclude the
proof by writing����∫ )

0
〈[�, C]i, i〉 dC

���� = ����∫ )

0

d
dC
〈Ci, i〉 dC

���� . ‖i())‖2!2 + ‖i(0)‖2!2 .

We seek C under the form of a pseudo-differential operator, that is an operator of
the form

CD(G) = 1
2c

∫
R
48Gb2(G, b)D̂(b) db,

for some function 2 = 2(G, b) to be chosen. We say that C is a pseudo-differential
operator associated to the symbol 2 and we write C = Op(2). There is a general
theory which allows to handle such operators and we will study it in a forthcoming
chapter. It follows from the later that the commutator [�, C] is given, up to some
remainder term, by a pseudo-differential operator associated with a symbol W given
by

W =
1
8

(
mb (8 |b |

3
2 ) (mG2) − mG (8 |b |

3
2 ) (mb2)

)
=

3
2
(mG2(G, b))

b

|b | |b |
1
2 .

Let us choose

2(G, b) = b

|b |

∫ G

0

dH
〈H〉1+X

.

Then

W = (mG2(G, b))
b

|b | |b |
1
2 =

|b | 12
〈G〉1+X

.

Then, the general theory alluded to above allows to show that the pseudo-differential
operator Op(W) with symbol W is equal, modulo an admissible error, to the operator

� = |� |
1
4

(
1
〈G〉1+X

|� |
1
4 ·

)
.

Now, notice that

〈�i, i〉 =
∫
R
〈G〉−(1+X)

��|� | 14i��2 dG,

whence the result. �
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1.3 The Cauchy problem

The water-wave equations read as follows:

(1.3.1)


mC[ − � ([)k = 0,

mCk + 6[ +
1
2
|∇k |2 − 1

2

(
∇[ · ∇k + � ([)k

)2

1 + |∇[ |2
+ _^([) = 0,

where the unknowns are [ = [(C, G), k = k(C, G) (G ∈ R3 , 3 ∈ {1, 2}), � ([) is the
Dirichlet–Neumann operator we introduced in the previous paragraph and 6 > 0 is
the acceleration of gravity, _ ≥ 0 is a coefficient and ^([) is the mean curvature
given by

^([) = − div

(
∇[√

1 + |∇[ |2

)
.

There is an abundant literature on Cauchy problem for water wave equations. We
refer to the references in §1.5.1 and §1.5.2. We will examine this issue in detail
in a next chapter. In this introduction, we simply cite two results concerning the
existence and uniqueness of smooth solutions. The first result states that the Cauchy
problem is well-posed locally in time for any smooth initial data. The second gives
a global well-posedness result for initial data which are small and localized.

Theorem 1.3.1 (local existence). Let 3 ≥ 1 and assume that either (6, _) ∈
R × (0, +∞) or 6 > 0 and _ = 0. For any ([0, k0) ∈ �∞(R3), the Cauchy
problem for (1.3.1) with initial data ([0, k0) has a unique maximal solution ([, k) ∈
�∞(�;�∞(R3)), � ⊂ R.

Theorem 1.3.2 (global existence). Let 3 ≥ 1 and assume that either (6, _) = (1, 0)
or (6, _) = (0, 1). Let us consider ([0, k0) ∈ �∞0 (R

2)2. There is Y0 > 0 such that
for every 0 ≤ Y < Y0, the Cauchy problem for (1.3.1) with initial data (Y[0, Yk0)
has a unique solution ([, k) ∈ �∞(R;�∞(R3)).

We will prove Theorem 1.3.1 later in this book. For Theorem 1.3.2 we refer to the
original papers (see §1.5.1 and §1.5.2).
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1.4 Stokes waves

In this section we discuss the existence of travelling waves on the surface of a
heavy liquid, neglecting surface tension. This is a very old problem, going back to
Stokes for periodic waves and to Boussinesq and Rayleigh for waves that decrease
to 0 to infinity, called solitary waves. The problem consists in looking for waves
propagating without alteration of shape, such that

[(C, G) = [̃(G − 2C),

for some function [̃ and some constant vector 2 ∈ R2. People used to talk about
permanent waves, today we talk about progressive waves.

2

[(C, G)

[(C + 1, G)

We begin by studying this problem neglecting all the nonlinearities. The linear
theory of gravity waves was much studied in the eighteenth and nineteenth centuries,
notably by Laplace, Lagrange, Cauchy and Poisson. Recall that in this linear theory
[ solves

(1.4.1)
m2[

mC2
+ 6 |� | [ = 0,

where 6 > 0 (recall that we neglect surface tension). One easily calculates that if
Y cos(: · (G − 2C)) is solution of the equation (1.4.1), then

(1.4.2) |2 | =
√

6

|: | .

For a periodic progressive wave of the form Y cos(: · (G − 2C)), we have a double
periodicity: at a given instant, the quantity considered is spatially periodic, and at
a given location, it oscillates periodically over time. The relation (1.4.2) gives a
relationship between the spatial period and the temporal period.

As |2 | corresponds to the speed of the wave, this means that harmonics of different
wavelengths propagate at different speeds and so they tend to disperse. Roughly
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summarizing what is found in oceanography books, this explains that at a certain
place above the ocean, far from the wind zone, the ocean surface is very regular
because it is essentially only possible to represent it with a single harmonic5.

Nevertheless, the oceanographer observes that if the ocean surface has a sinuous
shape, it is not the graph of a sinusoid. There are slightly marked edges and curves
that suggest the presence of several harmonics. This corresponds to what we observe
on the graph of the function cos(G) + 0.2 cos(2G) drawn below :

−c − c2
c
2 c

−1

1

0

G

H

Y cos(G)
Y
5 cos(2G)

However, we have just seen that the linear theory predicts that two harmonics with
different wavelengths will travel at different speeds. As a result their sum cannot be
written as a function of G − 2C. Stokes solved this problem. To explain the shape of
the waves, he took into account terms neglected in linear theory.

Stokes’ basic idea is that the relation of dispersion l2 = 6 |: | cannot be exact and
that it should depend on the amplitude of the solution. By so doing, he discovered
approximate solutions of the form:

(1.4.3) [(C, G) = Y cos \ + 1
2
|: | Y2 cos(2\) + 3

8
|: |2 Y3 cos(3\) +$ (Y4),

5This is one of the great consequences of the memoir ([?]) by Cauchy: "As to the state of the fluid
after a given time, it will be itself very irregular in the different points of the mass fluid originally
subject to the immediate influence of causes that produced the movement. But, if we move away
from these same points at increasingly greater distances, we will see the movement become more
and more regular.” We refer to page 83 of his memoir for a precise description of this result.
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where the phase \ and the angular velocity l are given by

\ = :G − lC, l =
√
6 |: | (1 + 1

2
Y2 |: |2 +$ (Y4)), G ∈ R.

Figure 1.6: From Stokes’ celebrated paper [405]

Stokes’ work is a formal work (his result is that if a solution exists, then it admits the
previous development). It was Levi-Civita andNekrasovwhomuch later managed to
show the existence of exact solutions in the vicinity of these approximate solutions,
having this development (see the original articles [312, 351] as well as the texts of
Strauss [406] and Toland [424] for many extensions).

To observe experimentally the nonlinear dependence of l on Y, let us go back to
the figure 1.4. In fact, at the end of a cycle, the object has not returned exactly to
its initial position, but is slightly shifted to the right, even in the absence of current;
we speak of drift, which is related to the fact that the equations are non-linear.
This phenomenon, discovered by Stokes, has been studied by Constantin [137] and
Constantin and Escher [137, 138].

Let us conclude with two remarks on the original article by Stokes [405].

Bifurcation theory explains Stokes’ fundamental observation that the dispersion re-
lation depends on the amplitude. It is interesting to understand Stokes’ calculations.
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His method can be compared to the one used by Lindstedt (then Poincaré) to find
know a good approximation for large times of periodic solutions of differential
equations (a classical and relevant problem in astronomy, which arises to predict the
position of the planets). The most classical example of an equation to implement
this method is the Duffing equation. Let us consider the Cauchy problem

¥D + D3 = 0, D(0) = Y, ¤D(0) = 0.

We look for D in the form D = YD1 + Y2D2 + Y3D3 + · · · , then

¥D1 + D1 = 0, D1(0) = 1, ¤D1(0) = 0,
¥D2 + D2 = 0, D2(0) = 0, ¤D2(0) = 0,
¥D3 + D3 + (D1)3 = 0, D3(0) = 0, ¤D3(0) = 0.

We calculate successively that D1 = cos(C), D2 = 0, D3
1 =

1
4 cos(3C) + 3

4 cos(C) and

D3 = −
3
8
C sin(C) + 1

32
cos(3C),

where to calculate D3 we used that the solution of ¥D + l2
0D = 0 cos(lC) is

0

l2
0 − l2

cos(lC) if l ≠ l0,
0

2l0
C sin(l0C) if l = l0.

The disturbance D3 contains an unbounded term, C sin(C), called the secular term.
The idea of Stokes and Lindstedt is that in using a Taylor expansion of the cosine,
one obtains an expression without secular term, of the form

D = Y cos
(
(1 + 3

8
Y2)C

)
+$ (Y3).

We can in fact give an explicit formula for the solution that involves the amplitude
function of Jacobi and the elliptic cosine of Jacobi, see the article by Baldi [60].

Still about Stokes’ calculations, there is a remark to bemade about the formula (1.4.3).
This is, with one sign difference, the formula given by Stokes [405], page 211. In
the original article, the equation for the free surface is written in the form

(1.4.4) H = 0 cos(<G) − 1
2
<02 cos(2<G) + 3

8
<203 cos(3<G).

This contradiction in the signs is explained by the fact that for Stokes, the ($H) axis
is oriented downwards, whereas we have chosen it oriented upwards. We find the
formula (1.4.3) by changing H to −H and 0 to −0 (or G in G + c if we want to give a
physical meaning to the value of 0).
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1.5 References (work in progress)

1.5.1 References about the equations

For an introduction to linear gravity wave theory in physics, we refer the reader to
paragraph §12 of Landau and Lifshitz [298], Chapters 3,4,5 of the book of Holthui-
jsen [242] and Chapter 16 of Stewart’s book [404]. An aspect often highlighted
is that the equations are Hamiltonian (see Zakharov [453]). A natural question is
whether other conservation laws exist. Benjamin andOlver [67] have found 8 conser-
vation laws for two-dimensional waves; Olver showed that under certain conditions
in the definition of a conservation law, there are no other [355]. This contrasts with
the discovery of Lax [306] for Korteweg de Vries’ equation.

The equations can be written in much more general forms. One can thus consider
an initial velocity that does not derive from a potential (see among others [130, 314,
456]), which is important if viscosity is to be taken into account. The case of a
viscous fluid is of course also very interesting, but we will not talk about it because
viscosity is a simplifying hypothesis for the problems we will consider. For the
study of wave propagation, one can also see that the viscosity is negligible. Indeed,
it can travel immense distances without being attenuated (for example 10000 kms)
between the place where it is generated and the shore. There is therefore no energy
dissipation by viscous friction (the argument can be faulty in other situations). Let us
just quote the work of Solonnikov [399] and Beale [64] and the recent works of Guo
and Tice [236], Bresch andNoble [95]. The reader will find in the article by Longuet-
Higgins [319], on page 537, arguments that explain why it is sometimes important
to consider data that are not irotational. A very large number of adaptations of the
results on the Stokes waves in the so-called rotation are described in the review
article by Strauss [406].

There are many possible formulations of the equations. One can model the water
wave equations in holomorphic coordinates: this is described in detail in the papers
[250] for the infinite depth case, respectively [241] for the finite depth case (see also
[202]). Another idea that has been very fruitful in the field has been to introduce tools
from geometric analysis, like the systematic use of the lagrangian formulation of the
equations by Ambrose and Masmoudi [45], Coutand-Shkoller [159, 158], Kukavica
and Tuffaha [295, 294, 296], or the tools of Riemannian geometry (parallel transport,
covariant derivative) by Shatah and Zeng [388, 389, 390]. Geometrical methods
have also been used by Christodoulou and Lindblad [130]. This approach was
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further developped by de Poyferré to initiate the study of the water-wave equation
with emerging bottom [185].

Let us also mention that many papers focused on the numerical analysis of the
Dirichlet-to-Neumann operator, we refer to [59, 171, 444, 366] and the references
there in.

1.5.2 References about the Cauchy problem

The first results on the Cauchy problem go back to the pioneering works of Nal-
imov [348], Shinbrot [391], Reeder and Shinbrot [368, 369], [452] and Craig [162]
(see also Tani [411], Hou, Teng and Zhang [248] and Beale, Hou and Lowen-
grub [65]). The first results without any hypothesis of smallness or analyticity are
due to to Beyer and Günther [80] (for the case with surface tension, in any dimen-
sion) as well as Wu (for the case without surface tension, in dimension 3 = 1 first in
[445], then in any dimension in [446]).

Numerous extensions of their results have been obtained by different methods: see
Ogawa-Tani [354], Ambrose-Masmoudi [45, 46, 47], Schneider-Wayne [385, 386],
Zhang-Zhang [456], Schweizer [387], Iguchi [257, 255, 256], Shatah-Zeng [388,
389, 390],Ming-Zhang [344], Coutand-Shkoller [159], Guo-Tice [237, 238],Masmoudi-
Rousset [326], Rousset and Tzvetkov [378], Christianson, Hur and Staffilani [129],
Alazard-Burq-Zuily [19], Lannes [302] or Berti and Delort [74] among others. The
regularity of the flow map was studied by Chen, Marzuola, Spirn and Wright [124]
and by Rimah-Said [381].

The main difference between the case _ = 1 (with surface tension) and the case
_ = 0 (without surface tension) is that in the latter case we must make an assumption
of positivity on the Taylor coefficient (named after Geoffrey Taylor [416]) which is
defined by

0(C, G) = −(mH%) (C, G, [(C, G)).

One of the main results in the articles [445, 446] by Wu states that this assumption
is automatically satisfied for a domain of infinite depth. Lannes then showed that
this result remains true for a regular bottom which is a small disturbance of a flat
bottom ([300]); see also [203, 130].

There have beenmany recent results about rough solutions. One direction of research
is the study of angled crested type water waves: See the recent papers by Kinsey-
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Wu [285] andWu [449]. In the latter reference, Sĳue Wu proved the well-posedness
of the 2D water-wave equations in a regime that allows for non-�1 interfaces. In this
regime, only a degenerate Taylor inequality 0 ≥ 0 holds. Agrawal [4] proved that
initial interface with angled crests remains angled crested, the Euler equations hold
pointwise even on the boundary, the particle at the tip remains at the tip, and the
acceleration at the tip is the one due to gravity. Also, Agrawal extended the study
of angled crested water waves to the case with surface tension (see [3, 2]). On the
other hand, several recent papers are devoted to the study of the Cauchy problem
with rough initial data: starting from [22] and continued in [250, 23, 187, 186, 6, 7].
The best results at the time these notes are written are due to Ai, Ifrim and Tataru
([8, 9]) and Wu ([450]).

Let us briefly discuss some additional points concerning the regularity thresholds
for the water-wave equations. As explained in §1.1.4, a well-known property of
smooth solutions is that their energy is conserved

3

3C

{1
2

∬
Ω(C)

��∇G,Hq(C, G, H)��2 dH dG + 6
2

∫
R3
[(C, G)2 dG

}
= 0.

However, it is not known if weak solutions exist at this level of regularity (even the
meaning of the equations is not clear). This is the only known coercive quantity
(see [68]). Another regularity threshold is given by the scaling invariance, which is
the following property: If q and [ are solutions of the gravity water waves equations,
then q_ and [_ defined by

q_ (C, G, H) = _−3/2q(
√
_C, _G, _H), [_ (C, G) = _−1[(

√
_C, _G),

solve the same system of equations. The (homogeneous) Hölder spaces invariant by
this scaling (the scaling critical spaces) correspond to [0 Lipschitz and q0 in ¤,3/2,∞

(one can replace the Hölder spaces by other spaces having the same invariance by
scalings). One could expect that the problem exhibits some kind of “ill-posedness”
for initial data such that the free surface is not Lipschitz. See e.g. [110, 128] for such
ill-posedness results for semi-linear equations. However, the water waves equations
are not semi-linear (see [381]) and it is not clear whether the scaling argument is the
only relevant regularity threshold to determine the optimal regularity in the analysis
of the Cauchy problem (One key result in this direction is the resolution of the
bounded !2 curvature conjecture by Klainerman, Rodnianski and Szeftel [290]). In
particular, it remains an open problem to prove an ill-posedness result for the gravity
water waves equations. We refer to the recent paper by Chen, Marzuola, Spirn and
Wright [124] for a related result in the presence of surface tension.
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There are very few results about the possible blow-up of water-waves. One reference
here is the paper by Castro, Córdoba, Fefferman, Gancedo and Gómez Serrano [115]
(see also [117, 160]). The authors consider the more general case where the surface
is not a graph, but a curve drawn in R2, which does not self-intersect at initial time.
The authors show the existence of an initial configuration such that in finite time
the free surface will self-intersect; forming what is called in the literature a splash
singularity.

On the contrary, in the casewithout surface tension, it has been recently demonstrated
by Wu [448] and also by Germain, Masmoudi and Shatah [217] that we have global
existence with small data for spatially localized three-dimensional waves (3 = 2).
This result was later extended by Alazard-Delort [24, 25], Ionescu-Pusateri [258],
Hunter-Ifrim-Tataru [250, 251] to the critical problem, that is for 3 = 1, following
earlier work by Sĳue Wu [447] about almost global well-posedness. For the case
with surface tension, the first result for 3 = 2 was obtained by Germain, Masmoudi
and Shatah [218]. In the critical case (3 = 1), the result was first obtained by Ifrim
and Tataru [252] and then by Ionescu and Pusateri [259]. See also the paper by
Ifrim-Tataru [253] for the case with vorticity and Harrop-Griffiths, Ifrim and Tataru
[241] and Wang [440] for the finite depth case. See also the review article [190].

The well-posedness of the Cauchy problem is also true for the compressible equa-
tions, whether it is the isentropic system, or the complete entropic system. We refer
the reader to articles by Tanaka and Tani [410], Lindblad [313], Coutand–Lindblad–
Skholler [158], Coutand–Shkoller [160], Jang–Masmoudi [271, 270]. One can also
couple the fluid mechanics equations to other equations; such systems have been
studied by Trakhinin [425, 426]. Another very interesting extension consists in con-
sidering the case where several fluids are superimposed. This profoundly changes
the nature of the equations and raises some very difficult questions; see the review
text of Saut [384], recent articles by Shatah-Zeng [390] and Lannes [302] for the
study of the Cauchy problem, and that of Iooss, Lombardi and Sun [261] for the
study of travelling waves. In this direction, let us also mention the article by Bresch
and Renardy [97]. Let us also mention the links with the Hele-Shaw problem studied
by Günther and Prokert [234, 233].

In the study of the Cauchy problem, another hypothesis, hidden and much more
problematic for applications, is that we consider a fixed initial data. A whole
part of the theory consists precisely in deriving asymptotic equations in regimes
where the solutions (and thus the initial data) depend on a small parameter that
tends towards 0. One can think of estimates which are uniform with respect to the
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surface tension coefficient (see [45, 388, 344]). Interesting asymptotics are those
that make appear new equations. In this the subject is magnificent because many
classical equations (KdV,NLS,KP,BBM,...) are thus obtained from the free surface
Euler equation (see [182, 407, 453]). Let us mention only the pioneering work of
Craig [162], Kano and Nishida [278] as well as the work of David Lannes and his
collaborators [42, 85, 84, 166, 199, 198, 197, 301, 324]. Several new models were
found through mathematical analysis, I am thinking in particular of the article by
Bona, Lannes and Saut [85].

As far as the Cauchy theory is concerned, we can show that the bottom has very little
importance and that very irregular funds are appropriate. Other studies are interested
in the case where the topography changes the dynamics (what happens in coastal
oceanography, when near the shore the depth is shallow; which is fundamental in
the study of refraction). This is the case, for example, of the work of Craig, Guyenne
and Sulem [164], de Bouard, Craig, Díaz-Espinosa, Guyenne and Sulem [184],
Alvarez-Samaniego and Lannes [41], Lannes [302], Chazel [121] and Israwi [269].
This raises a host of new questions and requires a wide variety of techniques. For
example, in [166], Craig, Lannes and Sulem are interested in the so-called "shallow
water" limit in case the bottom is strongly oscillating. The authors derive a new
system, which corrects previous formal work, thanks to tools resulting from the
analysis of homogenization problems.

1.5.3 Dispersive estimates

There is a vast literature concerning dispersive estimates. Here we mention a
few results related to the smoothing effect mentioned previously. Let us quote
the original article by Kato [280] for the Korteweg-de-Vries equation (KdV), the
articles by Constantin and Saut [145], Sjölin [397] and Vega [436] for a general
dispersive equation with constant coefficients, and for the Schrödinger equation
with variable coefficients include the work of Craig, Kappeler and Strauss [165],
Doi [193, 194, 195], Kenig-Ponce-Vega [282, 283], Robbiano and Zuily [375], Burq
and Planchon [103]. Note that the regularizing effect of Kato for the KdV equation,
intervenes in the demonstration by Rosier [377] of inequality observability for this
equation (see also Coron’s book [155, section 2.2]). There are links between the
free surface Euler equation with surface tension and the Euler-Korteweg system (see
Benzoni [69]); Audiard [54] has recently shown an analog of the theorem 1.2.8
for this system. Sharp versions of the smoothing effect were obtained recently by
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Zhu [459] and Alazard-Ifrim-Tataru [26]. Dispersive properties can also be used to
prove controllability properties of the waves [17, 458].

In addition to the smoothing effect, the water-wave equations enjoy Strichartz-type
inequalities. For the water-wave equations with surface tension, in the special
case of dimension 3 = 1, Strichartz estimates were proved by Christianson, Hur and
Staffilani in [129] for smooth enough data and in [20] for the low regularity solutions
constructed in [19].

One natural question is to combine these Strichartz estimates with the standard
energy estimates to improve the threshold for the well-posedness theory. The main
difficulty is that this requires to establish Strichartz inequalities at a lower level
of regularity than the threshold where one is able to prove the existence of the
solutions. This was first achieved in [22] for the gravity water-wave equations. This
allowed to improve the Cauchy theory and in particular, for 3 = 1, to consider
solutions such that the curvature of the initial free surface does not belong to !2.
Such Strichartz estimates are obtained by constructing parametrices on small time
intervals tailored to the size of the frequencies considered (in the spirit of the works
by Lebeau [308], Bahouri-Chemin [56], Tataru [415], Staffilani-Tataru [400], and
Burq-Gérard-Tzvetkov [102]). These semi-classical Strichartz estimates have been
extended in several directions: 8) to the case with surface tension by de Poyferré
and Nguyen [186], 88) Ai obtained ([5]) optimal lossless Strichartz estimates. This
provides the sharp regularity threshold with respect to the approach of combining
Strichartz estimates with energy estimates.

1.5.4 References about progressive waves

In the rest of these lectures, we will focus on the study of the Cauchy problem and
we will not study the Stokes waves. Since the study of those special solutions lies at
the heart of the water-wave theory, we discuss in this section many recent research
directions about them.

We know today that the existence of 2D waves simply comes from a bifurcation
from a simple eigenvalue. This corresponds to a local theory of bifurcations which
studies all the solutions for Y close to 0. There is also a global theory that studies
the possibility of find a branch of solutions parameterized by Y ∈ R. Using this
global theory we can prove the existence of what we call extreme Stokes waves (see
[424, 101] for a complete introduction to the study of extremal waves and also the
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original articles of Toland [423], Amick, Fraenkel and Toland [49], Plotnikov [361]).
For the problems we have studied, the difficulty is that the inversion of the linearized
operator around a non-trivial state (in the orthogonal of its kernel) is possible,
but at the price of a loss of derivatives (which comes from the presence of small
divisors). The theory of bifurcations no longer applies because the implicit function
theorem no longer applies. However, as has been observed in another context by
Rabinowitz [367] (see also [161]), one can use the implicit function theorem of
Nash-Moser.

The study of Stokes waves is a classical subject in physics: see the reference books
of Whitham [442] and Wehausen and Laitone [441]. The question of reflection
of a Stokes wave on a wall is illustrated in the book by Barber [62]. This is a
classic subject for experimenters, and we refer here to the very complete review
articles of Dias and Kharif [192] and Hammack, Henderson and Segur [240]. The
more general question of the Stokes wave interaction is discussed in the books of
Holthuĳsen [242] and Kartashova [279]. The numerical study of surface waves
is of course a huge subject and we refer the reader to the article by Clamond and
Grue [132] for recent developments.

References on the problem of standing gravity waves (periodic in time and space)
are given in the introduction of the article by Iooss, Plotnikov and Toland [267]. See
also the note by Iooss [260] who cites Boussinesq as the first to consider this question
in 1877. The question of the existence of these waves has remained open for a very
long time. The first result is due to Plotnikov and Toland [362]. This work was
extended by Iooss, Plotnikov and Toland ([267] then supplemented by the articles
of Iooss and Plotnikov [262, 263] which show the existence of solutions unimodal
([267]) and multimodal ([262, 263]) in the completely degenerate case where the
kernel is of infinite dimension (which comes from the fact that in [267, 262, 263]
Ê the domain is of infinite depth, a more difficult case for this problem than the
case of a finite depth domain [362]). The stability of standing waves with respect
to harmonic perturbations are studied by Wilkening in [443]. A new phenomenon
concerning a directional drift for 3D waves has been demonstrated by Iooss and
Plotnikov [264] for small amplitude 3D waves non-symmetrical; whose existence
was demonstrated by Iooss and Plotnikov [266] which was a very difficult question.
The small divisor problems for 3D water waves was further studied by Alazard and
Métivier [29]. The first result about the existence of gravity capillary standing water
waves was obtained in [16]. By using the transformations introduced by Iooss-
Plotnikov [265] and Alazard and Baldi [16] with methods to study quasi-periodic
solutions, KAM results were then obtained, first for gravity-capillary water waves
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by Berti andMontalto [75] and then for the gravity water waves equations (see [61]).

The study of periodic travelling waves 3D can be traced back to the work of Reeder
and Shinbrot [370]. It has been completed by Groves and Haragus [228] and Craig
and Nicholls [169]. In the case where the surface tension is very high, the existence
of localized capillary waves has been demonstrated by Groves and Sun [231] and
Buffoni, Groves, Sun and Wahlén [100]. Let us also mention the previous papers
by Groves and Mielke [230] (which we refer to for a discussion of Kirchgässner’s
spatial dynamics approach [286]). The linear instability of capillary waves is studied
by Groves and Haragus [229]. The case non-linear, very difficult, was solved by
Rousset and Tzvetkov [378]. There are very many results in the case where the
rotational is non-zero, see for example [439] and the references of this article.

Solitary water waves have been proved to exist in many interesting situations. Their
existence relies on a subtle balance of different factors, such as gravity, surface
tension or the fluid bottom (see [212, 63, 50]). For this question, we refer to the
article by Ifrim and Tataru [254] who prove that there are no solitary waves in 2D
for purely gravity or capillary waves in infinite depth.

We have discussed the interaction of two progressive periodic waves. The interaction
of two solitary waves is studied numerically and experimentally by Craig, Guyenne,
Hammack, Henderson and C. Sulem in the article [163]. The interaction of solitons
for the Korteweg de Vries equation has been studied, including in non-integrable
situations, by Martel and Merle (see the survey [325]).

1.5.5 Historical References

The linear theory of gravity waves wasmuch studied in the eighteenth and nineteenth
centuries, notably byLaplace, Lagrange, Cauchy andPoisson. We refer to the articles
of Craik [174, 175], to his book [173] as well as to that of Darrigol [179]. And note
especially that the statues of Laplace, Lagrange, Cauchy and Poisson are located
in the courtyard of the École normale supérieure rue d’Ulm in Paris, in the corner
which is closest to the Pantheon.
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Lagrange Laplace Poisson Cauchy

The question by the French Academy question we cited can be found in Cauchy’s
memoir [?]. Darrigol explains6 in his book [179, page 37] that it is due to Laplace.

Many microlocal analysis tools have their origin in the study of surface waves or in
connection with questions that arise in this field. One can think of the introduction
of the stationary phase method (in order to study the pattern of waves in the wake of
a boat). Note that the notions of stationary phase, phase velocity and speed group
appear in some calculations of Cauchy [?]. He had seen that harmonics of different
wavelengths propagate at different speeds and thus they tend to disperse; they are
said to disperse.

Let us also note that Cauchy and Poisson would have rediscovered Fourier’s integral
formula (which appears in Fourier’s memoir, published in 1822, for which he won
the prize for his answer (given in 1812) to a question asked by the Academy in 1811).
This is explained in the article by Annaratone [51].

Part of the techniques we will use comes from the study of shock waves and rar-
efaction waves. A shock is a weak solution of a system of conservation laws,

6See the minutes of the sessions of the Academy, which can also be consulted at http://
gallica.bnf.fr/ark:/12148/cb32746437k/; more generally, the original articles of Cauchy,
Stokes, Russell and also those of Boussinesq, that we will mention later, can be easily found on the
internet, in free access.
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discontinuous through a regular hypersurface Σ, regular up to the boundary on ei-
ther side of Σ. One can read in Tartar’s book on Sobolev’s spaces ([414, page 183])
that Stokes was the first to be interested in discontinuous solutions of the acoustic
wave equation, in an article published one year after the publication of his 1847
article on the theory of oscillating waves [405].
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Chapter 2

Darcy’s law and the Hele-Shaw
equations

Consider a time-dependent surface Σ of the form

Σ(C) = {(G, H) ∈ R3 × R ; H = ℎ(C, G)} (C ∈ R+).

In this chapter, we consider several free boundary problems that are described by
evolution equations that express the velocity of Σ at each point in terms of some
nonlinear expressions depending on ℎ.

The most popular example is the mean-curvature equation, which stipulates that
the normal component of the velocity of Σ is equal to the mean curvature at each
point. It follows that:

(2.0.1) mCℎ +
√

1 + |∇ℎ |2^ = 0 where ^ = − div

(
∇ℎ√

1 + |∇ℎ |2

)
.

The previous equation plays a fundamental role in differential geometry. Many other
free boundary problems appear in fluid dynamics. Among these, we are chiefly
concerned by the equations modeling the dynamics of a free surface transported by
the flow of an incompressible fluid evolving according to Darcy’s law.
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2.1 The Hele-Shaw equations

2.1.1 Darcy’s law

Consider the fluid domain

Ω(C) = {(G, H) ∈ R3 × R ; H < ℎ(C, G)}.

One assumes that the velocity E : Ω → R3+1 and the pressure % : Ω → R solve the
Darcy’s equations. This means that

(2.1.1) divG,H E = 0, and E = −∇G,H (% + 6H) in Ω,

where 6 > 0 is the acceleration of gravity.

2.1.2 Boundary conditions

One imposes that
lim
H→−∞

E = 0.

As for water waves, on the free surface, it is assumed that the normal component of
E coincides with the normal component of the velocity of the free surface:

(2.1.2) mCℎ =
√

1 + |∇ℎ |2 E · = on H = ℎ,

where recall that ∇ = ∇G and = is the outward unit normal to Σ, given by

= =
1√

1 + |∇ℎ |2

(
−∇ℎ

1

)
.

The final equation states that the restriction of the pressure to the free surface is
proportional to the mean curvature:

% = _^ on Σ,

where the parameter _ belongs to [0, 1] and ^ is given by (2.0.1).
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2.1.3 Formulation with the DN

Recall that the Dirichlet-to-Neumann operator � (ℎ) is defined by

� (ℎ)k(G) =
√

1 + |∇ℎ |2m=i|H=ℎ(G) = mHi(G, ℎ(G)) − ∇ℎ(G) · ∇i(G, ℎ(G)),

where
ΔG,Hi = 0 in Ω, i|H=ℎ = k.

Since
ΔG,H (% + 6H) = divG,H E = 0 ; % + 6H |H=ℎ = 6ℎ + _^,

it follows that the Hele-Shaw problem is equivalent to

(2.1.3) mCℎ + � (ℎ) (6ℎ + _^) = 0.

When 6 = 1 and _ = 0, the equation (2.1.3) is called the Hele-Shaw equation without
surface tension. Hereafter, we will refer to this equation simply as the Hele-Shaw
equation. If 6 = 0 and _ = 1, the equation is known as the Hele-Shaw equation
with surface tension, also known as the Mullins-Sekerka equation. Let us record
the terminology:

mCℎ + � (ℎ)ℎ = 0 (Hele-Shaw),(2.1.4)
mCℎ + � (ℎ)^ = 0 (Mullins-Sekerka).(2.1.5)

Recalling that � (0) = |� |, we see that the linearized equations read

mCℎ + |� | ℎ = 0 (Linearized Hele-Shaw),(2.1.6)
mCℎ + |� |3 ℎ = 0 (Linearized Mullins-Sekerka).(2.1.7)

They are parabolic evolution equations.

2.1.4 Lubrication approximation

Other parabolic equations appear naturally to describe asymptotic regime in the
thin-film approximation. They are

mCℎ − div(ℎ∇ℎ) = 0 (Boussinesq),(2.1.8)
mCℎ + div(ℎ∇Δℎ) = 0 (thin-film).(2.1.9)
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2.1.5 The Cauchy problem

The Cauchy problems for the Hele-Shaw and Mullins-Sekerka equations have been
studied by different techniques, for weak solutions, viscosity solutions or also clas-
sical solutions (see the numerous references in §2.3.3 at the end of this chapter). In
this book, we will restrict ourselves to the study of classical solutions. We consider
initial data in Sobolev spaces.

Definition 2.1.1. Given a real number B ≥ 0, the Sobolev space �B (R3) consists of
those functions D ∈ !2(R3) such that the following norm is finite:

‖D‖2�B =
1
(2c)3

∫
R3

(
1 + |b |2

) B ��D̂(b)��2 db,

where D̂ is the Fourier transform of D:

D̂(b) =
∫
R3
4−8G·bD(G) dG.

The homogeneous Sobolev norms are defined by

‖D‖2¤�B :=
1
(2c)3

∫
R3
|b |2B |D̂(b) |2 db.

Theorem 2.1.2. Let 3 ≥ 1 and consider a real number B > 3/2 + 1. For any initial
data ℎ0 in �B (R3), there exists a time ) > 0 such that the Cauchy problem

(2.1.10) mCℎ + � (ℎ)ℎ = 0, ℎ|C=0 = ℎ0,

has a unique solution satisfying

ℎ ∈ �0( [0, )];�B (R3)) ∩ �1( [0, )];�B−1(R3)) ∩ !2( [0, )];�B+ 1
2 (R3)).

Morevoer, ℎ belongs to �∞((0, )] × R3).

Proof. See Chapter ??. �

Definition 2.1.3. 8) Recall that

f >
3

2
⇒ �f (R3) ↩→ �0(R3) ∩ !∞(R3).

So B > 1 + 3/2 implies that �B (R3) ↩→ �1(R3) ∩,1,∞(R3).

88) We say that ℎ is a regular solution to (2.1.10) defined on [0, )] if ℎ satisfies the
conclusions of the above result.
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2.1.6 Maximum principles and Lyapunov functionals

The Hele-Shaw equation is a nonlinear parabolic equation, so a natural question is
to find maximum principles. We will consider maximum principle for ℎ itself or for
its derivatives.

Proposition 2.1.4. 8) Let 3 ≥ 1. For any regular solution ℎ of the Hele-Shaw
equation mCℎ + � (ℎ)ℎ = 0, there holds

sup
G∈R3
|ℎ(C, G) | ≤ sup

G∈R3
|ℎ(0, G) | .

88) Let ℎ1, ℎ2 be two regular solutions of the Hele-Shaw equation defined on the
same time interval [0, )], such that, initially,

ℎ1(0, ·) ≤ ℎ2(0, ·).

Then
ℎ1(C, ·) ≤ ℎ2(C, ·)

for all C ∈ [0, )].

Proof. See Chapter ??. �

Proposition 2.1.5. Let 3 ≥ 1 and consider a regular solution ℎ to the Hele-Shaw
equation mCℎ + � (ℎ)ℎ = 0 defined on [0, )]. Then, whenever l is a modulus of
continuity for ℎ(0, ·), l is also a modulus of continuity for ℎ(C, ·), for any C ∈ [0, )].
In particular, we have

sup
G∈R3
|∇ℎ(C, G) | ≤ sup

G∈R3
|∇ℎ(0, G) | .

Proof. See Chapter ??. �

We will also study the monotonicity of some coercive quantities. Consider the
!2-norm and the area functional(∫

R3
ℎ2 dG

) 1
2

, A(Σ) =
∫
R3

(√
1 + |∇ℎ |2 − 1

)
dG.
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Recall that � (ℎ) is a non-negative operator. Indeed, consider a function k = k(G)
and denote by i = i(G, H) its harmonic extension given by

ΔG,Hi = 0 in Ω = {H < ℎ(C, G)} , i|H=ℎ = k.

It follows from Stokes’ theorem that

(2.1.11)
∫
R3
k� (ℎ)k dG =

∫
mΩ

im=i df =
∬
Ω

��∇G,Hi��2 dH dG ≥ 0.

8) This immediately implies that, for any regular solution to mCℎ + � (ℎ)ℎ = 0, we
have

1
2

d
dC

∫
R3
ℎ2 dG = −

∫
R3
ℎ� (ℎ)ℎ dG ≤ 0.

We say that
∫
R3
ℎ2 dG is a Lyapunov functional.

88) On the other hand, if ℎ is a regular solution to mCℎ + � (ℎ)^ = 0, then

d
dC
A(Σ) = d

dC

∫
R3

(√
1 + |∇ℎ |2 − 1

)
dG

=

∫
R3

∇ℎ · ∇mCℎ√
1 + |∇ℎ |2

dG

=

∫
R3
(mCℎ)^ dG (integration by parts)

= −
∫
R3
^� (ℎ)^ dG ≤ 0 (using (2.1.11)).

This proves that A(Σ) is a Lyapunov functional for the Mullins-Sekerka equation.

We refer to Section 2.3.5 for references and additional results related to these two
examples. The next result generalizes the previous observations: the !2-norm and
the area functional are Lyapunov functionals for the Hele-Shaw andMullins-Sekerka
equations, in any dimension, uniformly in 6 and _.

Proposition 2.1.6. Let 3 ≥ 1, (6, _) ∈ [0, +∞)2 and assume that ℎ is a smooth
solution to

mCℎ + � (ℎ) (6ℎ + _^) = 0.

Then,
d
dC

∫
R3
ℎ2 dG ≤ 0 and

d
dC
A(Σ) ≤ 0.
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Proof. See Chapter ??. �

In addition, for the Hele-Shaw equation, the square of the !2-norm decays in a
convex manner.

Proposition 2.1.7. Let 3 ≥ 1. For any regular solution ℎ of the Hele-Shaw equation
mCℎ + � (ℎ)ℎ = 0, there holds

d
dC

∫
R3
ℎ(C, G)2 dG ≤ 0 and

d2

dC2

∫
R3
ℎ(C, G)2 dG ≥ 0.

Proof. See Chapter ??. �

2.2 The Muskat equation

2.2.1 The Muskat problem

The Muskat equation is a two-fluids in porous media, analogue of the Hele-Shaw
equation. Here we consider a time-dependent free surface Σ(C) separating two fluid
domains Ω1(C) and Ω2(C). To simplify, we consider only two-dimensional fluids so
that

Ω1(C) = {(G, H) ∈ R × R ; H > 5 (C, G)} ,
Ω2(C) = {(G, H) ∈ R × R ; H < 5 (C, G)} ,
Σ(C) = mΩ1(C) = mΩ2(C) = {H = 5 (C, G)}.

Introduce the density d8, the velocity E8 and the pressure %8 in the domain Ω8
(8 = 1, 2). One assumes that the velocities E1 and E2 obey Darcy’s law. Then, the
equations by which the motion is to be determined are

E8 = −∇(%8 + d86H) in Ω8,
div E8 = 0 in Ω8,
%1 = %2 on Σ,

E1 · = = E2 · = on Σ,

mC 5 =

√
1 + (mG 5 )2 E2 · =
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where 6 is the gravity and = is the outward unit normal to Ω2 on Σ,

= =
1√

1 + (mG 5 )2

(
−mG 5

1

)
.

2.2.2 The Córdoba-Gancedo formulation

Changes of unknowns, reducing theMuskat problem to an evolution equation for the
free surface parametrization, have been known for quite a time (see the references
at the end of this chapter). This approach was further developed by Córdoba and
Gancedo who obtained the following beautiful compact formulation of the Muskat
equation:

mC 5 =
d

2c

∫
R

mGΔU 5

1 + (ΔU 5 )2
dU,(2.2.1)

where d = d2 − d1 is the difference of the densities of the two fluids and ΔU 5 is the
slope

ΔU 5 (C, G) =
5 (C, G) − 5 (C, G − U)

U
·(2.2.2)

We assume that d2 > d1 (heavier fluid below the lighter one) and then we may set
d = 2 without loss of generality. It is not obvious that the right-hand side is well
defined, and we will address this question later in this section.

Besides its esthetic aspect, this formulation allows to apply tools at interface of
harmonic analysis and nonlinear partial differential equations. One can think of the
circle of methods centering around the study of the Hilbert transform H and Riesz
potentials, or Besov and Triebel-Lizorkin spaces.

Recall that the Hilbert transformH is defined by

ĤD(b) = −8 b|b | D̂(b).

It follows that the fractional Laplacian |� | = (−mGG)
1
2 satisfies

|� | = mGH .
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Alternatively, it can be defined by a singular integral:

(2.2.3) H 5 (G) = 1
c

pv
∫
R

5 (H)
G − H dH,

where the integral is understood in the sense of principal values:

H 5 (G) = 1
c

pv
∫
R

5 (H)
G − H dH =

1
c

pv
∫
R

5 (G − H)
H

dH

=
1
c

lim
Y→0

∫
Y< |H |< 1

Y

5 (G − H)
H

dH.

Now, observe that

H 5 (G) = −1
c

pv
∫
R

5 (G) − 5 (G − U)
U

dU = −1
c

pv
∫
R
ΔU 5 dU.

It follows that the fractional Laplacian |� | = mGH satisfies

|� | 5 = −1
c

pv
∫
R
mGΔU 5 dU.

Consequently, by writing

mGΔU 5

1 + (ΔU 5 )2
= mGΔU 5 − (mGΔU 5 )

(ΔU 5 )2

1 + (ΔU 5 )2
,

we see that the Muskat equation can be written under the form

mC 5 + |� | 5 = T ( 5 ) 5 where T ( 5 ) 5 = −1
c

∫
R
(mGΔU 5 )

(ΔU 5 )2

1 + (ΔU 5 )2
dU.

To give a rigorous meaning to the Muskat equation, we will show in a moment that
the map 5 ↦→ T ( 5 ) 5 is locally Lipschitz from �1(R) ∩ � 3

2 (R) to !2(R).

To do so, it is convenient to recall a characterization of Sobolev spaces in terms of
finite differences. Given a function 5 : R → R, an integer < ∈ N \ {0} and a real
number ℎ ∈ R, we define the finite differences X<

ℎ
5 as follows:

Xℎ 5 (G) = 5 (G) − 5 (G − ℎ), X<+1ℎ 5 = Xℎ (X<ℎ 5 ).

Notice that, by notations, we have

(ΔU 5 ) (G) =
XU 5

U
·
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Remark 2.2.1. The operators mG ,H , |� |B and XU are Fourier multipliers:

m̂GD(b) = 8bD̂(b), X̂UD(b) = (1 − 4−8Ub)D̂(b),

ĤD(b) = −8 b|b | D̂(b),
�|� |B D(b) = |b |BD̂(b).

Consequently, they commute with each other.

2.2.3 Gagliardo semi-norms

Given B ∈ (0, 1), we define the following Gagliardo semi-norm

(2.2.4) ‖D‖2¤�B2,2 :=
∬
R×R

|D(G) − D(H) |2

|G − H |2B
dG dH
|G − H | ·

Then, for B ∈ (0, 1),

(2.2.5) ‖D‖2¤�B =
1

4c2(B) ‖D‖
2
¤�B2,2

with 2(B) =
∫
R

1 − cos(ℎ)
|ℎ |1+2B

dℎ.

Notice that this is equivalent to

(2.2.6)

‖D‖2¤�B =
1

4c2(B)

∬
R×R

|D(G) − D(G − U) |2

|U |2B
dG

dU
|U |

=
1

4c2(B)

∫
R

‖XUD‖2!2

|U |2B
dU
|U | ·

This immediately implies the following

Lemma 2.2.2. For all 0 ∈ [0, +∞) and 1 ∈ (0, 1), there exists a positive constant
� > 0 such that

(2.2.7)
∫
R
‖XU 5 ‖2¤�0

dU
|U |1+21

= � ‖ 5 ‖2¤�0+1 .

Proof. Since ‖XU 5 ‖ ¤�0 = ‖XU ( |� |0 5 )‖!2 , (2.2.7) follows at once from (2.2.6)Ê
applied with D = |� |0 5 . �
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As an example of properties that is very simple to prove using the definition of
Sobolev spaces in terms of finite differences, let us prove the following proposition
(from Alazard and Lazar [28]).

Proposition 2.2.3. Consider the operator

T ( 5 )6 = −1
c

∫
R
ΔU6G

(ΔU 5 )2
1 + (ΔU 5 )2

dU,

where 6G := mG6.

i) For all 5 in �1(R) and all 6 in � 3
2 (R), the function

U ↦→ ΔU6G
(ΔU 5 )2

1 + (ΔU 5 )2

belongs to !1
U (R; !2

G (R)). Consequently, T ( 5 )6 belongs to !2(R). Moreover,
there is a constant � such that

(2.2.8) ‖T ( 5 )6‖!2 ≤ � ‖ 5 ‖ ¤�1 ‖6‖ ¤� 3
2
.

ii) There exists a constant � > 0 such that, for all functions 51, 52 in �1(R) and
for all 6 in � 3

2 (R),

‖(T ( 51) − T ( 52))6‖!2 ≤ � ‖ 51 − 52‖ ¤�1 ‖6‖ ¤� 3
2
.

iii) The map 5 ↦→ T ( 5 ) 5 is locally Lipschitz from �
3
2 (R) to !2(R).

Proof. 8) The proof will use the following Sobolev embedding (see Theorem 5.3.1
as well as the remark which follows the latter)

(2.2.9) ¤�C (R) ↩→ !
2

1−2C (R) for 0 ≤ C < 1
2
·

In particular, for C = 1/4, this gives that ¤�1/4(R) ↩→ !4(R).

Recall that, by notation, we have

ΔU 5 =
XU 5

U
·
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By combining the previous Sobolev embedding with Hölder’s inequality, we obtainΔU6G (ΔU 5 )21 + (ΔU 5 )2


!2
≤ ‖(ΔU6G) (ΔU 5 )‖!2 ≤ ‖ΔU6G ‖!4 ‖ΔU 5 ‖!4

.
‖XU6G ‖ ¤� 1

4

|U |
‖XU 5 ‖ ¤� 1

4

|U | ·

Therefore,

‖T ( 5 )6‖!2 .

∫ ‖XU6G ‖ ¤� 1
4

|U |
‖XU 5 ‖ ¤� 1

4

|U | dU

.

∫ ‖XU6G ‖ ¤� 1
4

|U |
1
4

‖XU 5 ‖ ¤� 1
4

|U |
3
4

dU
|U |

.
©«
∫ ‖XU6G ‖2¤� 1

4

|U |2
1
4

dU
|U |

ª®¬
1
2 ©«

∫ ‖XU 5 ‖2¤� 1
4

|U |2
3
4

dU
|U |

ª®¬
1
2

. ‖6G ‖ ¤� 1
2
‖ 5 ‖ ¤�1 = ‖6‖ ¤� 3

2
‖ 5 ‖ ¤�1 ,

hence the wanted inequality (2.2.8) .

88) Write that

(T ( 51) − T ( 52))6 = −
1
c

∫
ΔU6GΔU ( 51 − 52)" (U, G) dU

where

" (U, G) = (ΔU 51) + ΔU 52
(1 + (ΔU 51)2) (1 + (ΔU 52)2)

.

Since |" (U, G) | ≤ 1, by repeating similar arguments to those used in the first part,
we get

‖(T ( 51) − T ( 52))6‖!2 ≤
1
c

∫ ‖XU6G ‖!4

|U |
‖XU ( 51 − 52)‖!4

|U | dU

≤ 1
c

∫ ‖XU6G ‖ ¤� 1
4

|U |1/4
‖XU ( 51 − 52)‖ ¤� 1

4

|U |3/4
dU
|U |

. ‖6G ‖ ¤� 1
4 +

1
4
‖ 51 − 52‖ ¤� 1

4 +
3
4
.
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which implies

‖(T ( 51) − T ( 52))6‖!2 . ‖ 51 − 52‖ ¤�1 ‖6‖ ¤� 3
2
.

888) Consider 51 and 52 in �
3
2 (R). Then

T ( 51) 51 − T ( 52) 52 = T ( 51) ( 51 − 52) + (T ( 51) − T ( 52)) 52.

Then (2.2.8) implies that the !2-norm of the first term is bounded by

� ‖ 51‖ ¤�1 ‖ 51 − 52‖ ¤� 3
2
.

We estimate the second term by using statement 88). It follows that

‖T ( 51) 51 − T ( 52) 52‖!2 .
(
‖ 51‖

�
3
2
+ ‖ 52‖

�
3
2

)
‖ 51 − 52‖

�
3
2
,

which completes the proof. �

2.2.4 The critical Cauchy problem

In section, I discuss the main result from a series of papers with Quoc-Hung Nguyen
(see [33, 32, 31]) devoted to the study of solutions with critical regularity for the
two-dimensional Muskat equation. We prove that the Cauchy problem is well-posed
on the endpoint Sobolev space �3/2(R) of !2 functions with three-half derivative
in !2. This result is optimal with respect to the scaling of the equation.

A key feature of the Muskat equation is that (2.2.1) is preserved by the change of
unknowns:

5 (C, G) ↦→ 5_ (C, G) :=
1
_
5 (_C, _G) .

Now, by a direct calculation, one verifies that 5_C=0


¤�

3
2
= ‖ 50‖ ¤� 3

2
.

This means that the space ¤� 3
2 (R) is a critical space for the study of the Cauchy

problem.

Exercise 2.2.4. Check the previous claims.
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Theorem 2.2.5 (from [31]). 8) For any 50 ∈ �
3
2 (R), there is ) > 0 such that the

Cauchy problem has a unique solution 5 in

-
3
2 ()) =

{
5 ∈ �0 ([0, )];� 3

2 (R)
)

;
∫ )

0

∫
R

(mGG 5 )2
1 + (mG 5 )2

dG dC < ∞
}
.

88) There exists Y0 such that if ‖ 50‖ ¤� 3
2
≤ Y0 then the solution exists for all time.

The proof requires to

• uncover a certain null-type structure because of a degenerate parabolic behav-
ior;

• estimate the solutions for a normwhich depends on the initial data themselves.

2.2.5 Weighted fractional Laplacians

To prove Theorem 2.2.5, one well-known difficulty is that one cannot define a flow
map such that the lifespan is bounded from below on bounded subsets of this critical
Sobolev space. To overcome this, in [31] we estimate the solutions for a norm which
depends on the initial data themselves, using the weighted fractional Laplacians
introduced in our previous works [33, 32].

As the name indicates, a weighted fractional Laplacian attempts to be a slight
modulation of the usual fractional Laplacian |� |B = (−mGG)B/2.

Notation 2.2.6. Consider B ∈ [0, +∞) and a function q : [0, +∞) → [1,∞). The
weighted fractional Laplacian |� |B,q denotes the Fourier multiplier with symbol
|b |Bq( |b |), such that

F (|� |B,q 5 ) (b) = |b |Bq( |b |)F ( 5 ) (b).

Moreover, we define the space

(2.2.10) H B,q (R) = { 5 ∈ !2(R) : |� |B,q 5 ∈ !2(R)}.

We will consider special weight functions q depending on some extra functions
^ : [0,∞) → [1,∞), of the form

(2.2.11) q(_) =
∫ ∞

0

1 − cos(ℎ)
ℎ2 ^

(
_

ℎ

)
dℎ, for _ ≥ 0.
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In addition we will always assume that ^ is an admissible weight, in the sense of the
following definition.

Definition 2.2.7. An admissible weight is a function ^ : [0,∞) → [1,∞) satisfying
the following three conditions:

(H1) ^ is increasing;

(H2) there exists a positive constant 20 such that ^(2A) ≤ 20^(A) for any A ≥ 0;

(H3) the function A ↦→ ^(A)/log(1 + A) is decreasing on [A0,∞), for some A0 > 0
large enough.

The next results contain the main results about these operators.

Lemma 2.2.8. For all f > 0, there exists �f > 0 such that, for all 0 < A ≤ `,

Af^

(
1
A

)
≤ �f `f^

(
1
`

)
,(2.2.12)

Af^2
(
1
A

)
≤ �f `f^2

(
1
`

)
.(2.2.13)

Proof. 8) Use the decomposition:

Af^

(
1
A

)
=

^

(
1
A

)
log

(
4 + 1

A

) × [
Af log

(
4

1
f + 1

A

)]
×

log
(
4 + 1

A

)
log

(
4

1
f + 1

A

) ·
By assumption, the first factor is an increasing function of A for A large enough.
By computing the derivative, it is easily verified that the second factor is also an
increasing function of A. Eventually, the third factor is a bounded function on
(0, +∞).

88) We proceed as above, using this time the decomposition

Af^2
(
1
A

)
=

^2
(

1
A

)
log2

(
4 + 1

A

) × [
Af log2

(
4

2
f + 1

A

)]
×

log2
(
4 + 1

A

)
log2

(
4

2
f + 1

A

) ·
This completes the proof. �
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Remark 2.2.9. These inequalities have the following interpretation: even if the func-
tion A → ^(1/A) and A → ^2(1/A) are decreasing, since the function ^(A)/log(2+A)
is decreasing for A large enough, one expects that Af^(1/A) and Af^2(1/A) behave
as increasing functions of A .

We will see that ^ and q are equivalent. The reason for introducing two different
functions to code a single operator is that we will use them for different purposes.
We use q when we prefer to work with the frequency variable, whereas we will use
^ when the physical variable is more practical. The next proposition will be used
later to switch calculations between frequency and physical variables.

Proposition 2.2.10. Assume that q is as defined in (2.2.11) for some function ^
satisfying Assumption 2.2.7. Then, for all 6 ∈ S(R), there holds

|� |1,q 6(G) = 1
4

∫
R

26(G) − 6(G + ℎ) − 6(G − ℎ)
ℎ2 ^

(
1
|ℎ |

)
dℎ.

Proof. Notice that the Fourier transform of the function∫
R

26(G) − 6(G + ℎ) − 6(G − ℎ)
ℎ2 ^

(
1
|ℎ |

)
dℎ,

is given by (∫
R

2 − 2 cos(ℎb)
ℎ2 ^

(
1
|ℎ |

)
dℎ

)
6̂(b).

Therefore(
4|b |

∫ ∞

0

1 − cos(ℎ)
ℎ2 ^

(
|b |
|ℎ |

)
dℎ

)
6̂(b) = 4q(b) |b | 6̂(b) = 4�|� |1,q 6(b),

equivalent to the wanted result. �

Eventually, we will need the following link between |� |B,q and the function ^.

Proposition 2.2.11. 8) There exist 2, � > 0 such that, for all _ ≥ 0,

(2.2.14) 2^(_) ≤ q(_) ≤ �^(_).

88) Given 6 ∈ S(R), define the semi-norm

‖6‖B,^ =
(∬
R2
|26(G) − 6(G + ℎ) − 6(G − ℎ) |2

(
1
|ℎ |B ^

(
1
|ℎ |

))2 dG dℎ
|ℎ |

) 1
2

.
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Then, for all 0 < B < 2, there exist 2, � > 0 such that, for all 6 ∈ S(R),

2

∫
R

��|� |B,q 6(G)��2 dG ≤ ‖6‖2B,^ ≤ �
∫
R

��|� |B,q 6(G)��2 dG.

Proof. We prove statement 88) only, the proof of statement 8) is similar.

88) For ℎ ∈ R, the Fourier transform of G ↦→ 26(G) − 6(G + ℎ) − 6(G − ℎ) is given by
(2 − 2 cos(bℎ))6̂(b). So, Plancherel’s identity implies that

‖6‖2B,^ =
∬
R2
|26(G) − 6(G + ℎ) − 6(G − ℎ) |2 ^2

(
1
|ℎ |

)
1
|ℎ |1+2B

dG dℎ

=

∫
R
� (b)

��6̂(b)��2 db,

where

� (b) = 2
c

∫
R2
(1 − cos(bℎ))2^2

(
1
|ℎ |

)
1
|ℎ |1+2B

dℎ.

We claim that � (b) ∼ |b |2Bq( |b |)2.

Since |1 − cos(\) | ≤ min{2, \2} for all \ ∈ R, we have

� (b) ≤ 4
c2

∫
|ℎb |≥1

^2
(

1
|ℎ |

)
1
|ℎ |1+2B

dℎ + 1
c2

∫
|ℎb |≤1

|b |4 |ℎ |4 ^2
(

1
|ℎ |

)
1
|ℎ |1+2B

dℎ.

Since ^ is increasing (by assumption), the first integral is estimated by∫
|ℎb |≥1

^2
(

1
|ℎ |

)
1
|ℎ |1+2B

dℎ ≤ (^( |b |))2
∫
|ℎb |≥1

dℎ
|ℎ |1+2B

. ^2( |b |) |b |2B .

To estimate the second integral, we use Lemma 2.2.8 to infer

|ℎ | ≤ 1
|b | ⇒ |ℎ |2−B^2

(
1
|ℎ |

)
.

1
|b |2−B

^2 ( |b |) .

It follows that∫
|ℎb |≤1

|b |4 |ℎ |4 ^2
(

1
|ℎ |

)
1
|ℎ |1+2B

dℎ =
∫
|ℎb |≤1

|b |4 |ℎ |4 ^2
(

1
|ℎ |

)
1
|ℎ |1+2B

dℎ

= |b |4
∫
|ℎb |≤1

|ℎ |2−B ^2
(

1
|ℎ|

)
1
|ℎ |B−1 dℎ

. ^( |b |)2 |b |2+B
∫
|ℎ |≤1/|b |

dℎ
|ℎ |B−1 . ^( |b |)

2 |b |2B,
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where we have used the assumption B < 2 to obtain the last inequality.

Now, by combining the previous estimates, we deduce that � (b) . |b |2B^( |b |)2.
Since q ∼ ^, this proves that � (b) . |b |2Bq( |b |)2.

The proof of the lower bound is straightforward:

� (b) &
∫

2c
5 ≤bℎ≤

3c
5

^2
(

1
|ℎ |

)
1
|ℎ |1+2B

dℎ &

(∫
2c
5 ≤bℎ≤

3c
5

dℎ

)
^2( |b |) |b |1+2B

& (^( |b |))2 |b |2B .

Using again the equivalence q ∼ ^, this concludes the proof of the claim � (b) ∼
|b |2Bq( |b |)2, which in turn concludes the proof of statement 88). �

For large data, the time of existence must depend on the initial data themselves and
not only on its critical Sobolev norm. To overcome this problem, our strategy is to
estimate the solution for a stronger norm whose definition involves the initial data
themselves. To do so, we use the following elementary result.

Proposition 2.2.12. For all 50 in � 3
2 (R), there exists an admissible weight ^ sat-

isfying limA→+∞ ^(A) = ∞ and such that 50 belongs to H 3
2 ,q (R) where q is given

by (2.2.11).

Lemma 2.2.13. For any nonnegative integrable function l ∈ !1(R), there exists a
function [ : [0,∞) → [1,∞) satisfying the following properties:

1. [ is increasing and lim
A→∞

[(A) = ∞,

2. [(2A) ≤ 2[(A) for any A ≥ 0,

3. l satisfies the enhanced integrability condition:

(2.2.15)
∫
R
[( |A |)l(A) dA < ∞,

4. moreover, the function A ↦→ [(A)/log(4 + A) is decreasing on [0,∞).

Proof. Consider a sequence (U: ):≥1 such that U1 ≥ 45 and U: ≥ U10
:−1 and in

addition

(2.2.16) ∀: ≥ 1,
∫
|A |≥U:

l(A) dA ≤ 2−: .
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We set

(2.2.17) [(A) =


2 if 0 ≤ A < U1,

: + 1 +
log( 4+A

4+U: )

log( 4+U:+14+U: )
if U: ≤ A < U:+1.

It is easy to check that [ : [0,∞) → [1,∞) is an increasing function converging to
+∞ when A goes to +∞. Moreover, [ satisfies [(2A) ≤ 2[(A) for any A ≥ 0.

In addition,∫
[( |A |)l(A) dA ≤

∫
|A |≤U1

2l(A) dA +
∞∑
:=1
(: + 2)

∫
U:≤|A |≤U:+1

l(A) dA

≤ 2| |l | |!1 +
∞∑
:=1
(: + 2)2−:

≤ 2| |l | |!1 + �.

It remains to prove that A ↦→ [(A)/log(4 + A) is decreasing. To do so, write

(2.2.18)
d
dA

(
[(A)

log(4 + A)

)
=

1
log(4 + A)

(
[′(A) − 1

4 + A
[(A)

log(4 + A)

)
.

So, for 0 ≤ A < U1,

(2.2.19)
d
dA

(
[(A)

log(4 + A)

)
< 0,

while for U: ≤ A < U:+1 with : ≥ 1, we have

d
dA

(
[(A)

log(4 + A)

)
≤ 1
(4 + A) log(4 + A)2

(
log(4 + A)
log( 4+U:+14+U: )

− : − 1

)

≤ 1
(4 + A) log(4 + A)2

©«
log(4 + U:+1)
log( 4+U:+1

4+U1/10
:+1
)
− 2

ª®®¬ < 0,

where we have used U:+1 ≥ 45×10: .

This proves that A ↦→ [(A)/log(4+A) is decreasing on [0,∞). The proof is complete.
�
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Then, we are in position to state an improvement of statement 8) in Theorem 2.2.5
which asserts that, whenever one controls a bigger norm than the critical one, the time
of existence depends only on the norm. Recall thatH 3

2 ,q (R) is defined by (2.2.10).

Theorem 2.2.14. Consider a real number"0 > 0 and a function q given by (2.2.11)
for some admissible weight ^ satisfying limA→+∞ ^(A) = ∞. Then there exists a time
)0 > 0 depending on "0, ^ such that, for any initial data 50 in H 3

2 ,q (R) satisfying
‖ 50‖H 3

2 ,q
≤ "0, the Cauchy problem for (2.2.1) has a unique solution in the space

X 3
2 ,q ()0) :=

{
5 ∈ �0 ([0, )0];H

3
2 ,q (R)

)
;
∫ )0

0

∫
R

�� |� |2,q 5 ��2
1 + (mG 5 )2

dG dC < ∞
}
.

2.3 References (work in progress)

2.3.1 References about the equations

The first rigorous derivation ofDarcyÕs lawwas done byTartar [413] in the appendix
of the Book [383]. Further extensions can be found in [39, 317, 341]. A review of
the literature in terms of both mathematical results and physical motivation can be
found in the book by Hornung [247]. The latter reference discuss many extensions
of Darcy law, including Darcy law with memory, nonlinear Darcy law, or models
of one-phase Newtonian flows as well as of non-Newtonian fluids, to name a few.
The analysis of filtration in porous media plays a key role in many situations, see for
instance [342, 434, 435] and the references there in.

The Hele-Shaw equation plays a key role in Mathematical Biology (see [331, 358,
360, 359, 460, 305]). Muskat introduced the equations that bear his name in [345],
to model problems in petroleum engineering (see [346, 349] for many historical
comments).

It is often convenient to observe that there is a gradient flow structure. The fact
Mullins-Sekerka equation is a gradient flow for the area functionalH 3 (Σ) was first
observed by Almgren [40] and Giacomelli and Otto [219].

The Boussinesq equation (2.1.8) was derived from the Hele-Shaw equation (2.1.6)
by Boussinesq [92] to study groundwater infiltration; it also models the flow of gas in
porous media (see the monograph of Vázquez [432]). The thin-film equation (2.1.9)
was derived from the Mullins-Sekerka equation (2.1.7) by Constantin, Dupont,
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Goldstein, Kadanoff, Shelley and Zhou in [140] as a lubrication approximation
model of the interface between two immiscible fluids in a Hele-Shaw cell.

It has long been understood that the Muskat problem can be reduced to a parabolic
evolution equation for the unknown function 5 (see [105, 207, 364, 395]). The for-
mulation (2.2.1) thatwe are using arises from thework byCórdoba andGancedo [153]
who have studied this problem using contour integrals, and obtained this beautiful
formulation of the Muskat equation in terms of finite differences.

2.3.2 The Cauchy problem for the Hele-Shaw equation

The Cauchy problems for the Hele-Shaw and Mullins-Sekerka equations have been
studied by different techniques, for weak solutions, viscosity solutions or also clas-
sical solutions (see [27, 30, 120, 125, 126, 150, 208, 213, 235, 239, 284, 291, 352,
365]). In this book, we will restrict ourselves to the study of classical solutions.
There are many possible ways to study this problem: to mention a few approaches
we quote various PDE methods based on !2-energy estimates (see the works of
Chen [125], Córdoba, Córdoba and Gancedo [150], Knüpfer and Masmoudi [291],
Günther and Prokert [235], Cheng, Granero-Belinchón and Shkoller [126]), there are
also methods based on functional analysis tools and maximal estimates (see Escher
and Simonett [208], the results reviewed in the book by Prüss and Simonett [365]).

2.3.3 The Cauchy problem for the Muskat equation

The study of the Cauchy problem for the Muskat equation begun two decades
ago. Inspired by the analysis of free boundary flows, several different approaches
succeeded to establish local well-posedness results for smooth enough initial data
starting with the works of Yi [451], Ambrose [43, 44], Caflisch, Howison and Siegel
[395]. In the last several years, this problem was extensively studied. There are
now many different proofs that the Cauchy problem is well-posed, locally in time.
The well-posedness of the Cauchy problem was proved in [153] by Córdoba and
Gancedo for initial data in �3(R) in the stable regime d2 > d1 (they also proved
that the problem is ill-posed in Sobolev spaces when d2 < d1). In [126], Cheng,
Granero-Belinchón, Shkoller proved the well-posedness of the Cauchy problem
in �2(R) (introducing a Lagrangian point of view which can be used in a broad
setting, see [224]). The Cauchy problem was then studied in various sub-critical
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spaces. Firstly, by Constantin, Gancedo, Shvydkoy and Vicol [141] in the Sobolev
space,2,? (R) for some ? > 1, by Deng, Lei and Lin in Hölder spaces [191], and by
Matioc [327, 328] for initial data in�B (R) with B > 3/2 (see also Alazard-Lazar [28]
and Nguyen and Pausader [352]). Regularity criteria were obtained in [141, 222]
in terms of a control of some critical quantities.

Since the Muskat equation is parabolic, the proof of the local well-posedness results
also gives global well-posedness results under a smallness assumption, see Yi [451].
The first global well-posedness results under mild smallness assumptions, namely
assuming that the Lipschitz semi-norm is smaller than 1, was obtained byConstantin,
Córdoba, Gancedo, Rodríguez-Piazza and Strain [139] (see also [141, 357]).

On the other hand, there are blow-up results for some large enough data by Castro,
Córdoba, Fefferman, Gancedo and López-Fernández ([113, 114, 116]). They prove
the existence of solutions such that at time C = 0 the interface is a graph, at a later
time C1 > 0 the interface is no longer a graph and then at a subsequent time C2 > C1,
the interface is �3 but not �4.

The previous discussion raises a question about the possible existence of a criteria
on the slopes of the solutions which would force/prevent them to enter the unstable
regime where the slope is infinite. Surprisingly, it was shown that it is possible to
solve the Cauchy problem for initial data whose slope can be arbitrarily large. Deng,
Lei and Lin in [191] obtained the first result in this direction, under the assumption
that the initial data are monotone. Cameron [108] proved the existence of a modulus
of continuity for the derivative, and hence a global existence result assuming only
that the product of themaximal andminimal slopes is bounded by 1; thereby allowing
arbitrarily large slopes too (recently, Abedin and Schwab also obtained the existence
of a modulus of continuity in [1] via Krylov-Safonov estimates). Then, by using
a new formulation of the Muskat equation involving oscillatory integrals, Córdoba
and Lazar established in [154] that the Muskat equation is globally well-posed in
time, assuming only that the initial data is sufficiently smooth and that the ¤�3/2(R)-
norm is small enough. This result was extended to the 3D case by Gancedo and
Lazar [214]. Let us also quote papers by Vazquez [433], Granero-Belinchón and
Scrobogna [223] for related global existence results for different equations.

Eventually, let usmention thatmany recent results focus on the existence and possible
non-uniqueness of weak-solutions (we refer the reader to [94, 152, 409, 112, 211,
353]). These problems arise for instance in the unstable regime d1 > d2, to study
the existence mixing zones or the dynamic between the two different regimes.
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2.3.4 References about critical Cauchy problems

The study of thewell-posedness of theCauchy problem for various partial differential
equations in critical spaces has attracted a lot of attention in the last decades.

The Muskat equation is parabolic, but it is interesting to also discuss other type
of equations. We begin with the Schrödinger equation, which is the prototypi-
cal example of a semi-linear dispersive equation. For this equation, the study of
Cauchy problem in the energy critical case goes back to the works of Cazenave
and Weissler [118, 119] and culminates with the global existence results of Bour-
gain [91], Grillakis [226] and Colliander, Keel, Staffilani, Takaoka and Tao [136].
In sharp contrast with sub-critical problems, the time of existence given by the local
theory in [118, 119] depends on the profile of the data and not only on its norm.
As a result, the conservation of the energy is unsufficient to obtain a global exis-
tence result. Detailed historical accounts of the subject can be found in the book
by Tao [412]. We also refer to the recent paper by Merle, Raphäel, Rodnianski
and Szeftel [332] which establishes an unexpected blow-up result for supercritical
defocusing nonlinear Schrödinger equations. If instead of a semi-linear equation,
one considers a quasi-linear problem, then the scaling is not necessarily the only
relevant criteria. One key result in this direction is about a hyperbolic equation in
general relativity, namely the resolution of the bounded !2 curvature conjecture by
Klainerman, Rodnianski and Szeftel [290].

Many papers have been devoted to the study of critical problems for parabolic
equations. Consider for instance the equation

mC\ + D · ∇\ + (−Δ)
U
2 \ = 0 with D = ∇⊥(−Δ)− 1

2 \.

This equation arises as a dissipative version of the surface quasi-geostrophic equation
introduced by Constantin-Majda-Tabak [144]. Here the critical case corresponds to
U = 1. In this case, the global in time well-posedness has been proved by Kiselev-
Nazarov-Volberg [288], Caffarelli-Vasseur [104] and Constantin-Vicol [147] (see
also [287, 396, 431]).

2.3.5 Entropies and maximum principles

In the literature, there are many definitions of entropies for various evolution equa-
tions. The common idea is that entropy dissipation methods allow to study the
large time behavior or to prove functional inequalities (see [76, 111, 53, 209, 438,
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83, 196, 82, 462, 276]). For a thorough discussion of the role of entropy methods
in information theory, we refer to Villani’s lecture notes [437] and his book [438,
Chapters 20, 21, 22].

The study of entropies plays a key role in the study of the thin-film equation (and its
variant) since the works of Bernis and Friedman [73] and Bertozzi and Pugh [78].
The simplest observation is that, if ℎ is a non-negative solution to mCℎ+mG (ℎm3

G ℎ) = 0,
then

d
dC

∫
T
ℎ2 dG ≤ 0,

d
dC

∫
T
(mGℎ)2 dG ≤ 0.

(This can be verified by elementary integrations by parts.) To give an example
of hidden Lyapunov functionals, consider, for ? ≥ 0 and a function ℎ > 0, the
functionals

�? (ℎ) =
∫
T

ℎ2
G

ℎ?
dG.

Laugesen discovered ([303]) that, for 0 ≤ ? ≤ 1/2, �? (ℎ) is a Lyapunov functional.
This result was complemented by Carlen andUlusoy ([109]) who showed that�? ( 5 )
is an entropy when 0 < ? < (9 + 4

√
15)/53. We also refer to [71, 177, 79, 277] for

the study of entropies of the form
∫
ℎ? dG with 1/2 ≤ ? ≤ 2.

Still for the thin-film equation, the study of the decay of Lebesgue normswas initiated
by Bernis and Friedman [73] and continued by Beretta-Bertsch-Dal Passo [71], Dal
Passo–Garcke–Grün [177] and more recently by Jüngel and Matthes [277], who
performed a systematic study of entropies for the thin-film equation, by means of a
computer assisted proof. The study of these decay estimates is related to the study
of functional inequalities: we refer to Bernis [72], Dal Passo–Garcke–Grün [177]
and [18].

In addition to Lyapunov functionals, maximum principles also play a key role in the
study of these parabolic equations. One can think of the maximum principles for
the mean-curvature equation obtained by Huisken [249] and Ecker and Huisken (see
[205, 204]), used to obtain a very sharp global existence result of smooth solutions.
Many maximum principles exist also for the Hele-Shaw equations (see [284, 120]).
In particular, we will use the maximum principle for space-time derivatives proved
in [30]. For the thin-film equations of the form mCℎ + mG ( 5 (ℎ)m3

G ℎ) = 0 with 5 (ℎ) =
ℎ< with < ≥ 3.5, in one space dimension, if the initial data ℎ0 is positive, then the
solution ℎ(G, C) is guaranteed to stay positive (see [73, 77] and [177, 79, 457, 96]).
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Part II

Tools
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Chapter 3

Introduction to paradifferential
calculus

This chapter is a short self-contained introduction to the application of paradiffer-
ential calculus to the study of the Dirichlet-to-Neumann operator.

3.1 Introduction

3.1.1 Bony’s paradifferential operators

Bony’s theory of paradiferential operators allows to study the regularity of the
solutions of nonlinear partial differential equations. This theory lies at the interface
between harmonic analysis and microlocal analysis. It has a long history that owes
a lot to Calderón and Zygmund, Coifman and Meyer, Kohn and Nirenberg, as well
as Hörmander.

Since the work of Kohn–Nirenberg and Hörmander it is said that that ) is a pseudo-
differential operator if we can define it from a function 0 = 0(G, b) by the relation

(3.1.1) )
(
48G·b

)
= 0(G, b)48G·b .

We then say that 0 is the symbol for ) and we denote ) = Op(0). For instance, the
operator associated with the symbol 0 =

∑
U 0U (G) (8b)U is simply the differential

operator ) =
∑
U 0U (G)mUG (with classical notations). Another fundamental example
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is the case of the operator |�G | that we have already defined by

|�G | 48G·b = |b | 48G·b ,

so that |�G | = Op( |b |).

The pseudo-differential calculus is a process that associates to a symbol 0 = 0(G, b)
defined on R3 ×R3 an operator Op(0) such that one can understand the properties of
these operators (product, adjoint, boundedness on the usual spaces of functions...)
simply by looking at the properties of the symbols.

The application that associates an operator Op(0) to the symbol 0 is called a
quantification. There are very many quantizations that are known to be useful,
which are variants of (3.1.1). Bony’s quantization is perfectly suited for non-linear
problems. Its specificity is to quantize symbols that have a limited regularity in G.
It will allow us to quantize, among others, the symbol√

(1 + |∇[(G) |2) |b |2 − (∇[(G) · b)2,

in situations where [ is not very regular (for our subject matter, we are interested in
the case where [ is lipschitzian, so that this symbol is barely bounded in G).

On the other hand, Calderón and his school favoured the point of view of the study
of an operator by the study of its kernel. This distinction is also found in the study
of free boundary problems. This is how the operator |�G | appears much more often
written in the form mGH where H is the Hilbert transform, which is defined on the
functions of a single variable by

H 5 (G) = lim
Y→0

1
c

∫
|G−C |>Y

5 (C)
G − C dC.

A central result in the theory of singular integrals concerns the commutator � ◦
|�G | − |�G | ◦ � where � is the operator of multiplication by one function 0(G).
Calderón proved that this commutator is bounded to !2 if and only if the function
0(G) is lipschitzian (see the introduction of Meyer’s book [338]). This estimate will
play an important role in the problems we will consider.

3.1.2 The Dirichlet-to-Neumann operator

A notable part of the analysis of free boundary problems consists in studying the
Dirichlet-to-Neumann operator. We present here some of the results on this topic
which are proved later in Chapter 4.
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Let [ : R3 → R be a smooth enough function and consider the open set

Ω := { (G, H) ∈ R3 × R ; H < [(G) }.

If k : R3 → R is another function, and if we call q : Ω → R the unique solution
of ΔG,Hq = 0 in Ω satisfying q |H=[(G) = k and a convenient vanishing condition at
H → −∞, one defines the Dirichlet-to-Neumann operator � ([) by

� ([)k =
√

1 + |∇[ |2 m=q |H=[,

where m= is the outward normal derivative on mΩ. In Chapter 4 we make precise
the above definition and study the action of � ([) on different spaces. By standard
variational arguments, one can prove that � ([)k is well-defined for any function k
that belongs to the Sobolev space �1/2(R3).

Proposition 3.1.1. Let [ be a Lipschitz function in ,1,∞(R3). Then � ([) is well-
defined and bounded from �1/2(R3) to �−1/2(R3) and satisfies an estimate

‖� ([)k‖
�
− 1

2
≤ �

(
‖∇[‖!∞

) |� | 12 k
!2 ,

where � (·) is a non decreasing continuous function of its argument.

The previous proposition will be proven using classical variational arguments. On
the other hand, when the domain is smoother, this problem can be studied by means
of of microlocal analysis. In particular, if [ ∈ �∞

1
(R3), it is known since Calderón

that � ([) is a pseudo-differential operator of order 1. This is true in any dimension
3 ≥1. If 3 = 1, one can give a very simple rigorous meaning to the previous
statement. Indeed, the latter simplifies to the following

Proposition 3.1.2. Assume that 3 = 1 and [ ∈ �∞
1
(R). Then � ([) can be written

under the form

(3.1.2) � ([)k = |�G | k + '([)k,

where '([) 5 is a smoothing operator, bounded from �` (R) to �`+< (R) for any
integer <. Namely, for any < ∈ N, there exists a constant  ≥ 1 such that

(3.1.3) ∀` ≥ 1
2
, ‖'0([)k‖�`+< ≤ � (‖[‖�`+ ) ‖k‖�` ,

where � (·) is a non decreasing continuous function of its argument.
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This result is not satisfactory for the analysis of the free boundary problems we want
to study. For our subject matters, [ and k are expected to have essentially the same
regularity so that the constant  that appears in (3.1.3) corresponds to a loss of
derivatives. We need estimates without loss of derivatives. In this direction, let us
state the following result about the boundedness of � ([) on Sobolev spaces.

Proposition 3.1.3. Let 3 ≥ 1, B > 1 + 3
2 and 1

2 ≤ f ≤ B. Then, for all [ ∈ �
B (R3)

and all 5 ∈ �f (R3), � ([) 5 belongs to �f−1(R3), together with the estimate

(3.1.4) ‖� ([) 5 ‖�f−1 ≤ �
(
‖[‖�B

)
‖ 5 ‖�f ,

where � (·) is a non decreasing continuous function of its argument.

Ideally, we would like a result which includes the two previous propositions. To do
so, we need to pause to introduce paraproducts.

3.1.3 Paraproducts

To make this introductory chapter self-contained, we recall here the definition of a
paraproduct, which is the simplest example of a paradifferal operator.

One can define a paraproduct very simply, using the Fourier inversion formula:

0(G)1(G) = 1
(2c)23

∬
R3×R3

48G·(b1+b2) 0̂(b1) 1̂(b2) db1 db2.

Let us decompose the integral in three terms∬
R3×R3

=

∬
|b1+b2 |∼|b2 |

+
∬
|b1+b2 |∼|b1 |

+
∬
|b1 |∼|b2 |

to obtain the following decomposition of the product

01 = )01 + )10 + '(0, 1).

To define these operators more precisely, let us consider a cut-off function \ in
�∞(R3 × R3) such that

\ (b1, b2) = 1 if |b1 | ≤ Y1 |b2 | , \ (b1, b2) = 0 if |b1 | ≥ Y2 |b2 | ,
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with 0 < Y1 < Y2 < 1. Given two functions 0 = 0(G) and 1 = 1(G) one defines

)01 =
1

(2c)23

∬
48G·(b1+b2)\ (b1, b2)0̂(b1)1̂(b2) db1 db2,

)10 =
1

(2c)23

∬
48G·(b1+b2)\ (b2, b1)0̂(b1)1̂(b2) db1 db2,

'B (0, 1) =
1

(2c)23

∬
48G·(b1+b2) (1 − \ (b1, b2) − \ (b2, b1)

)
0̂(b1)1̂(b2) db1 db2.

This is Bony’s decomposition of the product of two functions. One says that )01
and )10 are paraproducts, while 'B (0, 1) is a remainder. The key property is that
a paraproduct by an !∞ function acts on any Sobolev spaces �B with B in R. The
remainder term 'B (0, 1) is smoother than the paraproducts )01 and )10. We have
the following results:

∀f ∈ R, 0 ∈ !∞(R3), 1 ∈ �f (R3) ⇒ )01 ∈ �f (R3),

∀f ∈ (0, +∞), 0 ∈ �f (R3), 1 ∈ �f (R3) ⇒ 'B (0, 1) ∈ �2f−3/2(R3).

3.1.4 Paralinearization of the Dirichlet–Neumann operator

Once paraproducts have been defined, we are in position to introduce a paralin-
earization formula for the Dirichlet-to-Neumann operator. The next result, proved
in collaboration with Guy Métivier ([29]) allows to study the microlocal properties
of the Dirichlet-to-Neumann operator � ([)k in the case where [ and k have the
same regularity. Again, for the sake of simplicity, we state the result in the particular
case where 3 = 1 and refer to Chapter 4 for the general case.

Proposition 3.1.4 (from [29]). There exists  > 0 such that the following property
holds: For all functions [ and k belonging to the Sobolev space �B (R), with B ≥  ,
we have

� ([)k = |�G | (k − )mHq |H=[[) − mG ()mGq |H=[[) + � ([, k),

where q denotes the harmonic extension of k,

ΔG,Hq = 0 in Ω = {(G, H) ∈ R × R : H < [(G)}, q|H=[ = k,

and where
‖� ([, k)‖�2B− ≤ �

(
‖[‖�B

)
‖k‖�B ,

where � is a non-decreasing function of its argument.

65



For [ ∈ �∞, this gives the Calderón result alluded to earlier. This result makes
it easy to prove estimates that would otherwise only be obtained using (difficult)
estimates of solutions to elliptic problems. For instance, the commutator properties
between the Dirichlet-to-Neumann operator and a Fourier multiplier can be deduced
directly from the properties of symbolic calculus.

The novelty is that we understand perfectly how the operator � ([) depends on [,
except for a regular remainder. The fact that the remainder ' is twice as regular
as [ and k plays an important role for applications to the study of small divisors
problems (see [29, 16]) or to the study of exact controllability (see [17, 458]) in the
study of 3D travelling waves.

On the other hand, in the study of Cauchy’s problem with irregular data, it is enough
to have a remainder which has the same regularity as [. The difficulty is then to
know how to deal with indices B which are small. In this direction, we have proven
with Nicolas Burq and Claude Zuily various results. For instance, in the article [19]
we have shown that the previous theorem is true with B > 2+3/2 and  = (3+3)/2.
In addition we gave an estimate of the differential of '([, k) with respect to [.
Another useful result is the following

Proposition 3.1.5 (from [22]). Consider real numbers B, f, Y such that

B > 1 + 1
2
,

1
2
≤ f ≤ B − 1

2
, 0 < Y ≤ 1

2
, Y < B − 1 − 1

2
.

Then there exists a non-decreasing function � : R+ → R+ such that

‖� ([) 5 − |�G | 5 ‖�f−1+Y (R) ≤ �
(
‖[‖�B (R)

)
‖ 5 ‖�f (R) .

3.2 The Calderón-Vaillancourt theorem

Given a function 0 = 0(G, b) and a function D = D(G), we want to study operators �
defined by expression of the form

�D(G) = 1
(2c)3

∫
R3
48G·b0(G, b)D̂(b) db.

Notice that, if 0 = 1, then the Fourier inversion theorem implies that � = Id. More
generally, if 0(G, b) = ∑

0U (G) (8b)U, then � is the differential operator
∑
0Um

U
G .

66



A pseudo-differential operator is an operator of the previous form, but where the
function 0(G, b) is not necessarily a polynomial function. In this chapter, we propose
to study two elementary results about these operators. We will assume that 0 is a
smooth bounded function and prove that � is bounded on !2(R3).

3.2.1 Continuity on the Schwartz class

Consider a function 0 ∈ �∞
1
(R3 × R3). By definition, this means that, for all

multi-indices U and V in N3 , we have

sup
(G,b)∈R3×R3

���mUG mVb 0(G, b)��� < +∞.
Given any function D ∈ S(R3) in the Schwartz class and a fixed G ∈ R3 , the function
b ↦→ 0(G, b)D̂(b) belongs to S(R3

b
). In particular, it is integrable and we may define

the function Op(0)D by

Op(0)D(G) = (2c)−3
∫
R3
48G·b0(G, b)D̂(b) db.

We say that Op(0) is a pseudo-differential operator and we call 0 its symbol.

Proposition 3.2.1. For any 0 ∈ �∞
1
(R3 × R3) and any D ∈ S(R3), the function

Op(0)D is well-defined and belongs to S(R3). Moreover Op(0) is continuous from
S(R3) into S(R3).

Proof. Since D̂ ∈ S(R3), we can apply Lebesgue’s differentiation theorem to check
easily that Op(0)D ∈ �∞(R3). So it will suffice to prove estimates.

Using ‖0‖!∞ < +∞ and
〈b〉23 D̂

!∞ < +∞, we get the inequality

|Op(0)D(G) | 6 (2c)−=
∫
‖0‖!∞

〈b〉23 D̂
!∞ 〈b〉

−23 db,

which implies that Op(0)D is bounded together with the estimate

‖Op(0)D‖!∞ 6 �N23 (D̂)

where we used the notation N? (i) =
∑
|U |6?,|V |6?

GUmVG i
!∞

to denote the canon-

ical semi-norms on the Schwartz space; let us recall that the Fourier transform is
continuous from S(R3) into S(R3) and that

N23 (D̂) 6 �23N33+1(D).
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To estimate the other semi-norms inS(R3) ofOp(0)D, we use the following formulas
(to be checked as an exercise)

mG 9 Op(0)D = Op(0) (mG 9D) + Op(mG 90)D,
G 9 Op(0)D = Op(0) (G 9D) + 8Op(mb 90)D.

Thus, GUmVG Op(0)D can written as a linear combination of terms of the form

Op
(
m
W
G m

X
b 0

)
(GU−XmV−WG D).

Since mWG mXb 0 belongs to �∞
1
(R3 × R3) and since GU−XmV−WG D belongs to S(R3), we

are back to the previous case. This shows that Op(0)D belongs to S(R3) and that
we have estimates for the semi-norms of Op(0)D in terms of the semi-norms of D,
which in turn proves that Op(0) is continuous from S(R3) to itself. �

3.2.2 Boundedness on !2

We can now state the main result, which asserts that one can extend Op(0) as a
bounded operator from !2(R3) into itself.

Theorem 3.2.2. If 0 ∈ �∞
1
(R23), the operator Op(0) can be uniquely extended as

a bounded linear operator in L(!2(R3)).

Wewill demonstrate this result by assuming, to simplify the notations, that the space
dimension 3 is less than or equal to 3 (otherwise just replace the polynomial %(Z)
below by (1 + |Z |2): where : is an integer such that 4: > 3).

Let us introduce the polynomial

%(Z) = 1 + |Z |2 (Z ∈ R3 , 3 = 1, 2, 3).

Lemma 3.2.3. Given a function D ∈ S(R3), we introduce the function

,D(G, b) =
∫
R3
4−8H·b%(G − H)−1D(H) dH ((G, b) ∈ R23).

8) Then,D is a function �∞
1
(R23) and moreover for any multi-indices U, V, W,

sup
R23

%(G) |b |W
���(mUG mVb,D) (G, b)��� < +∞.
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88) There is a constant � such that

(3.2.1) ‖,D‖!2 (R23) = � ‖D‖!2 (R3)

for any D in S(R3).

888) For any W ∈ N3 , there are �W such asmWG,D!2 (R23) 6 �W ‖D‖!2 (R3) .

Proof. 8) We verify that

bW (mUG m
V

b
,D) (G, b) =

∫
8 |W |mWH

(
4−8H·b

)
(−8H)VmUG (%(G − H)−1)D(H) dH,

so, by integrating by parts

bW (mUG m
V

b
,D) (G, b)

=
∑

W′+W′′=W

W!
W′!W′′!

∫
(−8) |W |mW

′
H

(
D(H) (−8H)V

)
(−1) |W′′ | (mW′′+U1/%) (G − H)4−8H·b dH.

We next use the elementary estimates���mUZ 〈Z〉−2
��� 6 �U〈Z〉−2−|U | 6 �U〈Z〉−2

to deduce that

|mU (1/%) (G − H) | 6 �U (1 + |G − H |2)−1 6 2�U (1 + |G |2)−1(1 + |H |2),

where the last inequality comes from the fact that

1 + |G |2 = 1 + |G − H + H |2 6 1 + 2|G − H |2 + 2|H |2 6 2(1 + |G − H |2) (1 + |H |2).

88) For any G ∈ R3 ,,D(G, ·) is the Fourier transform of H ↦→ D(H)%(G − H)−1. So∫
|, (G, b) |2 db = (2c)3

∫ ��D(H)%(G − H)−1��2 dH

according to Plancherel’s formula. So∬
|, (G, b) |2 db dG = (2c)3

∬ ��D(H)%(G − H)−1��2 dH3G = �2 ‖D‖2
!2 (R3) .

888) By combining the above observations. �
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Lemma 3.2.4. We have

D̂(b) = 4−8G·b (� − Δb)
(
48G·b,D(G, b)

)
and

E(G) = 1
(2c)3

4−8G·b (� − ΔG)
(
48G·b,Ê(b, G)

)
.

Proof. Like (� − Δb)48- ·b = %(-) we have

48G·b D̂(b) =
∫

48(G−H)·bD(H) dH = (� − Δb)
∫

48(G−H)·b%(G − H)−1D(H) dH.

In a dual way, using the inverse Fourier transform, we have

48G·bE(G) = 1
(2c)=

∫
48(b−[)·G Ê([) d[

=
1
(2c)= (� − ΔG)

∫
48(b−[)·G%(b − [)−1Ê([) d[,

which implies the second identity. �

Proof of Theorem 3.2.2. Given the density of S(R3) in !2(R3), it is enough to
demonstrate the inequality

‖Op(0)D‖!2 6 � ‖D‖!2

for any D in S(R3). Let us consider two functions D, E in S(R3) and let us set

� :=
∬

48G·b0(G, b)D̂(b)E(G) db dG.

We want to show that |� | 6 � ‖D‖!2 ‖E‖!2 . For this we will rewrite � as a scalar
product in !2(R23) of functions involving,D and,Ê.

Let us start by writing � in the form

� =

∬
0(G, b)

[
(� − Δb)

(
48G·b,D(G, b)

]
E(G) db dG.

Since (� − Δb)
(
48G·b,D(G, b)E(G)

)
belongs to S(R23), we can integrate by parts in

b and deduce that

� =

∬ [
(� − Δb)0(G, b)

]
,D(G, b)48G·bE(G) db dG.
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Using the identity for E it comes

� =

∬ [
(� − Δb)0(G, b)

]
,D(G, b) (� − ΔG)

(
48G·b,Ê(b, G)

)
dG

and integrating by parts in G,

� =

∬
(� − ΔG)

[ (
(� − Δb)0(G, b)

)
,D(G, b)

]
48G·b,Ê(b, G) db dG

so

� =
∑

|V |62,|U |+|W |62
�UVW

∬
(mUG m

V

b
0(G, b))mWG,D(G, b),Ê(b, G)48G·b dG db.

We conclude the proof with the Cauchy-Schwarz inequality and the previous results:mWG,D!2 (R23) 6 �W ‖D‖!2 (R3) ,,Ê(b, G)
!2 (R23) = �

Ê
!2 = �(2c)

3
2 ‖E‖!2 (R3) ,

where the Plancherel formula was used in the last inequality. �

3.3 Littlewood-Paley Decomposition

We begin by introducing a dyadic decomposition of the unity. This decomposition
allows to introduce a parameter (large or small) in a problem which does not have
any. It is a simple and extremely fruitful idea.

Lemma 3.3.1. Let 3 ≥ 1. There exist k ∈ �∞0 (R
3) and i ∈ �∞0 (R

3) such that the
following properties hold:

(i) (Support conditions) We have 0 ≤ k ≤ 1, 0 ≤ i ≤ 1 and

suppk ⊂ {|b | 6 1} , supp i ⊂
{

3
4
6 |b | 6 2

}
.

(ii) (Decomposition of the unity) For any b ∈ R3 ,

(3.3.1) 1 = k(b) +
∞∑
?=0

i(2−?b).
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(iii) (Almost orthogonality) For any b ∈ R3 ,

(3.3.2)
1
3
≤ k2(b) +

+∞∑
?=0

i2(2−?b) ≤ 1.

Proof. Letk ∈ �∞0 (R
3;R) be a radial function verifyingk(b) = 1 for |b | 6 3/4, and

k(b) = 0 for |b | ≥ 1, and decreasing (if |b | ≥ |[ | then k([) ≤ k([)). Then, we set
i(b) = k(b/2)−k(b) and notice that i is supported in the annulus {3/4 6 |b | 6 2}.
For any integer # and any b ∈ R3 , we have

k(b) +
#∑
?=0

i(2−?b) = k(2−#−1b),

which immediately implies (3.4.2) by letting # goes to +∞.

It remains to prove (3.3.2). For any integer # we have

k2(b) +
#∑
?=0

i2(2−?b) ≤
(
k(b) +

#∑
?=0

i(2−?b)
)2
.

On the other hand, notice that, for all b ∈ R3 , there are never more than three
non-zero terms in the set {k(b), i(b), . . . , i(2−?b), . . .}. Consequently, using the
elementary inequality (0 + 1 + 2)2 ≤ 3(02 + 12 + 22), we easily get(

k(b) +
#∑
?=0

i(2−?b)
)2
≤ 3

(
k2(b) +

#∑
?=0

i2(2−?b)
)2
.

Then we obtain (3.3.2) by letting # goes to +∞ in the previous inequalities. �

Let us define, for ? ≥ −1, the Fourier multipliers Δ? as follows:

Δ−1 := k(�G) and Δ? := i
(
2−?�G

)
(? ≥ 0).

Let us also introduce, for ? ≥ 0, the Fourier multipliers (?:

(? := k
(
2−?�G

)
=

?−1∑
:=−1

Δ: .

The partition of the unit also implies a partition of the identity.
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Proposition 3.3.2. We have
� =

∑
?≥−1

Δ?,

in the sense of distributions: For any D ∈ S′(R3), the series
∑
D? converges

to D in S′(R3), which means that
∑
? 〈Δ?D, i〉S′×S converges to 〈D, i〉S′×S for any

i ∈ S(R=).

Proof. Let D ∈ S′(R3) and \ ∈ S(R3). The partial sums (#D =
∑#−1
?≥0 Δ?D are well

defined and

〈F ((#D) , \〉 = 〈k(2−#b)F (D), \〉 = 〈F (D), k(2−#b)\〉.

Now lim
#→+∞

k(2−#b)\ = \ in S(R3), so

F ((#D) −→
?→+∞

F (D) in S′(R3).

By continuity of F −1 : S′(R3) → S′(R3) we have D = ∑
?≥−1 Δ?D. �

Proposition 3.3.3. (i) For all D ∈ !2(R3),

(3.3.3)
∑
?≥−1

Δ?D2
!2 ≤ ‖D‖2!2 ≤ 3

∑
?≥−1

Δ?D2
!2 .

(ii) Consider B ∈ R. A temperate distribution D ∈ S′(R3) belongs to the Sobolev
space �B (R3) if and only if

(a) Δ−1D ∈ !2(R3) and for all ? ≥ 0, Δ?D ∈ !2(R3);
(b) the sequence X? = 2?B

Δ?D!2 belongs to ℓ2(N ∪ {−1}).

Moreover, there exists a constant � such that

(3.3.4)
1
�
‖D‖�B ≤

( +∞∑
?=−1

X2
?

) 1
2 ≤ � ‖D‖�B .

Proof. The first point follows immediately from (3.3.2) and Plancherel’s identity.

Since ‖D‖�B = ‖〈�G〉BD‖!2 , by applying (3.3.3) with D replaced by 〈�G〉BD, we
obtain ∑

?≥−1

Δ? 〈�G〉BD
2
!2 ≤ ‖D‖2�B ≤ 3

∑
?≥−1

Δ? 〈�G〉BD
2
!2 .
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Consider ? ≥ 0 and write thatΔ? 〈�G〉BD
2
!2 = (2c)−3

∫
R3
(1 + |b |2)Bi(2−?b)

��D̂(b)��2 db.

Since (1 + |b |2)Bi(2−?b) ∼ 22?B on the support of i(2−?b), we see that

(3.3.5)
1
�

22?B Δ?D2
!2 ≤

Δ? 〈�G〉BD
2
!2 ≤ �22?B Δ?D2

!2 ,

for some constant � depending only on B. We have a similar estimate for Δ−1D and
the wanted result easily follows. �

Proposition 3.3.4. 8) Consider B ∈ R and ' ≥ 1. Assume that (D 9 ) 9≥−1 is a
sequence of functions in !2(R3) such that

supp D̂−1 ⊂ {|b | ≤ '}, supp D̂ 9 ⊂
{ 1
'

2 9 ≤ |b | ≤ '2 9
}
,

and, in addition,

(3.3.6)
∑
9≥−1

22 9 B D 92
!2 < +∞.

Then the series
∑
D 9 converges to a function D ∈ �B (R3) and moreover,

‖D‖2�B ≤ �
∑
9≥−1

22 9 B D 92
!2 ,

for some constant � depending only on B and '.

88) If B > 0, then the previous result holds under the weaker assumption that supp D̂ 9
is included in the ball �(0, '2 9 ).

Proof. 8)We begin by proving that the series
∑
D 9 is normally convergent in �A (R3)

for any 0 < A < B. Assuming that supp D̂ 9 is included in an annulus
{ 1
'

2 9 ≤ |b | ≤
'2 9

}
, parallel to (3.3.5), we see that 2 9A

D 9!2 ∼
D 9�A . So, the Cauchy-Schwarz

inequality implies that∑
9≥−1

D 9�A ≤ ( ∑
9≥−1

22 9 B D 92
!2

) 1
2
( ∑
9≥−1

22 9 (A−B)
) 1

2

.
(∑

22 9 B D 92
!2

) 1
2
< +∞.
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This shows that the series
∑
D 9 is normally convergent and hence convergent in

�B (R3). Now we can set D =
∑
9≥−1 D 9 . Our goal is then to prove that D belongs to

�B (R3).

The assumption that supp D̂ 9 is included in an annulus
{ 1
'

2 9 ≤ |b | ≤ '2 9
}
implies

that there exists some integer # depending only on ' such that Δ?D 9 = 0 if | 9 − ? | >
# . Therefore Δ?D!2 ≤

∑
| 9−? |≤#

Δ?D 9!2 ≤
∑
| 9−? |≤#

D 9!2 ,

whence the result.

88) If one only assumes that supp D̂ 9 is included in a ball {|b | ≤ '2 9 }, then we just
have for some integer # ,

Δ?D =
∑
9≥?−#

Δ?D 9 .

It follows from the triangle inequality that

2?B
Δ?D!2 ≤

∑
9≥?−#

2(?− 9)B2 9 B
D 9!2 .

Now, since B > 0, the sequence (2(?− 9)B) 9≥?−# belongs to ℓ1 and the convolution
inequality ℓ1 ∗ ℓ2 ↩→ ℓ2 gives the result. �

3.4 Operators of type (1, 1)

We continue the study of pseudo-differential operators of the form

(3.4.1) Op(0)D(G) = (2c)−3
∫
R3
48G·b0(G, b)D̂(b) db.

In Section §3.2, we have introduced the study of these operators, assuming that 0 ∈
�∞
1
(R23;C). Here we consider more general symbols, belonging to the following

spaces.

Definition 3.4.1. For < ∈ R and 0 ≤ X ≤ d ≤ 1, the symbol class (<
d,X
(R3) is

the space of functions 0 ∈ �∞(R23;C) such that, for all multi-indices U ∈ N3 and
V ∈ N3 , there exists a constant � such that���mUG mVb 0(G, b)��� ≤ � (1 + |b |)<+X |U |−d |V | .
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We say that 0 is a symbol of order < and type (d, X).

Remark 3.4.2. Notice that �∞
1
(R23;C) = (0

0,0(R
3).

For any real numbers < ∈ R and 0 ≤ X ≤ d ≤ 1, and for any symbol 0 ∈ (<
d,X
(R3),

by using similar arguments to those used to prove Proposition 3.2.1, one can prove
that the relation (3.4.1) defines Op(0) as a continuous operator from S(R3) to
S(R3).

Let us state a generalization of Theorem 3.2.2 to the case of general symbol.

Theorem 3.4.3 (Calderón-Vaillancourt). Let 0 ∈ (0
d,X
(R3) with 0 ≤ X ≤ d ≤ 1

and X < 1. Then the operator Op(0) can be extended as a bounded operator from
!2(R3) to itself. Moreover,

‖Op(0)‖L(!2) ≤ � sup
|U |≤[ 32 ]+1

sup
|V |≤[ 32 ]+1

sup
(G,b)∈R23

���(1 + |b |)X |U |−d |V |mUG mVb ?(G, b)��� ,
for some absolute constant � depending only on 3, d, X.

Proof. We will not use this result and refer to [107] for the proof. The precise
bound in terms of a the semi-norms of ? is proved for instance by Coifman and
Meyer [135]. �

It is proved in Exercise 3.9.3 that the statement of Theorem 3.4.3 does not hold for
(d, X) = (1, 1). This means that an operator of 0 and type (1, 1) is not bounded in
general from !2(R3) to !2(R3). However, the following result, due to Stein, states
that such an operator is bounded from �B (R3) to �B (R3) for any B > 0.

Theorem 3.4.4 (Stein). Assume that 0 ∈ (0
1,1(R

3). Then the operator Op(0) is
bounded from �B (R3) to �B (R3) for all B > 0.

Proof. We will not use this result and refer to [335] for the proof. �

Theorem 3.4.5. Let Y ∈ [0, 1) and consider a function 0 ∈ �∞(R23;C) such that

" := sup
|V |≤[ 32 ]+1

sup
(G,b)∈R23

��(1 + |b |) |V |mV
b
0(G, b)

�� < +∞.
Assume in addition that, for all b ∈ R3 , the partial Fourier transform

0̂([, b) =
∫
R3
4−8H·[0(H, b) dH
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is supported in the ball {[ ∈ R3 ; |[ | ≤ Y |b |}. Then Op(0) ∈ L(!2(R3)) and

‖Op(0)‖!2→!2 ≤ �",

for some constant � depending only on Y.

Remark 3.4.6. We will see in the proof that 0 belongs to (0
1,1(R

3).

Proof. Set # = 1 + [3/2].

Step 1: Littlewood-Paley decomposition. We use the decomposition of the unity
introduced in Lemma 3.3.1. Write

(3.4.2) 0(G, b) = 0(G, b)k(b) +
∞∑
?=0

0(G, b)i(2−?b),

and then set

0−1(G, b) = 0(G, b)k(b) ; 0? (G, b) = 0(G, b)i(2−?b) for ? ≥ 0.

Step 2: Bernstein Lemma. We claim that, for any multi-indices U ∈ N3 and V ∈ N3
with |V | ≤ # , there exists a positive constant � such that,

(3.4.3)
���mUG mVb 0−1(G, b)

��� ≤ �",
and, for ? ≥ 0, ���mUG mVb 0? (G, b)��� ≤ �"2?( |U |−|V |) .

Since |b | ∼ 2? on the support of i(2−?b) (resp. k(b) for ? = 0), this follows from
the assumption that the partial Fourier transform 0̂([, b) is supported in the ball
{|[ | ≤ Y |b |}, by using the following

Lemma 3.4.7. Consider a function 5 ∈ !∞(R3) whose Fourier transform is in-
cluded in the ball {|b | ≤ _}. Then 5 ∈ �∞(R3) and, for all U ∈ N3 , there exists a
constant � = � (3, U) such thatmUG 5 !∞ ≤ �_ |U | ‖ 5 ‖!∞ .
Proof. Introduce \ ∈ �∞0 (R

3) such that \ (b) = 1 for |b | ≤ 1 and set \_ (b) = \ (b/_).
Then \_ 5̂ = 5̂ , which implies that

5 = ^_ ∗ 5 , where ^_ = F −1(\_).
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We are now in position to estimate the derivatives of 5 by exploiting the relation

mUG 5 = (mUG ^_) ∗ 5 .

Observing that ^_ (G) = _3^(_G) with ^ = F −1(\), we obtain thatmUG ^_!1 (R3) = _
|U | mUG ^!1 (R3) ,

and the result follows. �

Step 3: low frequency component. In view of (3.4.3), it follows directly from
the Calderón-Vaillancourt theorem (see Theorem 3.2.2), implies that Op(0−1) is
bounded from !2(R3) to !2(R3), and satisfies the estimate

‖Op(0−1)‖!2→!2 ≤ �".

Step 4: rescaling. We want to prove that the operators Op(0?) are also bounded
from !2(R3) to !2(R3). To do so, we use a rescaling argument. More precisely,
given a positive real-number _ > 0, introduce the operator �_ defined by

(�_D) (G) = _
3
2 D(_G).

Then
‖�_D‖!2 = ‖D‖!2 .

In addition, for any symbol ? = ?(G, b), we have

Op(?) (�_D) = �_ (Op(?_)D) where ?_ (G, b) = ?
( G
_
, _b

)
.

This implies that Op(0?) ∈ L(!2(R3)) if and only if Op(1?) ∈ L(!2(R3)) where

1? (G, b) = 0?
(
2−?G, 2?b

)
,

and then
Op(0?)


!2→!2 =

Op(1?)

!2→!2 .

Step 5: boundedness of the rescaled operators. Notice that, for any multi-indices
U ∈ N3 and V ∈ N3 with |V | ≤ # , there holds���mUG mVb 1? (G, b)��� ≤ �".
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Then, as already explained above, it follows from the Calderón-Vaillancourt theorem
(see Theorem 3.2.2) thatOp(0?)


!2→!2 =

Op(1?)

!2→!2 ≤ �".

Step 6: spectral localization. Notice that

�Op(0?)D([) =
1
(2c)3

∫
R3
0̂([ − b, b)i(2−?b)D̂(b) db.

Introduce the function D? defined by

D̂? (b) = D̂(b) if b ∈ Γ? := {3−1 · 2? ≤ |b | ≤ 3 · 2?},

and D̂? (b) = 0 whenever b ∉ Γ?. Then i(2−?b)D̂(b) = i(2−?b)D̂? (b), which in
turn implies that

Op(0?)D = Op(0?)D? .

Exploiting again that the partial Fourier transform 0̂([, b) is supported in the ball
{|[ | ≤ Y |b |}, we verify that the support of F (Op(0)D?) is included in the larger
shell

Γ′? =
{
b ∈ R3 ;

1 − n
3

2? ≤ |b | ≤ 3 · (1 + n)2?
}
.

Now, since any [ is included in at most 2 log(3/(1 − Y))/log(2) dyadic shells Γ′?,
we deduce from the elementary inequality (0 + 1)2 ≤ 2(02 + 12) that

(3.4.4)
���∑
?

�Op(0?)D([)
���2 ≤ � (Y)∑

?

��� �Op(0?)D([)
���2 .

It follows from Plancherel’s theorem that

‖Op(0)D‖2
!2 ∼

∑
?

�Op(0?)D
2

!2
.

∑
?

 �Op(0?)D
2

!2
∼

∑
?

Op(0?)D
2
!2 .

Remembering thatOp(0?)D = Op(0?)D? and using the fact thatOp(0?) ∈ L(!2(R3)),
we get from (3.4.4) that∑

?

Op(0?)D
2
!2 =

Op(0?)D?
2
!2 . "

2 D?2
!2 ,

we conclude that Op(0?)D
2
!2 . "

2
∑
?

D?2
!2 .
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Eventually, since each b is contained in at most a fix number of dyadic shells Γ?, we
have ∑

?

D?2
!2 . ‖D‖2!2 .

This concludes the proof. �

3.5 Symbolic calculus

In this paragraph we review notations and results about Bony’s paradifferential
calculus. We refer to [88, 244, 335, 336, 418] for the general theory. Here we follow
the presentation by Métivier in [335]. We refer also to the recent book of Benzoni-
Gavage and Serre [70] for applications of paradifferential calculus to hyperbolic
systems.

3.5.1 notations

Given an integer : ∈ N, we note , :,∞(R3) the Sobolev space of distributions 5
such that mUG 5 ∈ !∞(R3) for |U | ≤ : . This space is equipped with the norm

‖D‖, :,∞ =
∑
|U |≤:

mUG D!∞ .
Given d ∈]0, +∞[\N,, d,∞(R3) is the space of bounded functionswhose derivatives
of order [d] ∈ N are uniformly Hölder continuous with exponent d − [d]. This
space is provided with the norm

‖D‖,d,∞ = ‖D‖, [d],∞ +
∑
|U |=[d]

��mUG D(G) − mUG D(H)��
|G − H |d−[d]

.

The Fourier transform of a temperate distribution D ∈ S′(R3) is denoted by D̂ or F D.
The spectrum of D is the support of F D. In the following we call Fourier multipliers
any operator defined by

?(�G)D = F −1 (?F D) ,

which makes sense as soon as the multiplication by ? is defined from S(R3) to
S′(R3); we say that ?(�G) is the Fourier multiplier with symbol ?(b).
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Definition 3.5.1. Consider d in [0, +∞) and < in R. One denotes by Γ<d (R3) the
space of locally bounded functions 0(G, b) on R3 × (R3 \0), which are�∞ functions
of b outside the origin and such that, for any U ∈ N3 and any b ≠ 0, the function
G ↦→ mU

b
0(G, b) belongs to, d,∞(R3) and there exists a constant �U such that,

(3.5.1) ∀ |b | ≥ 1
2
,

mUb 0(·, b)
,d,∞
≤ �U (1 + |b |)<−|U | .

Remark 3.5.2. Note that we consider symbols 0(G, b) that need not be smooth for
b = 0 (for instance 0(G, b) = |b |< with< ∈ R∗). Themainmotivation for considering
such symbols comes from the principal symbol of the Dirichlet to Neumann operator.
As we shall see this symbol is given by√

(1 + |∇[(G) |2) |b |2 − (∇[(G) · b)2.

If [ ∈ , d,∞(R3) then this symbol belongs to Γ1
d−1(R

3). Of course, this symbol is

not �∞ with respect to b ∈ R3 .

Given a symbol 0, to define the paradifferential operator )0 we need to introduce a
cutoff function \.

Definition 3.5.3. Fix \ ∈ �∞(R3 × R3) satisfying the three following properties.

(i) There exists Y1, Y2 satisfying 0 < 2Y1 < Y2 < 1/2 such that

\ (b1, b2) = 1 if |b1 | ≤ Y1 |b2 | and |b2 | ≥ 2,
\ (b1, b2) = 0 if |b1 | ≥ Y2 |b2 | or |b2 | ≤ 1.

(ii) For all (U, V) ∈ N3 × N3 , there is �U,V such that

∀(b1, b2) ∈ R3 × R3 ,
��mUb1

m
V

b2
\ (b1, b2)

�� ≤ �U,V (1 + |b2 |)−|U |−|V | .

(iii) \ satisfies the following symmetry conditions:

(3.5.2) \ (b1, b2) = \ (−b1,−b2) = \ (−b1, b2).

Remark 3.5.4. Notice that \ (b1, b2) = 0 for |b2 | small enough. This choice is
important in our analysis since we have to handle symbols which are homogeneous
in b2 and hence not regular for b2 = 0.
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Example 3.5.5. As an example, fix 3 = 1 and Y1, Y2 such that 0 < 2Y1 < Y2 < 1/2
and a function 5 in �∞0 (R) satisfying 5 (C) = 5 (−C), 5 (C) = 1 for |C | ≤ 2Y1 and
5 (C) = 0 for |C | ≥ Y2. Then set

\ (b1, b2) = (1 − 5 (b2)) 5
(
b1
b2

)
.

Properties (8), (88) and (888) are clearly satisfied.

b2

b1

Figure 3.1: The support of the cut-off function \ (b1, b2) is in grey. The set of points
(b1, b2) where \ (b1, b2) = 1 is in darker grey.

The paradifferential operator )0 with symbol 0 is defined by

(3.5.3) )̂0D(b) = (2c)−3
∫

\ (b − [, [)0̂(b − [, [)D̂([) d[,

where 0̂(\, b) =
∫
4−8G·\0(G, b) dG is the Fourier transform of 0 with respect to G.

Remark 3.5.6. It follows from (3.5.2) that, if 0 and D are real-valued functions, so
is )0D.

Remark 3.5.7. One says that Θ = Θ(b1, b2) is an admissible cut-off function if Θ
satisfies the properties (i) and (ii) in Definition 3.5.3. All the results given in this
appendix remain true for any admissible cut-off function (except Remark 3.5.6).

Remark 3.5.8. Given a symbol 0 = 0(G, b) which is homogeneous in b and smooth
in G, we define the pseudo-differential operator Op(0) by

(3.5.4) �Op(0)D(b) = (2c)−3
∫

0̂(b − [, [)k([)D̂([) 3[.
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where again 0̂(\, b) =
∫
4−8G·\0(G, b) dG is the Fourier transform of 0 with respect

to the first variable; and where k is as in (6.2.2). Note that the only difference
betwenn (6.2.2) and (3.5.4) is the cut-off function j; this cut-off allows to define
operators for non smooth symbols by means of symbol smoothing.

We shall use quantitative results from [335]. To do so, introduce the following
semi-norms.

Definition 3.5.9. For < ∈ R, d ≥ 0 and 0 ∈ Γ<d (R3), we set

(3.5.5) "<
d (0) = sup

|U |≤ 32 +1+d
sup
|b |≥1/2

(1 + |b |) |U |−<mUb 0(·, b)
,d,∞ (R3)

.

We shall use quantitative results from [335] about operator norms estimates in
symbolic calculus. To do so, introduce the following semi-norms.

Definition 3.5.10. For < ∈ R, d ≥ 0 and 0 ∈ Γ<d (R3), we set

(3.5.6) "<
d (0) = sup

|U |≤ 32 +1+d
sup
|b |≥1/2

(1 + |b |) |U |−<mUb 0(·, b)
,d,∞ (R3)

.

The main features of symbolic calculus for paradifferential operators are given by
the following theorems.

Definition 3.5.11. Let < ∈ R. An operator ) is said of order < if, for all ` ∈ R, it
is bounded from �` to �`−<.

Theorem 3.5.12. Let < ∈ R. If 0 ∈ Γ<0 (R
3), then )0 is of order <. Moreover, for

all ` ∈ R there exists a constant  such that

(3.5.7) ‖)0‖�`→�`−< ≤  "<
0 (0).

Theorem 3.5.13 (Composition). Let< ∈ R and d > 0. If 0 ∈ Γ<d (R3), 1 ∈ Γ<
′

d (R3)
then )0)1 − )0#1 is of order < + <′ − d where

0#1 =
∑
|U |<d

1
8 |U |U!

mUb 0m
U
G 1.

Moreover, for all ` ∈ R there exists a constant  such that

(3.5.8) ‖)0)1 − )0#1‖�`→�`−<−<′+d ≤  "<
d (0)"<′

d (1).
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Remark 3.5.14. Note that the definition of the symbol 0#1 depends on the regularity
of the symbols at stake. To clarify possible confusion, we will sometimes use a
notation with an index d and write

0#d1 =
∑
|U |<d

1
8 |U |U!

mUb 0m
U
G 1.

Theorem 3.5.15 (Adjoint). Let < ∈ R, d > 0 and 0 ∈ Γ<d (R3). Denote by ()0)∗ the
adjoint operator of )0 and by 0 the complex-conjugated of 0. Then ()0)∗ − )0∗ is of
order < − d where

0∗ =
∑
|U |<d

1
8 |U |U!

mUb m
U
G 0.

Moreover, for all ` there exists a constant  such that

(3.5.9) ‖()0)∗ − )0∗ ‖�`→�`−<+d ≤  "<
d (0).

3.6 Paraproducts

If 0 = 0(G) is a function of G only, then )0 is a called a paraproduct.

If 0 ∈ !∞(R) then )0 is an operator of order 0, together with the estimate

(3.6.1) ∀f ∈ R, ‖)0D‖�f . ‖0‖!∞ ‖D‖�f .

A paraproduct with an !∞-function acts on any Hölder space , d,∞(R) with d in
R∗+ \ N,

(3.6.2) ∀d ∈ R∗+ \ N, ‖)0D‖,d,∞ . ‖0‖!∞ ‖D‖,d,∞ .

If 0 = 0(G) and 1 = 1(G) are two functions then (??) simplifies to 0♯1 = 01 and
hence (??) implies that, for any d > 0,

(3.6.3) ‖)0)1 − )01‖�`→�`+d ≤  ‖0‖,d,∞ ‖1‖,d,∞ ,

provided that 0 and 1 belong to, d,∞(R).

A key feature of paraproducts is that one can replace nonlinear expressions by
paradifferential expressions, to the price of error terms which are smoother than the
main terms. As an illustration, we give the following result of Bony [88].
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Definition 3.6.1. Given two functions 0, 1, we define the remainder

(3.6.4) 'B (0, D) = 0D − )0D − )D0.

We record here two estimates about the remainder 'B (0, 1) (see chapter 2 in [58]).
Theorem 3.6.2. Let U ∈ R+ and V ∈ R be such that U + V > 0. Then

‖'B (0, D)‖
�
U+V− 32 (R)

≤  ‖0‖�U (R) ‖D‖�V (R) ,(3.6.5)

‖'B (0, D)‖�U+V (R) ≤  ‖0‖, U,∞ (R) ‖D‖�V (R) .(3.6.6)

We next recall a well-known property of products of functions in Sobolev spaces
(see chapter 8 in [244]) that can be obtained from (3.6.1) and (3.6.6): If D1, D2 ∈
�B (R) ∩ !∞(R) and B > 0 then

(3.6.7) ‖D1D2‖�B ≤  ‖D1‖!∞ ‖D2‖�B +  ‖D2‖!∞ ‖D1‖�B .

Similarly, recall that, for B > 0 and � ∈ �∞(C# ) such that � (0) = 0, there exists a
non-decreasing function � : R+ → R+ such that

(3.6.8) ‖� (*)‖�B ≤ �
(
‖*‖!∞

)
‖*‖�B ,

for any* ∈ (�B (R) ∩ !∞(R))# .
Theorem 3.6.3. For all �∞ function �, if 0 ∈ �U (R3) then

� (0) − � (0) − )� ′(0)0 ∈ �2U− 32 (R3).

Moreover, � (0) − � (0) − )� ′(0)0
�

2U− 32 (R3)
≤ �

(
‖0‖�U (R3)

)
,

for some non-decreasing function � depending only on �.

3.7 Sobolev energy estimates for hyperbolic equations

3.7.1 Introduction

Let 3 ≥ 1 and E ∈ R3 . The transport equation is the prototype of a hyperbolic
equation of the first order. It is the equation

mCD + E · ∇D = 0

where the unknown D = D(C, G) is a real function of class �1, defined on R × R3 .
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Proposition 3.7.1. Let D0 ∈ �1(R3). There exists a unique function D ∈ �1(R×R3)
which is a solution of the Cauchy problem{

mCD + E · ∇D = 0,
D |C=0 = D0.

This solution is given by the formula D(C, G) = D0(G − CE).

In the case where the constant vector E is replaced by a function with variable
coefficients, we still have a formula for representing the solution based on the use
of the characteristics curves. We will not study use this approach. Instead we will
study energy estimates, which is a powerful tool to study PDE of different natures.

Let us now consider + ∈ �∞
1
(R × R3) with real values and a regular solution of the

equation
mCD ++ (C, G) · ∇D = 0.

By multiplying the equation by D and integrating we obtain that we obtain that

d
dC

∫
D(C, G)2 dG = 2

∫
DmCD dG = −2

∫
D(+ · ∇D) dG

and by integrating by parts we deduce that∫
D(+ · ∇D) dG = −1

2

∫
(div+)D2 dG,

from which
d
dC

∫
|D(C, G) |2 dG 6 ‖div+ ‖!∞

∫
|D |2 dG.

Gronwall’s lemma then gives

‖D(C)‖!2 6 4�C ‖D0‖!2 .

Note that if div+ = 0 then the !2(R3 , dG)-norm is preserved.

3.7.2 Paradifferential hyperbolic equations

We consider complex valued symbols 0(G, b) depending on a the variables G, b in
R3 where 3 ≥ 1 is a fixed integer.
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Definition 3.7.2. Consider a symbol 0 = 0(G, b). We say that 0 is hyperbolic if 0
can be written as 0 = 01+00 where 01 ∈ Γ1

1(R
=) is purely imaginary and 00 belongs

to Γ0(R3).

Example 3.7.3. The simplest example of a hyperbolic symbol is the following:
0(G, b) = 8b. Then Op(0)D = mGD. If 0(G, b) = 8+ (G)b, then )0D = )+ · ∇D.

We consider in addition:

• a time ) > 0 and a real number B;

• an initial data D0 ∈ �B (R=);

• a source term 5 ∈ �0( [0, )];�B (R=)).

We are interested in the following Cauchy problem

(3.7.1)

mD

mC
+ )0D = 5 ,

D |C=0 = D0,

where the unknown is the function D = D(C, G), the variable C ∈ R+ corresponds to
time and the variable G ∈ R3 (3 ≥ 1) corresponds to the space variable.

Theorem 3.7.4. Let ) > 0, 3 ≥ 1 and B ∈ R. For any initial D0 ∈ �B (R3) and any
5 ∈ �0( [0, )];�B (R3)) there exists a unique function

D ∈ �0( [0, )];�B (R=)) ∩ �1( [0, )];�B−1(R=))

which verifies
mD

mC
+ )0D = 5

and which is such that D(0) = D0.

3.7.3 Proof of Theorem 3.7.4

The first ingredient to prove this theorem is an estimate a priori.
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Lemma 3.7.5. Let B ∈ R, ) > 0. There exists a constant � such that for all
D ∈ �1( [0, )];�B) ∩ �0( [0, )];�B+1), any 5 ∈ �0( [0, )];�B), any D0 ∈ �B and
any C ∈ [0, )], if D is a solution of (3.7.1) then

(3.7.2) ‖D(C)‖�B 6 4�C ‖D0‖�B + 2
∫ C

0
4� (C−C

′) ‖ 5 (C′)‖�B dC′.

Moreover there are two constants  and # which depend only on B such that

� 6  
∑
|U |+||

¯
6#

sup
C∈[0,)]

sup
G,b

���〈b〉−|V |mUG mVb UC (G, b)��� avec UC :=
(
0∗C − 0C

)
+ 2 Re 0C .

where 0∗C is the symbol for the adjoint of Op(0C).

Proof. We start with the case B = 0. Since D is �1 with values in !2 we can write
that

3

3C
‖D(C)‖2

!2 =
3

3C
(D(C), D(C))

= 2 Re (mCD(C), D(C))
= −2 Re ()0D(C), D(C)) + 2 Re ( 5 (C), D(C)) .(3.7.3)

We have seen in the previous chapter that the adjoint )∗0 − )0 is of order 0. We can
then write

()0D(C), D(C)) = (D(C), ()0)∗D(C)) = (D(C), )0D(C) + Op(1C)D(C)) .

The assumption that (0C) is hyperbolic means that 0 = −0 + 2 Re 0 with Re 0 ∈
Γ0(R3). So 0∗ = −0 + U where U belongs to Γ0(R3). We deduce that

()0D(C), D(C)) = (D(C),−)0D(C) + )UD(C)) ,

from which
2 Re ()0D(C), D(C)) = (D(C), )0D(C)) .

The Cauchy-Schwarz inequality and the continuity theorem of ΨDO of order 0 on
!2 imply that

| ()UD(C), D(C)) | 6  sup
C

‖)U‖L(!2) ‖D(C)‖2!2 6 �0 ‖D(C)‖2!2
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where�0 is a constant that does not depend on C. By transferring this inequality into
(3.7.3) we conclude that

(3.7.4)
3

3C
‖D(C)‖2

!2 6 �0 ‖D(C)‖2!2 + 2 ‖ 5 (C)‖!2 ‖D(C)‖!2 .

We would like to write that 3
3C
‖D(C)‖2

!2 = 2 ‖D(C)‖!2
3
3C
‖D(C)‖!2 and simplify the

inequality by dividing by ‖D(C)‖!2 . We proceed as follows: Given X > 0, we deduce

from (3.7.4) that the function H(C) =
√
‖D(C)‖2

!2 + X verifies

3

3C
H(C)2 6 �0H(C)2 + 2 ‖ 5 (C)‖!2 H(C),

and since ‖D(C)‖2
!2 + X > 0, the function H(C) is �1 and we can simplify

2
3

3C
H(C) 6 �0H(C) + 2 ‖ 5 (C)‖!2 .

Gronwall’s lemma implies that

‖D(C)‖!2 6 H(C) 6 H(0)4�0C/2 +
∫ C

0
‖ 5 (C′)‖!2 4

�0 (C−C ′)/2 dC′,

for all X > 0. By making X tend to 0 we obtain that

‖D(C)‖!2 6 ‖D(0)‖!2 4�0C/2 +
∫ C

0
‖ 5 (C′)‖!2 4

�0 (C−C ′)/2 dC′,

which concludes the proof of the lemma in the case B = 0.

Now for any B we commute ! = mC + Op(0) to ΛB = 〈�G〉B, which gives

ΛB!D = !̃ΛBD, !̃ = mC + �̃, �̃ = ΛB Op(0)Λ−B .

Note that �̃ is a ΨDO operator of hyperbolic symbol. We conclude the proof by
applying the estimate !2 to !̃. �

In this section we will show that the solution obtained in the previous section is the
limit of solutions of approximate problems. is the limit of solutions of approximate
problems. This result can be seen as another way of proving the existence of a
solution once we have proved an estimate a priori (recall that the proof of uniqueness
is direct).
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Let Y > 0. Let us consider the Cauchy problem

(3.7.5) mCD + )0�YD = 5 , D(0) = D0

where �Y, called Friedrichs mollifier, is defined by

�̂YE(b) = j(Yb)Ê(b),

where j is a function �∞ on R=, with support in the ball of center 0 and radius 2,
and value 1 on the ball of center 0 and radius 1.

Theorem 3.7.6. Let ) > 0 and B ∈ R. For all D0 ∈ �B and all 5 ∈ �0( [0, )];�B),
there exists a unique solution DY belonging to �1( [0, )];�B) of the Cauchy prob-
lem (3.7.5). Moreover, for all f < B, this sequence is a Cauchy sequence in
�0( [0, )];�f) ∩ �1( [0, )];�f−1) and converges in this space to the unique solu-
tion D ∈ � ( [0, )];�B) ∩ �1( [0, )];�B−1) of the Cauchy problem

mCD + )0D = 5 , D(0) = D0.

Proof. We will note� several constants (whose value can vary from one expression
to another) which depend only on ) and B.

The main difference between the Cauchy problem (3.7.5) and the same problem
without the operator �Y is that it is very easy to show that the problem (3.7.5) has a
solution.

Lemma 3.7.7. For any D0 ∈ �B and all 5 ∈ � ( [0, )];�B), there exists a unique
solution DY belonging to �1( [0, )];�B) of the Cauchy problem (3.7.5).

Proof. We have already seen that if 0 = 0(G, b) and 1 = 1(b) (symbol independent
of G) then )0 ◦ 1(�G) = )01. We deduce that, for all Y > 0,

)0�Y = )0Y

where
0Y (G, b) = 0(G, b)j(Yb).

For all Y > 0, the symbol 0Y is compactly supported in b and in particular it belongs
to Γ0

0(R
=). The continuity theorem for paradifferential operators of order 0 on the

Sobolev implies that )0Y is a continuous operator on �B (R=). Then the equation
mCD + )0YD = 5 is an ordinary differential equation, for which the Cauchy-Lipschitz
theorem applies. �
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In the following we use the notation 0Y (G, b) = 0(G, b)j(Yb).

Lemma 3.7.8. There exists a constant � such that for any Y > 0 and any C ∈ [0, )],
and any function E ∈ �1( [0, )];�B (R=)),

‖E(C)‖�B 6 � ‖E(0)‖�B + �
∫ C

0
‖(mCE + )0YE(g)‖�B 3g.

Proof. Note that the symbol 0Y (G, b) = 0(G, b)j(Yb) is bounded in Γ1
1(R

=) uni-
formly in Y, in the sense that { 01(G, b)j(Yb) : Y ∈]0, 1], C ∈ [0, )]} is a bounded
part of Γ1

1(R
3). Moreover Re 0Y is uniformly bounded in Γ0

0(R
=). The desired

inequality is therefore a consequence of (3.7.2). �

Applying the previous inequality to E = DY, we obtain that there is a constant � such
that exists a constant � such that for all Y > 0 and all C8=[0, )],

(3.7.6) ‖DY‖�0 ( [0,)];�B) 6 � ‖D0‖�B + �
∫ )

0
‖ 5 (C)‖�B dC.

This implies that (DY)Y∈]0,1] is a bounded family in �0( [0, )];�B (R3)). Using the
equation, we verify that (DY)Y∈]0,1] is a bounded family in �1( [0, )];�B−1(R3)).
Our goal is to show that DY converges when Y tends to 0 to a solution of the Cauchy
problem. For this we will show the following lemma.

Lemma 3.7.9. The family (DY)Y∈]0,1] is a Cauchy sequence in�0( [0, )];�B−2(R3)).

Proof. Let Y and Y′ in ]0, 1]. Starting from

mCDY + Op(0)�YDY = 5 ,

mCDY′ + Op(0)�Y′DY′ = 5 ,

we deduce that E = DY − DY′ verifies

mCE + )0YE = 5Y avec 5Y = )0
(
�Y′ − �Y

)
DY′ .

Since DY and DY′ coincide for C = 0, we have E(0) = 0 and we can then use the
inequality of the previous lemma to obtain that

‖E‖�0 ( [0,)];�B−2) 6 �

∫ )

0
‖ 5Y (C)‖�B−2 3C.
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Now

‖ 5 Y (C)‖�B−2 =
Op(0)

(
�Y′ − �Y

)
DY′ (C)


�B−2 6  

(�Y′ − �Y)DY′ (C)�B−1 .

By definition(�Y′ − �Y)DY′ (C)2
�B−1 = (2c)−23

∫
〈b〉2(B−2) |j(Yb) − j(Y′b) |2 |D̂Y′ (C, b) |2 db.

We use the elementary inequality |j(Yb) − j(Y′b) | 6  |Y − Y′| |b | to conclude that∫ )

0
‖ 5Y (C)‖�B−2 dC 6  ′ |Y − Y′|

∫ )

0
‖DY′ (C)‖�B dC.

Since ‖DY′‖�0 ( [0,)];�B) is uniformly bounded according to (3.7.6), we obtain

‖E‖�0 ( [0,)];�B−2) = $ ( |Y − Y′|),

which is the desired result. �

Lemma 3.7.10 (Interpolation in Sobolev spaces). Consider three real numbers
B1 < B2 and f ∈]B1, B2 [ with f = UB1 + (1 − U)B2 for some U ∈ [0, 1], and for all
D ∈ �B2 (R3),

(3.7.7) ‖D‖�f 6 ‖D‖U�B1 ‖D‖
1−U
�B2 .

Proof. Let us write that

‖D‖2�B = (2c)−3
∫
〈b〉2B |D̂(b) |2 db

= (2c)−3
∫
〈b〉2UB1 |D̂(b) |2U 〈b〉2(1−U)B2 |D̂(b) |2(1−U) db

so that the desired inequality is a consequence of the Hölder inequality. �

We have seen that the family (DY)Y∈(0,1] is bounded in �0( [0, )];�B) and that it is
also Cauchy in �0( [0, )];�B−2). Given f ∈ [B − 2, B), the inequality (B1, B2, f) =
(B−2, B, f), leads to that (DY)Y∈(0,1] is a Cauchy sequence in�0( [0, )];�f). Using
the equation, we further obtain that (mCDY)Y∈]0,1] is Cauchy in �1( [0, )];�f−1). So
DY converges in �0( [0, )];�f) ∩ �1( [0, )];�f−1) to a limit denoted D.

By passing to the limit, we find that D is a solution of the Cauchy problem

mCD + )0D = 5 , D(0) = D0.
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To concludewe just have to show that D belongs to�0( [0, )];�B)∩�1( [0, )];�B−1).
We have seen at the end of the previous section how to show that D belongs to
�0( [0, )];�B). We then show that mCD belongs to �0( [0, )];�B−1) using the equa-
tion.

By uniqueness of the solution of the Cauchy problem, we deduce that D is the
solution whose existence we have shown in the previous section. �

3.8 References

3.8.1 Pseudo-differential operators

The study of pseudo-differential operators is a very vast subject of which we have
barely touched the surface here. We refer for instance to Alinhac and Gérard [38],
Grigis and Sjöstrand [225], Hörmander [245], Lerner [311], Saint-Raymond [382],
Taylor [417] or Zworski [463].

We have studied the boundedness of pseudo-differential operators on !2(R3). Let
us briefly discuss the boundedness on other functions spaces.

(8) Firstly, a pseudo-differential operator of order 0 and type (d, X) is not bounded
in general on Lebesgue spaces !? (R3) with ? ≠ 2. Nevertheless, Fefferman proved
in [210] that, for any 0 ≤ X ≤ d ≤ 1 with X < 1, and any symbol 0 ∈ (<

d,X
(R3), the

operator Op(0) belong to L(!? (R3)) provided that

< ≤ −3 (1 − d)
����12 − 1

?

���� .
We also refer to David and Journé (see [183]) for the boundedness of pseudo-
differential operators on !? (R3) when d = 1 = X.

(88) Assume that 0 ∈ (0
1,1(R

3). Then Op(0) is also bounded from �:,d (R3) to
�:,d (R3) for all : ∈ N and all d ∈ (0, 1).

(888) One can also consider the case where X > d, see Hörmander [243].
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3.8.2 Littlewood-Paley decomposition

For an introduction to this topic, we refer the reader to Bahouri [55] orDanchin [178].
There are many books which develop a systematic study of this tool. In addition to
the book by Coifman and Meyer [135, 339] and Métivier [335] that we have already
mentioned, we refer to Alinhac and Gérard [38], Bahouri, Danchin and Chemin [58],
Tao [412] or Taylor [419, 421].

The decomposition of a product into two paraproducts and a remainder has been
introduced by Bony in [88]. However, the discrete version of it using Littlewood-
Paley decomposition is due to Gérard and Rauch (see [215]).

3.8.3 Variants of paradifferential caculus

Bony’s paradifferential calculus has been completed in particular by Chemin who
introduced a bilinear symbolic computation and it has been enriched by the in-
troduction of the operators of paracomposition by Alinhac and also by Fourier
para-integral operators (the interested reader is referred to the original articles
[35, 36, 123, 122] as well as to Taylor’s book [419]). Let us mention that we
can use versions much more simple of this calculus in particular situations (see the
articles by Shnirelman [393, 394] for what is perhaps a first appearance of the ideas of
decomposition underlying the paradiferential calculus). Paraproducts play a key role
in the study of multi-linear Fourier multipliers. The reference works are the books
by Stein [401], Coifman and Meyer [135, 339], Meyer [337, 338], Christ [127] and
now that of Bahouri, Chemin and Danchin [58]. To return to the initial question, the
application of paradifferential calculus to the non-linear interaction of singularities
and to their propagation, we refer the reader to to the notes of Bony [89].

If 0 ∈ Γ<d (R3) then the symbol f defined by (??) belongs to the class (<1,1(R
3)

and satisfy some additional properties (see [90, 89, 244, 335]). Other frequency
regularization lead to symbols (<1,X with X < 1. As noted Lebeau [309], the case
X < 1 is very useful, for instance to construct parametrixes and prove Strichartz’s
estimates ([20, 23]).

Calderón’s projectors have been studied in very general frameworks; see the books
by Egorov, Komech and Shubin [206], Hörmander [246], Trèves [427], Grubb [232].
The ΨDO operators with irregular coefficients have been extensively studied, see
Nagase [347], Kumano-go and Nagase [297], Beals and Reed [66] and the books of
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Taylor [418, 420, 421, 419]. Lerner’s book contains a lot of additional results [311].

3.8.4 About the Dirichlet-to-Neumann operator

The idea of studying the incompressible Euler equation at free surface using tools
derived from the analysis of singular integrals goes back to an article by Craig–
Schanz–Sulem [170]; this idea has been pursued by, among others, Craig–Schanz–
Sulem [170], Lannes [300], Ming-Zhang [344] and Iooss–Plotnikov [265]. The
paradifferential analysis of the Dirichlet-to-Neumann operator is introduced by
Alazard-Métivier in [29].

The paradiferential approach is inspired by another context of free boundary prob-
lems: the study of shock waves. and rarefaction waves for conservation law systems
by Majda [323, 322], Alinhac [37, 36] and Métivier [333, 334]. The good unknown
of Alinhac plays a key role in the study of surface waves. For the water-wave
problems, it was used by Lannes [300] and Trakhinin [425] to study the linearized
equations.

There are close links between Alinhac’s good unknown and the geometric analysis
of Ambrose and Masmoudi [45, 46, 47], Lindblad [314, 313] and Shatah and
Zeng [388]. There are also links with the work of Coulombel and Secchi [156] on
the study of the problem of vortex pockets for the equation compressible Euler in
dimension two (see also [157]).

We now discuss the boundedness of the Dirichlet-to-Neumann operator on Sobolev
spaces. Expressing � ([) as a singular integral operator, it was proved by Craig,
Schanz and Sulem [170] that if [ is in �:+1 and k is in �:+1 for some integer : ,
then � ([)k belongs to �: . Moreover, it was proved by Lannes [300] that when [
is a function with limited smoothness, then � ([) is a pseudo-differential operator
with symbol of limited regularity. This implies that if [ is in �B and k is in �B

for some B large enough, then � ([)k belongs to �B−1 (which was first established
by Craig and Nicholls [169] and Wu [445, 446] by different methods). We refer to
[22, 19, 388, 389] for results in rough domains.

Numerous works have been devoted to the study of elliptic equations in domains
whose boundary is only Lipschitz. One could cite many works by Dahlberg,
Dauge,Jerison, Kenig, Maz’ya and many others (see for instance [170, 181, 176,
274, 281] for many references). However, we are exclusively interested in to sit-
uations where the boundary has a Sobolev regularity, the threshold of lipschitzian
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regularity being seen only by the Sobolev injection; this allows to show results
that are impossible to show for boundaries that are only �1. One can nevertheless
cite works closer to those of interest to us we refer, for instance, to chapter 14 of
Maz’ya and Shaposhnikova [330] (see also [329]) and the article by Gérard-Varet
and Hillairet [216].

An important extension of the estimates for Dirichlet-Neumann is given by Alvarez-
Samniego and Lannes in [41] which prove estimates that are uniform with respect
to the various physical parameters encountered in the study of surface waves. Let us
also mention that these estimates are true for any bottom (as shown in [19]) under
the assumption that the distance ℎ between the free surface and the bottom is strictly
positive. See also Lannes [302] for an analysis of the case where the constant ℎ
tends towards 0.

There aremany extensions of the Theorem ?? for higher order derivatives (see [302]).
That is, one can give the Taylor development of � ([). This intervenes in the
computation of formal solutions ([265]), to derive the equations in order to study
the problem of Cauchy ([302, 80, 378]) and in the normal form methods ([217, 25]).

3.8.5 Propagation of singularities

Let us conclude this chapter by discussing the applications of paradifferential cal-
culus to the study of singularities for nonlinear equations.

An important question in PDE is to determine the wavefront of the distribution
solutions of the equation % 5 = 0 where % is a differential operator of order < with
coefficients �∞,

% =
∑

?U (G)�U
G , ( |U | ≤ <, �G = −8mG).

An important geometrical object is constituted by the characteristic variety of % that
we denote Car(%) and which is the closed (homogeneous in b) defined by

Car(%) =
{
(G, b) ∈ )∗R3 ; ?< (G, b) = 0

}
where ?< (G, b) =

∑
|U |=<

?U (G)bU .

Thefirst important result of the theory is the following: the singularities are contained
in the characteristic variety. What means that in any point (G0, b0) ∈ R3 \ {0}) such
that ?< (G0, b0) ≠ 0, there exists a symbol i = i(G, b) homogeneous of order 0 in
b, satisfying i(G0, b0) ≠ 0, such that Op(i)D ∈ �∞. See the text of Bony [87] and
that of Lebeau [310] for two excellent introductions to these issues.
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The paradiferential calculus has been introduced by Jean-Michel Bony to study the
singularities of the equations to the non-linear partial derivatives of the form

(3.8.1) � ((mUG 5 ) |U |≤<) = 0,

where 5 ∈ �B (R3) with B > B0 = 3/2 + < so that mUG 5 is continuous and bounded
for all multi-index U of length less than <.

We cannot describe for such a general equation the set of points where the function
is not microlocally �∞. On the other hand, thanks to the parodirectional calculus,
we can say things if we replace �∞ by a space of functions with limited regularity.
Let us introduce

?< ( 5 ; G, b) =
∑
|U |=<

m�

m 5U
((mUG 5 (G)) |U |≤<) (8b)U .

(The big difference between the linear and the non-linear case is that here the
characteristic variety depends on the unknown of the problem). Bony then shows
two results. The simplest one says that, in any point (G0, b0) ∈ R3 \ {0}) such that
?< (G0, b0) ≠ 0, 5 is microlocally twice as regular: it is microlocally of class �C . for
all C < 2B − B0, which means that there exists a symbol i = i(G, b) homogeneous of
order 0 in b, satisfying i(G0, b0) ≠ 0, such that Op(i)D ∈ �C .

The central point in the proof is to show that if 5 satisfies the equation (3.8.1) then
)? 5 ∈ �C−< (R3), where

?(G, b) =
∑

|V |>2<−(B−3/2)

m�

m 5V
((mUG 5 (G)) |U |≤<) (8b)V.

It is said that we have parallelized (3.8.1) (we have replaced a non-linear equation
by a linear paradiferential equation).

3.9 Exercises

Exercise 3.9.1 (Semi-classical operators). Consider a real number ℎ ∈ (0, 1] and a
symbol 0 = 0(G, b) which belongs to �∞

1
(R2=). We define

Opℎ (0)D(G) =
1
(2c)3

∫
48G·b0(G, ℎb)D̂(b) db.
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We want to show that Opℎ (0)

L(!2) 6 � sup

R23
|0 | +$ (ℎ 1

2 ).

1. Show that
Opℎ (0)D(G) =

(
Op(0ℎ)Dℎ

)
(ℎ− 1

2 G)

where
0ℎ (G, b) = 0(ℎ

1
2 G, ℎ

1
2 b), Dℎ (H) = D(ℎ

1
2 H).

2. Deduce that there is a constant � and an integer " such that for all 0 ∈
�∞
1
(R23) and all ℎ ∈ (0, 1],Opℎ (0)


L(!2) 6 � sup

(G,b)∈R2=
|0(G, b) |

+ � sup
16 |U |+|V |6"

sup
(G,b)∈R2=

ℎ
1
2 ( |U |+|V |)

���mUG mVb 0��� .
Exercise 3.9.2 (Wave packet transformation). Let D : R→ C in the class of Schwartz
S(R). The wave packet transform of D is the function,D : R→ C defined by

,D(G, b) =
∫
R
48(G−H)b−

1
2 (G−H)

2
D(H) dH.

1. Show that (G, b) ↦→ G,D(G, b) and (G, b) ↦→ b,D(G, b) are bounded on R2.
Show more generally that,D belongs to the Schwartz class S(R2).

2. Show that, for any G ∈ R,∫
|,D(G, b) |2 db = 2c

∫
4−(G−H)

2/2 |D(H) |2 dH.

Deduce that there is a constant � > 0 such that, for every D in S(R), we have∬
|,D(G, b) |2 dG db = �

∫
|D(H) |2 dH.

(It is not required to calculate �.)

3. Show that for any function D in the Schwartz class S(R),

,D(G, b) = 2 48Gb (,D̂) (b,−G),
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for a certain constant 2 (it is not required to calculate 2).

4. Let Y ∈ (0, 1] and D in Schwartz’s class S(R2). We introduce

,YD(G, b) = Y−3/4
∫
R
48(G−H)·b/Y−(G−H)

2/2YD(H) dH.

Check that �−1/2,Y is an isometry and then show that there is  such that for all
Y ∈ (0, 1] and all functions D and E in the Schwartz class S(R),E,YD −,Y (ED)


!2 (R2) ≤  Y

1/2‖mGE‖!∞ (R) ‖D‖!2 (R) .

5. Show that there is  ′ such that, for all Y ∈ (0, 1] and for all function D in the
Schwartz class S(R),8b,YD −,Y (YmGD)


!2 (R2) 6  

′Y1/2‖D‖!2 (R) .

Exercise 3.9.3 (An unbounded operator on !2). Let j ∈ �∞0 (R) be such that
supp j ⊂ {b ∈ R , 2−1/2 6 |b | 6 21/2 }, j(b) = 1 si 2−1/4 6 |b | 6 21/4.

Set

0(G, b) =
+∞∑
9=1

exp(−82 9G)j(2− 9b).

1. Show that 0 ∈ �∞(R2) verifies
|mUG m

V

b
0(G, b) | ≤ �U,V (1 + |b |) |U |−|V | ∀U, V ∈ N2, ∀(G, b) ∈ R2.

2. Let 50 be a function of the Schwartz class whose Fourier transform 5̂0 is to
support in the range [−1/2.1/2]. For # ∈ N we set

5# (G) =
#∑
9=2

1
9

exp(82 9G) 50(G).

Using Plancherel’s formula, show that

‖ 5# ‖2!2 =

( #∑
9=2

9−2
)
‖ 50‖2!2 6 2.

3. Show that

Op(0) 5# =
( #∑
9=2

9−1
)
50.

4. Conclude.
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Chapter 4

The Dirichlet-to-Neumann operator

In this chapter we gather various results about the Dirichlet-to-Neumann operator
that are obtained by means of the multiplier method.

Webegin by studying the definition of theDirichlet–Neumann operator under general
assumptions on the fluid domain. Allowing a general bottom and assuming only
that [ ∈ ,1,∞(R3) and k ∈ � 1

2 (R3), we show how to define an harmonic extension
q of k. Then we prove that � ([)k is well-defined and that the map

k ∈ � 1
2 (R3) ↦→ � ([)k ∈ �− 1

2 (R3)

is continuous. Next, we obtain three inequalities for the Dirichlet-to-Neumann
operator. The first one gives a control of the � 1

2 (R3) norm of k in terms of the
!2(Ω)-norm of ∇G,Hq assuming only that ∇[ is estimated in BMO. The last two
inequalities will be obtained by means of the multiplier method, inspired by Rellich
and Pohozaev inequalities.

4.1 Definition

All the results in this section come from works with Nicolas Burq and Claude Zuily
([19, 21, 22]).
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4.1.1 General assumptions on the domain

We consider a general fluid domain Ω located underneath a free surface Σ and
moving in a fixed container denoted by O, so that

Ω = {(G, H) ∈ O : H < [(G)} ,

where O is a given open domain which contains a fixed strip around the free surface

Σ = {(G, H) ∈ R3 × R : H = [(G)}.

This assumption implies that there exists ℎ > 0 such that,

(4.1.1) Ωℎ :=
{
(G, H) ∈ R3 × R : [(G) − ℎ < H < [(G)

}
⊂ Ω.

We also assume that the domain O (and hence the domain Ω) is connected.

We denote by Γ the bottom, which is given by

Γ = mΩ \ Σ.

Examples.

1. O = R3 × R corresponds to the infinite depth case ( Γ = ∅);

2. The finite depth case corresponds to O = {(G, H) ∈ R3 × R : H > 1(G)} for
some continuous function 1 such that [(C, G) − ℎ > 1(G) for any time C (then
Γ = {H = 1(G)}). Notice that no regularity assumption is required on 1.

3. See the picture below.

Ω(C)

Σ(C) = {H = [(C, G)}

Γ
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4.1.2 Harmonic extension

The goal is to study the boundary value problem

(4.1.2) ΔG,Hq = 0 in Ω, q|H=[ = 5 , m=q |Γ = 0.

Since we make no assumption on Γ, the definition of q requires some care. We
introduce the space of functions that vanish on the free surface Σ and prove a variant
of the Poincaré inequality in this setting.

Notation 4.1.1. Denote by � the space of functions D ∈ �∞(Ω) such that ∇G,HD ∈
!2(Ω). We then define �0 as the subspace of functions D ∈ � such that D is equal
to 0 in a neighborhood of the top boundary Σ.

Proposition 4.1.2. There exists a positive weight 6 ∈ !∞
;>2
(Ω), equal to 1 on a

neighborhood of Σ and a constant � > 0 such that for all D ∈ �0,

(4.1.3)
∬
Ω

6(G, H)D(G, H)2 dH dG ≤ �
∬
Ω

|∇G,HD(G, H) |2 dH dG.

Proof. Let us set

(4.1.4)
O1 =

{
(G, H) ∈ R3 × R : [(G) − ℎ < H < [(G)

}
,

O2 =
{
(G, H) ∈ Ω : H < [(G) − ℎ

}
.

To prove Proposition 4.1.2, the starting point is the following Poincaré inequality on
O1.

Lemma 4.1.3. For all D ∈ �0 we have∬
O1

D2 dH dG ≤ ℎ2
∬
Ω

|∇G,HD |2 dH dG.

Proof. For (G, H) ∈ O1 we can write D(G, H) = −
∫ [(G)
H
(mHD) (G, I) dI, so using the

Cauchy-Schwarz inequality we obtain

|D(G, H) |2 ≤ ℎ
∫ [(G)

[(G)−ℎ

��(mHD) (G, I)��2 dI.

Integrating on O1 we obtain the desired conclusion. �

103



Lemma 4.1.4. Let <0 ∈ Ω and X > 0 such that

�(<0, 2X) = {< ∈ R3 × R : |< − <0 | < 2X} ⊂ Ω.

Then for any <1 ∈ �(<0, X) and any D ∈ �,

(4.1.5)
∬

�(<0,X)
D2 dH dG ≤ 2

∬
�(<1,X)

D2 dH dG + 2X2
∬

�(<0,2X)

��∇G,HD��2 dH dG.

Proof. Denote by E = <0 − <1 and write

D(< + E) = D(<) +
∫ 1

0
E · ∇G,HD(< + CE) dC.

As a consequence, we get

D(< + E)2 ≤ 2D(<)2 + 2|E |2
∫ 1

0

��∇G,HD(< + CE)��2 dC,

and integrating this last inequality on �(<1, X) ⊂ �(<0, 2X) ⊂ Ω, we obtain (4.1.5).
�

Lemma 4.1.5. For any compact  ⊂ O2, there exists a constant � ( ) > 0 such
that, for all D ∈ �0, we have∬

 

D2 dH dG ≤ � ( )
∬
Ω

|∇G,HD |2 dH dG.

Proof. Consider now an arbitrary point <0 ∈ O2. Since Ω is open and connected,
there exists a continuous map W : [0, 1] → Ω such that W(0) = <0 and W(1) ∈ O1.
By compactness, there exists X > 0 such that for any C ∈ [0, 1] �(W(C), 2X) ⊂ Ω.
Taking smaller X if necessary, we can also assume that �(W(1), X) ⊂ O1 so that by
Lemma 4.1.3 ∬

�(W(1),X)
D2 dH dG ≤ �

∬
Ω

|∇G,HD |2 dH dG.

We now can find a sequence C0 = 0, C1, · · · , C# = 1 such that the points <= = W(C=)
satisfy <=+1 ∈ �(<=, X). Applying Lemma 4.1.4 successively, we obtain∬

�(<0,X)
D2 dH dG ≤ �′

∬
Ω

|∇G,HD |2 dH dG.

Then Lemma 4.1.5 follows by compactness. �
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We are now in position to prove Proposition 4.1.2. Writing O2 = ∪∞==1 =, and taking
a partition of unity (j=) such that 0 ≤ j= ≤ 1 and supp j= ⊂  =, we can define the
continuous function

6̃(G, H) =
∞∑
==1

j= (G, H)
(1 + � ( =))=2 ,

which is clearly positive. Then by Corollary 4.1.5,

(4.1.6)

∬
O2

6̃(G, H) |D |2 dH dG ≤
∞∑
==1

1
(1 + � ( =))=2

∬
 =

|D |2 dH dG

≤ 2
∬
O2

��∇G,HD��2 dH dG.

Finally, let us set

6(G, H) = 1 for (G, H) ∈ O1, 6(G, H) = 6̃(G, H) for (G, H) ∈ O2.

Then Proposition 4.1.2 follows from Lemma 4.1.3 and (4.1.6). �

Definition 4.1.6. Denote by �1,0(Ω) the space of functions D on Ω such that there
exists a sequence (D=) ∈ �0 such that,

∇G,HD= → ∇G,HD in !2(Ω, dH dG), D= → D in !2(Ω, 6(G, H) dH dG).

We endow the space �1,0(Ω) with the norm ‖D‖ =
∇G,HD!2 (Ω) .

Proposition 4.1.7. The space �1,0(Ω) is a Hilbert space.

Proof. Indeed, passing to the limit in (4.1.3), we obtain first that by definition, the
norm on �1,0(Ω) is equivalent to∇G,HD!2 (Ω,dH dG) + ‖D‖!2 (Ω,6(G,H) dH dG) .

As a consequence, if (D=) is a Cauchy sequence in �1,0(Ω), we obtain easily
from the completeness of !2 spaces that there exists D ∈ !2(Ω, 6(G, H) dH dG) and
E ∈ !2(Ω, dH dG) such that

D= → D in !2(Ω, 6(G, H) dH dG), ∇G,HD= → E in !2(Ω, dH dG).

But the convergence in !2(Ω, 6(G, H) dH dG) implies the convergence in D′(Ω) and
consequently E = ∇G,HD in D′(Ω) and it is easy to see that D ∈ �1,0(Ω). �
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We are able now to define a variational solution to the Dirichlet boundary value
problem.

Let 5 ∈ � 1
2 (R3). We first define an �1 lifting of 5 in Ω.

Lemma 4.1.8. There exists a function � ∈ �1(Ω) satisfying the three following
properties: (8) � |H=[ = 5 , (88) � vanishes on a neighborhood of the bottom Γ and
(888)

(4.1.7) ‖�‖�1 (Ω) ≤  (1 + ‖[‖,1,∞)‖ 5 ‖
�

1
2 (R3)

,

for some universal constant  .

Proof. We begin by constructing such a lifting in the case where Ω is replaced by
a half space R3+1− . Then we extend the construction to Ω by a simple change of
variables.

Let j0 ∈ �∞(R) be such that j0(I) = 1 if I ≥ −1
2 and j0(I) = 0 if I ≤ −1.We set

�̃ (G, I) = j0(I)4I〈�G〉 5 (G), G ∈ R3 , I ≤ 0.

By using the Plancherel’s identity, we verify (exercise) that∇G,I �̃
!2 ( [−1,0]×R3) ≤ � ‖ 5 ‖� 1

2 (R3)
.

Then we set

� (G, H) = �̃
(
G,
H − [(G)

ℎ

)
, (G, H) ∈ Ω.

This is well defined since Ω ⊂ {(G, H) : H < [(G)}. Moreover since the bottom Γ is
contained in {(G, H) : H < [(G) − ℎ}, we see that � vanishes identically near Γ.

Now we have obviously � |Σ = 5 and since ∇[ ∈ !∞(R3), an easy computation
shows that � ∈ �1(Ω) together with (4.1.7). This completes the proof. �

Then the map

E ↦→ −
∬
Ω

∇G,H� · ∇G,HE dH dG

is a bounded linear form on �1,0(Ω). It follows from the Riesz theorem that there
exists a unique D ∈ �1,0(Ω) such that

(4.1.8) ∀E ∈ �1,0(Ω),
∬
Ω

∇G,HD · ∇G,HE dH dG = −
∬
Ω

∇G,H� · ∇G,HE dH dG.
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Then D is the variational solution to the problem

−ΔG,HD = ΔG,H� in D′(Ω), D |Σ= 0, m=D |Γ= 0,

the latter condition being justified as soon as the bottom Γ is regular enough.

Lemma 4.1.9. The function q = D + � constructed by this procedure is independent
on the choice of the lifting function � as long as it remains bounded in �1(Ω) and
vanishes near the bottom.

Proof. Consider two functions constructed by this procedure, q: = D: +�: , : = 1, 2.
Then, by standard density arguments, since�1−�2 vanishes at the top boundaryΣ and
in a neighborhood of the bottom Γ, there exists a sequence of functions k= ∈ �∞0 (Ω)
supported in a fixed Lipschitz domain Ω̃ ⊂ Ω tending to �1−�2 in �1

0 (Ω̃) and hence
also in �1,0(Ω). As a consequence, �1−�2 ∈ �1,0(Ω) and the function q = q1− q2
is the unique (trivial) solution in �1,0(Ω) of the equation ΔG,Hq = 0 given by the
Riesz Theorem. �

Definition 4.1.10. We shall say that the function q = D +k constructed by the above
procedure is the variational solution of (4.1.2). It satisfies

(4.1.9)
∬
Ω

��∇G,Hq��2 dH dG ≤  ‖ 5 ‖2
�

1
2 (R3)

,

for some constant  depending only on the Lipschitz norm of [.

4.1.3 About the behavior at infinite depth

When the fluid domain has infinite depth, it is often convenient to truncate the
domain Ω to work with a domain with finite depth (to apply for instance the Stokes
theorem or the maximum principe). To do so, one considers V > 0 such that the
affine plane R3 × {−V} is located underneath the free surface Σ = {H = ℎ(G)} and
set

ΩV = {(G, H) ∈ R3 × R ; −V < H < ℎ(G)}.

Then one performs computations in ΩV and then let V goes to +∞. To justify that
one can pass to the limit, it is important to justify the fact that q and its derivative
converges to 0 when H goes to −∞. This is the content of the following lemma.
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Proposition 4.1.11. Assume that [ ∈ ,1,∞(R3) and consider a real number ℎ > 0
such that [(G) > −ℎ for all G ∈ R3 . Set

Π = {(G, H) ∈ R3 × R ; H < −ℎ}.

Then, for any multi-index U ∈ N3 and any V ∈ N with |U | + V > 0, one has

(4.1.10) mUG m
V
H q ∈ !2(Π) and lim

H→−∞
sup
G∈R3

���mUG mVH q(G, H)��� = 0.

Proof. Consider another real number 0 < ℎ′ < ℎ such that [(G) > −ℎ′ for all
G ∈ R3 , and consider the strip

( = {(G, H) ∈ R3 × R ; −ℎ < H < −ℎ′}.

Since ∇G,Hq belongs to !2(Ω), we have ∇G,Hq ∈ !2((′). Then, the trace Z := q |H=−ℎ
is well-defined and belongs to �−1/2(R3) (using m2

H q = −ΔGq and Lemma ??). Set
Z = q |H=−ℎ.

Now, in the domainΠ := {(G, H) ; H < −ℎ}, q coincides with the harmonic extension
of Z , by uniqueness of the harmonic extension. Since Π is invariant by translation
in G, we can compute the latter function by using the Fourier transform in G. It
results that,

(4.1.11) ∀G ∈ R3 , ∀H < −ℎ, q(G, H) = (4(H+ℎ) |� |Z) (G).

(Here, for g < 0, 4g |� | denotes the Fourier multiplier with symbol 4g |b |.) Indeed, the
function (4(H+ℎ) |� |Z) (G) is clearly harmonic and is equal to Z on {H = ℎ}. Then, for
|U | + V > 0, it easily follows from (4.1.11) and the Plancherel theorem that mUG m

V
H q

belongs to !2(Π).

To prove the second half of (4.1.10), we use again the formula (4.1.11) and the
Plancherel theorem, to infer that mUG m

V
H q(·, H) converges to 0 in any Sobolev space

�` (R3) (` ≥ 0) when H goes to −∞. The desired decay result now follows from the
Sobolev embedding �` (R3) ⊂ !∞(R3) for ` > 3/2. �

4.2 Definition of the Dirichlet-to-Neumann operator

Consider two functions [ ∈ ,1,∞(R3) and k ∈ � 1
2 (R3). Denote by q the harmonic

extension of k as defined in the previous section, which is a variational solution to

(4.2.1) ΔG,Hq = 0 in Ω, q|H=[ = 5 , m=q |Γ = 0.
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Formally the Dirichlet-to-Neumann operator is defined by

(4.2.2) � ([)k =
√

1 + |∇[ |2 m=qH=[(G) = [
mHq − ∇[ · ∇q

] H=[ .
Since we merely have ∇G,Hq ∈ !2(Ω), some care is needed to give a rigorous
meaning to the trace of m=qH=[. This is the subject matter of this paragraph.

A classical idea in free boundary problems is to use a change of variables to reduce
the problem to a fixed domain. The simplest way to proceed is to map the domain
Ωℎ = [(G) − ℎ < H < [(G) to the flat strip R3 × (−ℎ, 0) via the correspondence

(G, H) ↦→ (G, I) where I = H − [(G).

This change of variables takesΔG,H to a strictly elliptic operator and m= to a vector field
which is transverse to the boundary {I = 0}. Namely, introduce E : R3×[−ℎ, 0] → R
defined by

E(G, I) = q(G, I + [(G)),
so that E satisfies

E |I=0 = q |H=[ = 5 .

Notice that

(mIE) (G, I) = (mHq) (G, I + [(G)),
∇E(G, I) = ∇q(G, I + [(G)) + (mHq) (G, I + [(G)).

It follows that

(∇q) (G, I + [(G)) = (∇E) (G, I) − (mIE) (G, I)∇[(G),

and E satisfies the equation (
m2
I + (∇ − (∇[)mI)2

)
E = 0,

which gives

(4.2.3) (1 + |∇[ |2)m2
I E + ΔE − 2∇[ · ∇mIE − (mIE)Δ[ = 0,

in R3 × (−∞, 0). Then,

(4.2.4) � ([) 5 = *I=0 with * := (1 + |∇[ |2)mIE − ∇[ · ∇EI=0.

We will also use the fact that

(4.2.5)
∬
Ωℎℎ

��∇G,Hq��2 dH dG =
∬
R3×(−ℎ,0)

(
|∇E − (mIE)∇[ |2 + (mIE)2

)
dG dI.
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Proposition 4.2.1. Let 3 ≥ 1 and consider [ ∈ ,1,∞(R3). Then for all 5 ∈ � 1
2 (R3),

the formula (4.2.4) defines a function � ([) 5 in �− 1
2 (R3).

Now, the key point is that* satisfies

* = mIE − ∇[ · (∇E − (mIE)∇[),
mI* = − div(∇E − (mIE)∇[).

Hence it follows from (4.2.5) that

* ∈ !2
I ((−ℎ, 0); !2(R3)) and mI* ∈ !2

I ((−ℎ, 0);�−1(R3)).

Then the proposition follows from the following classical lemma (see [315, Theorem
3.1]).

Lemma 4.2.2. Let � = (−1, 0) and B ∈ R. Let D ∈ !2
I (�, �B+ 1

2 (R3)) such that

mID ∈ !2
I (�, �B− 1

2 (R3)). Then D ∈ �0( [−1, 0];�B (R3)) and there exists an absolute
constant � > 0 such that

sup
I∈[−1,0]

‖D(I, ·)‖�B (R3)) ≤ �
(
‖D‖

!2 (�,�B+
1
2 (R3))

+ ‖mID‖
!2 (�,�B−

1
2 (R3))

)
.

4.3 A trace estimate

The next result is from a joint work with Quoc-Hung Nguyen [34]. It gives a trace
estimate assuming only that the gradient of [ is estimated in BMO(Rd). This is a
strictly smaller of !∞(R3), introduced by John and Nirenberg, which is defined as
follows.

Definition 4.3.1. The space BMO(Rd) (for Bounded Mean Oscillations) consists of
those functions 5 ∈ !1(R3loc(R

3) such that ‖ 5 ‖BMO < +∞, with

‖ 5 ‖BMO = sup
&⊂R3

1
|& |

∫
&

�� 5 − 5& �� dG,
where the supremum is taken over all cubes & ⊂ R3 and

5& =
1
|& |

∫
&

5 dG.
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Proposition 4.3.2. There exists a positive constant 2 such that,∫
R3
5 � (ℎ) 5 dG ≥ 2

1 + ‖∇ℎ‖BMO
‖ 5 ‖2

¤�
1
2
.

Proof. We use the notations introduced in the previous section. Recall that

(4.3.1)
∫
R3
5 � (ℎ) 5 dG = &( 5 ),

where the quadratic form &( 5 ) is defined by

(4.3.2) &( 5 ) =
∬
R3+1−

|∇E − mIE∇ℎ|2 dG dI +
∬
R3+1−

(mIE)2 dG dI.

On the other hand, by writing that 5 = mIE |I=0, we have∫
R3
5 |� | 5 dG =

∬
R3+1−

mI (E |� | E) dG dI,

where |� | E is the function defined by ( |� | E) (·, I) = |� | (E(·, I)). Now, we use the
Leibniz rule and the fact that |� | is self-adjoint to write∫

R3
5 |� | 5 dG =

∬
R3+1−

(
(mIE) |� | E + EmI |� | E

)
dG dI

= 2
∬
R3+1−

(mIE) |� | E dG dI.

Now introduce the Riesz transform R = (R1, . . . ,R3) where R 9 is the Fourier
multiplier with symbol −8b 9/|b |, so that |� | = R · ∇. With this operator, one can
write

(4.3.3)

∫
R3
5 |� | 5 dG = 2

∬
R3+1−

(mIE)R ·
(
∇E − (mIE)∇ℎ

)
dG dI

+ 2
∬
R3+1−

(mIE)R ·
(
(mIE)∇ℎ

)
dG dI.

The end of the proof is in two steps. We will compare the first term in the right-
hand side to &( 5 ). Secondly, we will estimate the second term by exploiting a
commutator estimate.
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Step 1.

Notice that R is a skew-symmetric operator. Therefore∬
R3+1−

(mIE)R ·
(
∇E − (mIE)∇ℎ

)
dG dI = −

∬
R3+1−

(R(mIE)) ·
(
∇E − (mIE)∇ℎ

)
dG dI,

where R(mIE) is the vector valued function with cooordinates R 9mIE.

Given two vectors 0, 1 in R3 , we use the inequality −20 · 1 ≤ |0 |2 + |1 |2 to deduce
that

(4.3.4) −2R(mIE) ·
(
∇E − (mIE)∇ℎ

)
≤ |R(mIE) |2 + |∇E − (mIE)∇ℎ |2

On the other hand, by Plancherel’s theorem, we have∫
R3
|R(mIE) |2 dG =

∫
R3
(mIE)2 dG.

Consequently, it follows from (4.4.4) that

&( 5 ) ≥ −2
∬
R3+1−

R(mIE) ·
(
∇E − (mIE)∇ℎ

)
dG dI

In light of (4.3.3), we conclude that

(4.3.5) &( 5 ) ≥
∫
R3
5 |� | 5 dG + 2

∬
R3+1−

(mIE)R ·
(
(mIE)∇ℎ

)
dG dI.

Step 2.

In this step we estimate

2
∬
R3+1−

(mIE)R ·
(
(mIE)∇ℎ

)
dG dI.

To do so, we exploit the fact that R is a skew-symmetric operator to make appear a
commutator. More precisely, notice that, for any functions Z = Z (G) and 6 = 6(G),
and for any index 9 ∈ {1, . . . , 3}, there holds

2
∫
R3
ZR 9 (6Z) dG =

∫
R3
ZR 9 (6Z) dG +

∫
R3
(R∗9 Z) (6Z) dG

=

∫
R3
Z
[
R 9 , 6]Z dG.
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By using this identity with Z = E(·, I) at fixed I and then integrating in I, we get that

2
∬
R3+1−

(mIE)R ·
(
(mIE)∇ℎ

)
dG dI =

∬
R3+1−

(mIE)
3∑
9=1

[
R 9 , mG 9 ℎ

]
mIE dG dI.

Now, we use the following commutator estimate[R 9 , 6]Z!2 (R3) . ‖6‖BMO(Rd) ‖Z ‖!2 (R3) .

By using the Cauchy-Schwarz inequality, this implies that

(4.3.6)

����2 ∬
R3+1−

(mIE)R ·
(
(mIE)∇ℎ

)
dG dI

���� . ‖∇ℎ‖BMO

∬
R3+1−

(mIE)2 dG dI

≤ ‖∇ℎ‖BMO&( 5 ).

End of the proof.

By combining (4.3.5) and (4.3.6), we get∫
R3
5 � (ℎ) 5 dG = &( 5 ) ≥

∫
R3
5 |� | 5 dG − ‖∇ℎ‖BMO&( 5 ).

Remembering (4.3.1), this concludes the proof. �

4.4 Rellich estimates

Proposition 4.4.1. For any smooth functions ℎ and Z , there holds

(4.4.1)
∫
R3
(� (ℎ)Z)2 dG ≤

∫
R3
(1 + |∇ℎ |2) |∇Z − B∇ℎ |2 dG,

where

(4.4.2) B = � (ℎ)Z + ∇Z · ∇ℎ
1 + |∇ℎ|2

.

Moreover, when 3 = 1, this is an equality:

(4.4.3)
∫
R
(� (ℎ)Z)2 dG =

∫
R
(1 + (mGℎ)2) (mGZ − BmGℎ)2 dG.
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Proof. 8) Set
Ω = {(G, H) ∈ R3 × R ; H < ℎ(G)},

and denote by q the harmonic function defined by

(4.4.4)

{
ΔG,Hq = 0 in Ω = {(G, H) ∈ R3 × R ; H < ℎ(G)},
q(G, ℎ(G)) = Z (G).

This is a classical elliptic boundary problem, which admits a unique smooth solution.
Moreover, it satisfies

(4.4.5) lim
H→−∞

sup
G∈R3

��∇G,Hq(G, H)�� = 0.

Introduce the notations

V = (∇q) |H=ℎ, B = (mHq) |H=ℎ.

(We parenthetically recall that ∇ denotes the gradient with respect to the horizontal
variables G = (G1, . . . , G3) only.) As we already seen in the first chapter, it follows
from the chain rule that

V = ∇Z − B∇ℎ,

where B is given by (4.4.2). On the other hand, by definition of the Dirichlet-to-
Neumann operator, one has

� (ℎ)Z =
(
mHq − ∇ℎ · ∇q

)
|H=ℎ,

so
� (ℎ)Z = B − ∇ℎ · V .

Squaring this identity yields

(� (ℎ)Z)2 = B2 − 2B∇ℎ · V + (∇ℎ · V)2.

Since (∇ℎ · V)2 ≤ |∇ℎ|2 · |V|2, this implies the inequality:

(4.4.6) (� (ℎ)Z)2 ≤ B2 − |V|2 − 2B∇ℎ · V + (1 + |∇ℎ |2)V2.

Integrating this gives∫
R3
(� (ℎ)Z)2 dG ≤

∫
R3
(1 + |∇ℎ |2) |V|2 dG + ',
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where

' =

∫
R3

(
B2 − |V|2 − 2B∇ℎ · V

)
dG.

Since |V| = |∇Z − B∇ℎ |, we immediately see that, to obtain the wanted esti-
mate (4.4.1), it is sufficient to prove that ' = 0. To do so, we begin by noticing that
' is the flux associated to a vector field. Indeed,

' =

∫
mΩ

- · = dH 3

where - : Ω→ R3+1 is given by

- = (2(mHq)∇q; (mHq)2 − |∇q |2).

Then the key observation is that this vector field satisfies divG,H - = 0 since

mH
(
(mHq)2 − |∇q |2

)
+ 2 div

(
(mHq)∇q

)
= 2(mHq)ΔG,Hq = 0,

as can be verified by an elementary computation. Now, we see that the cancellation
' = 0 comes from the Stokes’ theorem. To rigorously justify this point, we truncate
Ω in order to work in a smooth bounded domain. Given a parameter V > 0, set

ΩV = {(G, H) ∈ R3 × R ;−V < H < ℎ(G)}.

An application of the divergence theorem in ΩV gives that

0 =
∬
ΩV

divG,H - dH dG = ' +
∫
{H=−V}

- · (−4H) dG,

where 4H is the vector (0, . . . , 0, 1) in R3+1. Sending V to +∞ and remembering that
- converges to 0 uniformly when H goes to −∞ (see (4.4.5)), we obtain the expected
result ' = 0. This completes the proof of (4.4.1).

88) Now assume that 3 = 1 and let us prove that we have an identity instead of
an inequality. To do so, it is sufficient to notice that to derive (4.4.6) we use the
inequality (∇ℎ · V)2 ≤ |∇ℎ |2 · |V|2, which is clearly an equality when 3 = 1. �

4.5 A Pohozaev estimate

Consider a three-dimensional fluid in a rectangular tank, bounded by a flat bottom,
vertical walls and a free surface evolving under the influence of gravity. The
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inequality that we will prove in this section is motivated by the following problem:
Can we estimate the energy of the water-wave evolving in this tank by looking only
at the motion of the points of contact between the free surface and the vertical walls?

Denote by 3 ∈ {1, 2} the dimension of the free surface. For a 3D (resp. 2D) fluid one
has 3 = 2 (resp. 3 = 1) and we use the notation ∇ = (mG1 , mG2) (resp. ∇ = mG). We
consider water waves over an incompressible liquid, evolving under the influence of
gravity, in the case where the fluid is located inside a fixed rectangular tankℛ of the
form ℛ = & × [−ℎ, +∞) where & = [0, !1] × [0, !2] for 3 = 2 (resp. & = [0, !1]
for 3 = 1) and ℎ is a positive constant. At time C, the fluid domain Ω(C) is given by

(4.5.1) Ω(C) = { (G, H) : G ∈ &, − ℎ ≤ H ≤ [(C, G) } ,

where G = (G1, G2) (resp. H) is the horizontal (resp. vertical) space variable.

We want to determine the energy by observing the motion of the curves of contact
between the free surface and the walls {G1 = !1} and {G2 = !2}:

�1(C) = {(!1, G2, H), G2 ∈ [0, !2], H = [(C, !1, G2)},
�2(C) = {(G1, !2, H), G1 ∈ [0, !1], H = [(C, G1, !2)}.

H
!1

!2
ℛ

G1

G2

�2(C)

�1(C)

•�(C)

Ω(C)

H

G10 !1

0

−ℎ

Figure 4.1: Three-dimensional and two-dimensional waves in a rectangular tank

To study the previous problem, the key point is to prove a Pohozaev type identity for
� ([)k, that is we want to compute∫

&

(� ([)k) (G · ∇k) dG.
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Since we are working in a bounded domain, we need to clarify the boundary condi-
tions on the lateral walls. One denotes by a the outward unit normal to& (a = (1, 0)
if G1 = !1, a = (0,−1) if G2 = 0,...). We assume that [ and k are such that

ma[ = 0, mak = 0 on m&.

In this case, one can prove that k has a unique harmonic extension satisfying

(4.5.2) ΔG,Hq = 0 in Ω, q|H=[ = k,

together with m=q = 0 on mℛ ∩ mΩ, which implies that

mG1q = 0 for G1 = 0 or G1 = !1,(4.5.3)
mG2q = 0 for G2 = 0 or G2 = !2,(4.5.4)
mHq = 0 for H = −ℎ.(4.5.5)

It is possible to prove by elementary arguments that this problem has a unique
solution such that ∇G,Hq ∈ �1(Ω) and m=q = 0 on mℛ ∩ mΩ. (This is sufficient to
justify all the computations done below.)

Proposition 4.5.1 (Pohozaev identity). Denote by ' the solid part of mΩ:

' := mℛ ∩ mΩ,

(ℛ = & × [−ℎ, +∞)) and denote by = the unit outward normal to mΩ. Then, the
following identity holds

(4.5.6)

∫
&

(� ([)k) (G · ∇k) dG

=
1
2

∫
'

��∇G,Hq��2 (
G

H

)
· = dH 3 − 3 − 1

2

∬
Ω

��∇G,Hq��2 dH dG

+ 1
2

∫
&

([ − G · ∇[)
[
+2 + �2 − 2�� ([)k

]
dG,

where � = (mHq) |H=[(G) and + = (∇Gq) |H=[(G) .

Remark 4.5.2. 8) If 3 = 1 then the second term in the right-hand side of (4.5.6)
vanishes and, since = · ∇G,Hq = 0 on ', the first one simplifies to

1
2

∫
'

��∇G,Hq��2 (
G

H

)
·= dH 3 =

!1
2

∫ [(!1)

−ℎ
(mHq(!1, H))2 dH + ℎ

2

∫ !1

0
(mGq(G,−ℎ))2 dG.
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Consider now the case 3 = 2. Then one has also (G, H) · = ≥ 0. Indeed,

on {G1 = !1} one has = = (1, 0, 0) and (G, H) · = = !1,

on {G2 = !2} one has = = (0, 1, 0) and (G, H) · = = !2,

on {H = −ℎ} one has = = (0, 0,−1) and (G, H) · = = ℎ,

and moreover, (G, H) · = ≡ 0 on the two other faces {G1 = 0} and {G2 = 0}.

Proof. The proof of this proposition relies on the divergence theorem applied to a
well chosen vector field. Introduce the scalar function

\ := G · ∇Gq + HmHq

and the vector field
- = \∇G,Hq.

We are going to compute the integral of divG,H - by two different ways. The wanted
identity (4.5.6) will be deduced by comparing the two results.

First computation. We want to exploit the fact that, since m=q = 0 on ', one has
- · = = 0 on '. To do so we begin by writing∬

Ω

divG,H - dH dG =
∫
mΩ

- · = dH 3 =

∫
mΩ\'

- · = dH 3 .

Since mΩ \ ' = {(G, H), G ∈ &, H = [(G)}, by definition of � ([)k, the previous
identity simplifies to∬

Ω

divG,H - dH dG =
∫
mΩ\'

\m=q dH 3

=

∫
&

\ (G, [)
√

1 + |∇[ |2 m=q |H=[ dG

=

∫
&

\ (G, [)� ([)k dG.

Now, write

∇Gk = ∇G (q(G, [(G))) = (∇Gq) (G, [(G)) + (mHq) (G, [(G))∇G[.

Since � = mHq(G, [), we get that (∇Gq) (G, [(G)) = ∇Gk − �∇G[. By definition of \,
we deduce that

\ (G, [) = G · (∇Gk − �∇G[) + [� = G · ∇Gk + ([ − G · ∇G[)�.
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We thus end up with

(4.5.7)
∬
Ω

divG,H - dH dG =
∫
&

(� ([)k) (G · ∇k) dG +
∫
&

([− G · ∇G[)�� ([)k dG.

Second computation. Set
W =

��∇G,Hq��2 .
As can be verified by a direct computation, one has

divG,H - =W +
1
2
G · ∇GW +

1
2
HmHW,

and hence

divG,H - = div
(
W
2
G

)
+ mH

(
W
2
H

)
− 3 − 1

2
W.

Introduce the vector field

. =
W
2

(
G

H

)
.

Then the previous identity reads divG,H - = divG,H . − 3−1
2 W. Consequently∬

Ω

divG,H - dH dG =
∫
mΩ

. · = dH 3 − 3 − 1
2

∬
Ω

W dH dG.

Now observe that,∫
'

. · = dH 3 =
1
2

∫
'

��∇G,Hq��2 (
G

H

)
· = dH 3 ,∫

mΩ\'
. · = dH 3 =

1
2

∫
&

W|H=[
(
G

[

)
·
(
−∇[

1

)
dG =

1
2

∫
&

([ − G · ∇[)W|H=[ dG.

Therefore∬
Ω

divG,H - dH dG =
1
2

∫
'

��∇G,Hq��2 (
G

H

)
· = dH 3

+ 1
2

∫
&

([ − G · ∇[)W|H=[ dG − 3 − 1
2

∬
Ω

W dH dG.

By combining this identity with (4.5.7) we obtain the wanted result (4.5.6). �
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4.6 Pointwise inequalities

In order to consider various different situations, in this paragraph we assume that
the fluid domain is of the form

Ω = {(G, H) ∈ T3 × R : H < ℎ(G)},

where ℎ is a periodic function. As above, the free surface is denoted by Σ:

Σ = {(G, ℎ(G)) ; G ∈ T3},

where we use T3 to denote a 3-dimensional torus.

4.6.1 Applications of the maximum principle

We begin by recalling the following maximum principle.

Proposition 4.6.1. Let ℎ ∈ ,1,∞(T3). Consider a function D ∈ �2(Ω) ∩ �0(Ω)
with ∇G,HD ∈ !2(Ω) satisfying

−ΔD ≥ 0 in Ω, D |Σ ≥ 0.

Then
D ≥ 0.

Proof. See Chapter 3 in [220]. �

We next recall the Zaremba principle (see [455]; also known as Hopf’s maximum
principle). It states that, if mΩ is �2 and G0 ∈ mΩ, then

−ΔD = 5 ≥ 0 in Ω, D(G) > D(G0) in Ω ⇒ m=D(G0) < 0.

We shall use a version which holds in domain which are less regular.

Theorem 4.6.2. Let ℎ ∈ �1,U (T3) with U ∈ (0, 1). Consider a function D ∈
�2(Ω) ∩ �1(Ω) with ∇G,HD ∈ !2(Ω) satisfying

−ΔD ≥ 0 in Ω, D |Σ ≥ 0.

If D attains its minimum at a point G0 of the boundary Σ, then

m=D(G0) < 0.
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Proof. See Safonov [380], Apushkinskaya-Nazarov [180] and Nazarov [350]. �

We deduce from this inequality the following pointwise bound for the Dirichlet-to-
Neumann operator.

Proposition 4.6.3. For any function ℎ ∈ �1,U (T3) with U ∈ (0, 1), there holds

� (ℎ)ℎ < 1.

Proof. We will prove that
� (ℎ)ℎ + |∇ℎ |2

1 + |∇ℎ |2
< 1,

equivalent to the wanted result. It follows from Lemma 1.2.3 that

� (ℎ)ℎ + |∇ℎ |2
1 + |∇ℎ |2

= �(ℎ)ℎ = (mHq) |H=ℎ,

where q is the variational solution to

ΔG,Hq = 0 in Ω, q(G, ℎ(G)) = ℎ(G).

Hence the proof reduces to showing that (mHq) |H=ℎ < 1.

Given ℓ > 0, set

Ωℓ =
{
(G, H) ∈ T3 × R ; −ℓ < H < ℎ(G)

}
,

and introduce
% = q − H.

Then % is an harmonic function in Ωℓ vanishing on Σ := {H = ℎ(G)}. Moreover,
since mHq goes to 0 when H goes to −∞ (see Proposition 4.1.11), one gets that, if ℓ
is large enough, then

mH% |H=−ℓ < 0.

Since m=% = −mH% on {H = −ℓ}, one infers from the Zaremba principle that % cannot
reach its minimum on {H = −ℓ}. So % reaches its minimum on Σ.

On the other hand, % is constant on Σ. This shows that % reaches its minimum on
any point of Σ. Using again the Zaremba principle, one concludes that m=% < 0 on
any point of Σ. So, to conclude the proof, it remains only to relate m=% and mH%
on Σ. To do so, we apply the chain rule to the equation %(G, ℎ(G)) = 0. This gives

(∇%) |H=ℎ = −(mH%) |H=ℎ∇ℎ.
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Recalling that = = (1 + |∇ℎ |2)−1/2 ( −∇ℎ
1

)
, and using the previous identity, one has

(m=%) |H=ℎ =
1√

1 + |∇ℎ |2
(mH% − ∇ℎ · ∇%) |H=ℎ =

√
1 + |∇ℎ |2(mH%) |H=ℎ.

This proves that (mH%) |H=ℎ < 0 on Σ, which means that (mHq) |H=ℎ − 1 < 0, which is
the desired inequality. �

4.6.2 A convexity inequality

Assume that 3 = 1. Then
|� | = �mG ,

where � is the periodic Hilbert transform, defined by

�̂D(0) = 0, �̂D(:) = −8 sign(:)D̂(:) (: ∈ Z \ {0}),

where we use D̂(:) to denote the Fourier coefficient of a function D in !1(T). We
also have

�D(G) = 1
2c

pv
∫ c

−c
D(H) cot

(
1
2
(G − H)

)
dH

(Compare with the formula (2.2.3) for the Hilbert transform for functions which are
not periodic.)

Lemma 4.6.4 (Toland). Consider D ∈ �∞(T). Then

D(G) ( |� | D) (G) − 1
2
|� | (D2) (G) = 1

8c

∫ c

−c

(
D(G) − D(H)
sin 1

2 (G − H)

)2

dH.

Proof. Since |� | = �mG , we have

D(G) ( |� | D) (G) − 1
2
|� | (D2) (G) = D(G)�D′(G) − � (DD′) (G)

=
1

2c

∫ c

−c
(D(G) − D(H))D′(H) cot

(1
2
(G − H)

)
dH

= − 1
4c

∫ c

−c
cot

(1
2
(G − H)

)
mH (D(H) − D(G))2 dH

=
1

8c

∫ c

−c

(
D(G) − D(H)
sin 1

2 (G − H)

)2

dH,

where we integrate by parts to deduce the final identity. �
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It follows from Parseval’s identity that and

∑
:∈Z
|: |

��D̂(:)��2 = 1
2c

∫ c

−c
D |� | D dG =

1
16c

∬
T×T

(
D(G) − D(H)
sin 1

2 (G − H)

)2

dG dH.

In particular, the � 1
2 (T)-norm of D is equivalent to∬
T×T

(
D(G) − D(H)
sin 1

2 (G − H)

)2

dG dH +
∫
T
(D(G))2 dG.

(Compare with (2.2.6).)

Recall that |� | = � (0). In particular, it follows from Lemma 4.6.4 that

2 5 � (0) 5 ≥ � (0) ( 5 2).

Several extensions of this inequality are known (see §4.7.4 for many references).
We will use later the following

Proposition 4.6.5. Let U ∈ (0, 1) and consider two functions 5 , ℎ in �1,U (T3). For
any �2 convex function Φ : R→ R, it holds the pointwise inequality

(4.6.1) Φ′( 5 )� (ℎ) 5 ≥ � (ℎ)
(
Φ( 5 )

)
.

Remark 4.6.6. We consider only periodic functions but the proof is extremely simple
and easy to adapt to other settings.

Proof. Denote by Z (resp. b) the harmonic extension of 5 (resp. Φ( 5 )), so that

ΔG,HZ = 0 in Ω, Z |H=ℎ = 5 ,

ΔG,Hb = 0 in Ω, b |H=ℎ = Φ( 5 ).

By assumption, Z and b belong to �2(Ω) ∩�1(Ω). By definition of the Dirichlet to
Neumann operator and using the chain rule, one has

� (ℎ)
(
Φ( 5 )

)
−Φ′( 5 )� (ℎ) 5 =

√
1 + |∇ℎ |2m=

(
b −Φ(Z)

)
.

It suffices then to prove that the difference D = b − Φ(Z) satisfies m=D ≤ 0 on mΩ.
To do so, using that Φ is convex, we observe that

ΔΦ(Z) = Φ′(Z)ΔZ +Φ′′(Z) |∇Z |2 = Φ′′(Z) |∇Z |2 ≥ 0.
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Thus, we deduce that

−ΔG,HD ≥ 0 in Ω, D = 0 on mΩ.

It follows from the maximum principle that D ≥ 0 in Ω. Since D vanishes on mΩ,
we infer that

∀G ∈ mΩ, ∀C > 0, D(G − C=) ≥ D(G),
where = is the outward unit normal to the boundary. Since D belongs to �1(Ω), this
immediately implies that m=D ≤ 0, which completes the proof. �

4.7 References

4.7.1 Campanato and BMO spaces

Consider a function 5 : R3 → R. To study the regularity of 5 at a point G0, a fruitful
point of view is to study the integrability properties of the difference between 5

and its mean value on balls centered at G0. To explain this, we begin by proving an
elementary lemma.

Definition 4.7.1. Let G0 ∈ R3 and A > 0. If 5 : Ω→ R, one poses

5G0,A =

∫
−
�(G0,A)

5 dG =
1

|�(G0, A) |

∫
�(G0,A)

5 dG.

Lemma 4.7.2. Suppose 5 ∈ �0,U (R3). Then for all G0 and all A > 0,∫
�(G0,A)

�� 5 (G) − 5G0,A

��? dG 6 2U? ‖ 5 ‖?
�0,U l3A

3+U?,

where l3 is the volume of the unit ball (note that the integral of the left-hand side is
a usual integral).

Proof. Since

5 (G) − 5G0,A =
1

|�(G0, A) |

∫
�(G0,A)

(
5 (G) − 5 (H)

)
dH

we have�� 5 (G) − 5G0,A

�� 6 1
|�(G0, A) |

∫
�(G0,A)

‖ 5 ‖�0,U |G − H |U dH 6 ‖ 5 ‖�0,U (2A)U .
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We conclude by raising the left-hand side to the power ? and integrating on �(G0, A).
�

This idea lead to introduce the following spaces.

Definition 4.7.3 (Campanato Spaces). Let _ > 0, ? ∈ [1,∞[. A function 5 ∈
!1
;>2
(R3) belongs to the Campanato space L?,_ (R3) if

‖ 5 ‖L ?,_ := sup
0<A

sup
G0∈R3

(
A−_

∫
�(G0,A)

�� 5 (G) − 5G0,A

��? dG
) 1
?

< ∞.

These spaces allow to study the Hölder regularity to solutions to elliptic equations,
by means of the following

Theorem 4.7.4 (Campanato). Let ? ∈ [1,∞[ and _ ∈]3, 3 + ?]. Then

L?,_ (R3) ⊂ �0,U (R3) with U =
_ − 3
?

.

Proof. See [15, 48]. �

The endpoint space ? = 1 and U = 0 plays a central role in harmonic analysis. It was
introduced by John and Nirenberg, and is named BMO (for functions with Bounded
Mean Oscillations). Namely, we set

BMO(Rd) = L1,d(Rd).

We have clearly
!∞(R3) ↩→ BMO(Rd).

However there exist functions in BMO(Rd) which are not bounded, for instance the
function G ↦→ exp(−|G |2) log( |G |) belongs to BMO(Rd). In the same direction, we
also have

,1,3 (R3) ↩→ BMO(Rd).

Let us mention a couple of subtle estimates for paraproducts involving the BMO-
semi-norm.

Theorem 4.7.5 (Coifman-Meyer). The paraproduct and remainder term satisfy

‖)01‖!2 ≤ � ‖0‖!2 ‖1‖BMO ,

‖'B (0, 1)‖!2 ≤ � ‖0‖!2 ‖1‖BMO ,

for some universal constant �.
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4.7.2 Commutator estimates

Having introduced the BMO space, in this paragraph, we are going to state three
different commutators estimates. The goal is to explain the different roles played by
the spaces !∞(R3), BMO(Rd) and the Höder space �0,U (R3) for some U > 0.

We begin by a fundamental commutator estimate.

Theorem4.7.6 (Calderón; Coifman-Meyer). Let ? ∈ (1, +∞) and consider a symbol
0 ∈ (1

1,0(R
3) of order 1. Then for any Lipschitz function 5 ∈ ,1,∞(R3), the

commutator [Op(0), 5 ] satisfies

‖ [Op(0), 5 ]D‖!? ≤ � ‖ 5 ‖,1,∞ ‖D‖!? ,

for some universal constant �.

Proof. See [134] and [418, Chapter 3]. �

This theorem was first proved by Calderón ([106]) when 0 is homogeneous in b. For
instance, if 0 = (1 − j(b)) |b | where j ∈ �∞0 (R

3) and j(b) = 1 on a neighborhood
of 0, then Op(0) = (1 − j(�)) |� |. Since j(�) |� | is a smoothing operator
(continuous from �−∞ to �∞), we infer that

‖|� | ( 5 D) − 5 |� | D‖!? ≤ � ‖ 5 ‖,1,∞ ‖D‖!? .

Our second commutator estimate has to do with BMO functions.

Theorem 4.7.7 (Coifman-Rochberg-Weiss). Let ? ∈ (1, +∞) and consider a symbol
0 ∈ (0

1,0(R
3) of order 0. Then, for any a function 5 ∈ BMO(Rd), then the

commutator [Op(0), 5 ] satisfies

‖ [Op(0), 5 ]D‖!? ≤ � ‖ 5 ‖BMO ‖D‖!? ,

for some universal constant �.

Remark 4.7.8. This theorem implies the following corollary for the Hilbert trans-
form:

‖ [1,H]D‖!? ≤ � ‖1‖BMO ‖D‖!? , 1 < ? < ∞,

where [1,H]D denotes the commutator

[1,H]D = 1(HD) − H (1D).
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Eventually, we mention the following estimate for the commutator between the
Hilbert transform and a function in some Hölder space �0,a (R3).

Proposition 4.7.9. Let 0 < \ < a < 1. There exists a constant  such that for all
5 ∈ �0,a (R), and all D in �−\ (R),

(4.7.1) ‖H ( 5 D) − 5HD‖!2 ≤  ‖ 5 ‖�0,a ‖D‖�−\ .

Proof. See [?]. �

4.7.3 Pohozaev identity

The proof of (4.5.6) given above is guided by the study of the commutator [GmG , � ([)]
in Alazard-Delort [25, Chapter 4]. However, one cannot apply the results of [25]
because of the boundary conditions on ' (and also because we consider the case
3 ≥ 1 while the analysis in [25] is restricted to 3 = 1). Compared to [25, Chapter 4],
the main new result here is the observation that the contribution of these boundary
conditions is given by a positive term (namely the first term in the right-hand side
of (4.5.6)).

Another Pohozaev identity for the fractional Laplacian has been proved by Ros-Oton
and Serra [376]. Moreover, Biccari [81] deduced from the Pohozaev identity in [376]
a Pohozaev identity for solutions to fractional Schrödinger equations. Namely, it
is proved in [376] that, if & is any �1,1 domain of R3 , B ∈ (0, 1) and D ∈ �B (R3)
vanishes in R3 \&, then

(4.7.2)

∫
&

(G · ∇D) (−Δ)BD dG =
2B − 3

2

∫
&

D(−Δ)BD dG

− Γ(1 + B)
2

2

∫
m&

(
D

dist(G, m&)B

)2
(G · a) dH 3 .

4.7.4 About the pointwise inequalities

Proposition 4.6.3 is related to the Rayleigh–Taylor stability condition for the Hele-
Shaw problem. In particular, the inequality � (ℎ)ℎ < 1 is classical and plays a
central role in the study of the Cauchy problem for the latter equation (see [116, 113,
114, 126]). The proof of Proposition 4.6.3 is taken from [30] and follows from the
proof by Lannes [300]Ê of a similar result for the gravity water-wave equations.
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Lemma 4.6.4 is proved in [422] and applied to study Stokes waves. Similar com-
putations appear in the study of parabolic free boundary problems. In particular,
in [148, 149], Córdoba and Córdoba proved that, for any exponent U in [0, 1] and any
�2 function 5 decaying sufficiently fast at infinity, one has the pointwise inequality

2 5 (−Δ)U 5 ≥ (−Δ)U ( 5 2).

This inequality has been generalized and applied to many different problems. To
mention a few results, we quote the papers by Ju [275], Constantin and Igna-
tova ([142, 143]), Constantin, Tarfulea and Vicol ([146]), and we refer to the numer-
ous references there in. Recently, Córdoba and Martínez ([151]) proved that

Φ′( 5 )� (ℎ) 5 ≥ � (ℎ)
(
Φ( 5 )

)
when ℎ is a �2 function and Φ( 5 ) = 5 2< for some positive integer <. The next
proposition (from [30]) gives an extension to the general case where Φ is a convex
function and ℎ is �B for some B > 1.

4.7.5 The multiplier method in control theory

The control theory of wave equations is well developed and many techniques have
been introduced (microlocal analysis, Carleman estimates...). In this paper, we use
the multiplier method. The key point is that this method allows us to work directly
at the level of the nonlinear equations.

For the sake of readability, we begin by recalling some well-known results for the
linear wave equation

(4.7.3) m2
C D − ΔD = 0 in Ω ⊂ R=, D |mΩ = 0.

The multiplier method, introduced by Morawetz, consists in multiplying the equa-
tions by <(G) · ∇D(C, G), for some well-chosen function <, and to integrate by parts
in space and time. For instance, by considering a smooth extension < : Ω→ R= of
the normal a(G) to the boundary mΩ, one obtains

(4.7.4)

∫ )

0

∫
mΩ

(m=D)2 df dC ≤  ())E(D) where

E(D) := ‖D(0, ·)‖2
�1

0 (Ω)
+ ‖mCD(0, ·)‖2!2 (Ω) .

This is the so-called hidden regularity property. The name comes from the fact that,
using energy estimates, one controls only the �0( [0, )]; !2(Ω))-norm of ∇GD by
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means of the right-hand side of (9.4.2), which is insufficient to control the left-hand
side of (9.4.2) by means of classical trace theorems.

Another key estimate is the so-called boundary observability inequality, which is,
compared to (9.4.2), a reverse inequality where one can bound the norms of the
initial data by the integral of m=D restricted to a domain Γ0 ⊂ mΩ. Such an inequality
can be obtained by the multiplier method applied in this way: fix G0 ∈ R= and set

Γ(G0) =
{
G ∈ mΩ , (G − G0) · a(G) > 0

}
, ) (G0) = 2 max

G∈Ω
|G − G0 | .

Then, multiplying the equation by (G − G0) · ∇D and integrating by parts, we get that,
for ) > ) (G0),

(4.7.5) () − ) (G0))E(D) ≤
) (G0)

2

∫ )

0

∫
Γ(G0)
(m=D)2 df dC.

For more details about the previous two inequalities, we refer the reader to the SIAM
Review article by Lions [316] and the books by Komornik [293], Micu and Zuazua
[340], Tucsnak and Weiss [429] and the lecture notes by Alabau-Boussouira in [10].

Now consider a domain l surrounding Γ(G0). The proof of the hidden regularity
property (9.4.2) allows us to bound the right-hand side in (4.7.5) by the sum of �1E
(where �1 is independent of time) and the integral of |∇D |2 on (0, )) × l. Then,
for ) large enough, one can absorb the term �1E in the left-hand side of (4.7.5) to
deduce the following internal observability inequality:

(4.7.6) E(D) ≤ � ())
∫ )

0

∫
l

|∇D |2 dG dC.

This inequality can be used to obtain directly a stabilization result for the following
damped wave equation (see [461])

m2
C E − ΔE + 0(G)mCE = 0 in Ω ⊂ R=, E |mΩ = 0,

where 0 ∈ �∞0 (Ω) is a non-negative function satisfying 0(G) = 1 for G in l ⊂⊂ Ω.
One can write E as E = D + F where D and F are given by solving

(4.7.7)
m2
C D − ΔD = 0 in Ω ⊂ R=, D |mΩ = 0,
m2
C F − ΔF + 0(G)mCF = −0(G)mCD in Ω ⊂ R=, F |mΩ = 0,
D(0, ·) = E(0, ·), mCD(C, 0) = mCE(0, ·); F(0, ·) = 0, mCF(C, 0) = 0.

129



Using the internal observability inequality for D and a straightforward estimate for
F based on the Duhamel formula, one can deduce that E(E) (C) ≤ 24−2′C for some
positive constants 2, 2′.

Similar results are known for many other wave equations and we only mention the
paper by Machtyngier [320] (see also [321]) for the Schrödinger equation 8mCD +
ΔD = 0. Biccari [81] introduced recently the use of the multiplier method to
analyze the interior controllability problem for the fractional Schrödinger equation
8mCD + (−Δ)BD = 0 with B ≥ 1/2 in a �1,1 bounded domain with Dirichlet boundary
condition. The key difference between the Schrödinger equation (B = 1) and the
fractional equation (for 1/2 ≤ B < 1) is that the latter is nonlocal. This is a source
of difficulty since one seeks an observability result involving integrals over small
localized domains. The multiplier method is applied to the water-wave problem in
the general case in [11, 14, 13].
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Chapter 5

Sobolev estimates

5.1 Inequalities in Lebesgue spaces

Proposition 5.1.1 (Hölder). Consider three real numbers ?, @, A in [1, +∞], satis-
fying

1
?
+ 1
@
=

1
A
·

Then, for any couple of functions ( 5 , 6) ∈ !? (R3) ×!@ (R3), the product 5 6 belongs
to !A (R3). Moreover, the following estimate holds

(5.1.1) ‖ 5 6‖!A ≤ ‖ 5 ‖!? ‖6‖!@ .

Proposition 5.1.2 (Minkowski). Suppose that ((1, `1) and ((2, `2) are two f-finite
measure spaces and � : (1 × (2 → R is measurable. Then for all ? ∈ [1, +∞),

(5.1.2)
(∫
(2

����∫
(1

� (G, H)`1(dG)
����?`2(dH)

) 1
?

≤
(∫
(1

(∫
(2

|� (G, H) |? `2(dH)
) 1
?

`1(dG).

Proposition 5.1.3 (Hardy). For any real number ? ∈]1, +∞[ and for all function 5
in !? (]0, +∞[), there holds∫ +∞

0

����1G ∫ G

0
5 (H) dH

����? dG ≤
(

?

? − 1

) ? ∫ +∞

0
| 5 (G) |? dG.

Proposition 5.1.4 (Young). Consider three real numbers ?, @, A such that

(5.1.3) 1 6 ?, @, A 6 ∞, 1
?
+ 1
@
= 1 + 1

A
·
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Then, for any 5 in !? (R3) and any 6 in !@ (R3), the integral

5 ∗ 6(G) =
∫
R3
5 (G − H)6(H) dH

converges for almost all G ∈ R3 . In addition, 5 ∗ 6 belongs to !A (R3) and

‖ 5 ∗ 6‖!A (R3) 6 ‖ 5 ‖!? (R3) ‖6‖!@ (R3) .

We also recall the definition of Riesz potentials as well as the classical Hardy-
Littlewood-Sobolev inequality.

Given a real number U > 0, the Riesz potential �U is the operator defined by

�U ( 5 ) (G) =
∫
R3

5 (H)
|G − H |3−U

dH.

Notice that �U 5 (G) is well-defined for any U > 0 and any function 5 with compact
support. To see this, decomposeR3 into two parts: the ball �(G, 1) with center G and
radius 1, and its complementary. Since 5 is bounded, the fact that the integral over
�(G, 1) is well-defined is straightforward since U > 0. On the complementary, the
integral is well-defined since we are integrating a bounded function with compact
support.

Theorem 5.1.5 (Hardy-Littlewood-Sobolev). Let 3 ∈ N∗ and consider three real
positive numbers (?, @, U) such that

1
?
− 1
@
=
U

3
, 1 < ? <

3

U
.

Then there exists a constant � = � (?, @, 3, U) such that, for any function 5 in
�1

0 (R
3), there holds

‖�U 5 ‖!@ 6 � ‖ 5 ‖!? .

5.2 Fourier analysis and Sobolev spaces

5.2.1 Definitions and first properties

Recall the notation
〈b〉 = (1 + |b |2) 1

2 .

132



Given a real number B ∈ [0, +∞), we say that a function D ∈ !2(R3) belongs to the
Sobolev space �B (R3) if ∫

R3
〈b〉2B |D̂(b) |2 db < +∞.

Proposition 5.2.1. Let B ∈ [0, +∞). Equipped with the scalar product

(D, E)�B = (2c)−3
∫
(1 + |b |2)BD̂(b) Ê(b) db,

and therefore the norm

‖D‖�B = (2c)−=/2
(1 + |b |2)B/2D̂

!2
,

the Sobolev space �B (R3) is a Hilbert space.

Proof. The application D ↦→ (2c)−3/2(1 + |b |2)B/2D̂ is by definition an isometric
bĳection of �B (R3) on !2(R3). This last space being a Banach space, it is the same
for �B (R3) with the norm defined above. �

Proposition 5.2.2. The Schwartz space S(R3) is dense in �B (R3) for all B ≥ 0.

Proof. Let us consider the isometry D ↦→ (2c)−3/2(1 + |b |2)B/2D̂ from �B (R3) onto
!2(R3). The inverse isometry transforms the dense subspace S(R3) of !2(R3) into
a dense subspace of �B (R3). Now this application is a bĳection of S(R3) onto
itself. We deduce that S(R3) is dense in �B (R3). �

Proposition 5.2.3. For any real number B > 3/2,

�B (R3) ⊂ �0(R3) ∩ !∞(R3),

with continuous injection.

Proof. According to Cauchy-Schwarz inequality, for any 5 ∈ S(R3),

(5.2.1) ‖ 5 ‖!∞ 6
 5̂ 

!1 6
〈b〉B

!2

〈b〉B 5̂ 
!2 ,

and we deduce the result by density of S(R3) in �B (R3). �

Theorem 5.2.4. For any real number B > 3/2, the product of two elements of
�B (R3) belongs to �B (R3). In addition, there is a constant � such that for any D, E
in �B (R3),

‖DE‖�B 6 � ‖D‖�B ‖E‖�B .
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Proof. The proof rests on the following inequality: for every b, [ in R3 we have

∀B ≥ 0, (1 + |b |2)B/2 6 2B
{
(1 + |b − [ |2)B/2 + (1 + |[ |2)B/2

}
,

which is deduced from the triangular inequality and the bound (0+1)A 6 2A (0A +1A)
for any triplet (0, 1, A) of positive numbers. Let us write then that for every D, E in
S(R3), we have (check the following formula in exercise)

D̂E(b) = (2c)−3
∫

D̂(b − [)Ê([) d[.

Multiplying the two members by 〈b〉B and using the previous inequality, we find

〈b〉B |D̂E(b) | 6 �
∫
〈b − [〉B |D̂(b − [) | |Ê([) | d[

+ �
∫
|D̂(b − [) | 〈[〉B |Ê([) | d[.

If B > 3/2 then F (�B (R3)) ⊂ !1(R3) as we have already seen (cf (5.2.1)). We
then recognize above two products of convolution between a function of !1(R3)
and another of !2(R3), that belong to !2(R3). This implies that 〈b〉BD̂E ∈ !2(R3),
hence the desired result DE ∈ �B (R3). �

We have seen that, any real number B > 3/2, the product of two elements of �B (R3)
is still in �B (R3). The following proposition shows that we can also define the
product iD for everything i ∈ S(R3) and any D ∈ �B (R3) with B ∈ [0, +∞[.

Proposition 5.2.5. For any B ∈ R, if D ∈ �B (R3) and i ∈ S(R3) then iD ∈ �B (R3).

Proof. The proof uses an inequality, called Peetre’s inequality that states that for
every b, [ in R3 , we have

∀B ∈ R, (1 + |b |2)B 6 2|B | (1 + |[ |2)B (1 + |b − [ |2) |B | .

Let us assume that B ≥ 0. To obtain this inequality, just use the triangular inequality

1 + |b |2 6 1 + (|[ | + |b − [ |)2 6 1 + 2 |[ |2 + 2 |b − [ |2 6 2(1 + |[ |2) (1 + |b − [ |2),

then raise both sides to the power B ≥0. If B < 0, then −B > 0 and the previous
inequality leads to

(1 + |[ |2)−B 6 2−B (1 + |b |2)−B (1 + |b − [ |2)−B .
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The desired result is obtained by dividing by (1 + |[ |2)−B (1 + |b |2)−B.

We then proceed as in the proof of the theorem 5.2.4. Indeed, one can still write
for D ∈ �B (R3) and i ∈ S(R3), îD(b) as a convolution product. As î(Z) is in
Schwartz’s class, the previous inequality allows the product of convolution of a
function to appear. of !1 and 〈[〉B |D̂([) | which is in !2. �

5.3 Sobolev embeddings

We will now study the injection of Sobolev spaces �B (R3) into Lebesgue spaces
!? (R3).

Theorem 5.3.1. Let 3 ≥ 1 and B be a real such that 0 6 B < 3/2. Then the Sobolev
space �B (R3) is continuously embedded into !? (R3) for any ? such that

2 6 ? 6
23

3 − 2B
.

Remark 5.3.2. The previous theorem states that for any real number B in [0, 3/2[,
we have

‖ 5 ‖
!

23
3−2B
6 �B ‖ 5 ‖�B .

In fact, we will show a stronger result (see (5.3.1)) :

‖ 5 ‖
!

23
3−2B
6 � ‖ 5 ‖ ¤�B :=

( ∫
|b |2B

�� 5̂ (b)��2 db
) 1

2
.

In particular, for B =1, this gives another proof of the fact that

@ =
23
3 − 2

⇒ ‖ 5 ‖!@ 6 � ‖∇ 5 ‖!2 .

Proof. We will show that there is a constant � such as, for any 5 ∈ S(R3), we have

(5.3.1) ? =
23

3 − 2B
⇒ ‖ 5 ‖!? 6 � ‖ 5 ‖ ¤�B :=

( ∫
|b |2B

�� 5̂ (b)��2 db
) 1

2
.

This is a stronger result than the one stated. Indeed, if ? < 23/(3 − 2B) then there
is B′ ∈ [0, B) such that ? = 23/(3 − 2B′) and hence

‖ 5 ‖!? 6 � ‖ 5 ‖ ¤�B′ 6 � ‖ 5 ‖�B .
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(A word of caution: one cannot bound ‖ 5 ‖ ¤�B′ by ‖ 5 ‖ ¤�B because we do not have
|b |2B′ 6 |b |2B for |b | 6 1).

We use the proof of Chemin and Xu which is based on the estimate of level sets.
We will denote by {| 5 | > _} the set

{
G ∈ R3 : | 5 (G) | > _

}
and |{| 5 | > _}| the

Lebesgue measure of this set.

Let us consider a function 5 ∈ S(R3). We can assume without loss of generality
that ‖ 5 ‖ ¤�B = 1. We start from the classical identity

‖ 5 ‖?
!?
= ?

∫ +∞

0
_?−1 |{| 5 | > _}| d_.

To estimate |{| 5 | > _}|, we will use a decomposition in terms of low and high
frequencies. For any _ > 0, we will decompose 5 into the form

5 = 6_ + ℎ_

where, for a certain constant �_ to be determined,

6̂_ (b) = 5̂ (b) if |b | 6 �_, 6̂_ (b) = 0 if |b | > �_

ℎ̂_ (b) = 0 if |b | 6 �_, ℎ̂_ (b) = 5̂ (b) if |b | > �_.

So, according to the triangular inequality,

{| 5 | > _} ⊂ {|6_ | > _/2} ∪ {|ℎ_ | > _/2} .

We will choose the constant �_ so that {|6_ | > _/2} = ∅. Then we will have

|{| 5 | > _}| 6 |{|ℎ_ | > _/2}| 6
4
_2 ‖ℎ_‖

2
!2 ,

because

‖ℎ_‖2!2 ≥
∫
{|ℎ_ |>_/2}

|ℎ_ |2 dG ≥ _
2

4
|{|ℎ_ | > _/2}| .

Combining the above observations, we conclude

(5.3.2) ‖ 5 ‖?
!?
6 4?

∫ +∞

0
_?−3 ‖ℎ_‖2!2 d_.

Choice of �_. According to the Fourier inversion theorem, we have

|6_ (G) | =
���� 1
(2c)=

∫
48G·b 6̂_ (b) db

���� = ���� 1
(2c)=

∫
|b |6�_

48G·b 5̂ (b) db
���� .
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As 2B < 3, we can use the Cauchy-Schwarz inequality and write that

|6_ (G) | 6
1
(2c)=

(∫
|b |6�_

|b |−2B db
) 1

2
(∫
|b |2B

�� 5̂ (b)��2 db
) 1

2

.

If we switch to polar coordinates, we obtain∫
|b |6�_

|b |−2B db =
∫ �_

0

∫
S3−1

A3−1−2B d\ dA =
|S3−1 |�3−2B

_

3 − 2B
.

As ‖ 5 ‖ ¤�B = 1 by assumption, we finally get

‖6_‖!∞ 6 �1(B, 3)�
3
2 −B
_

.

We then define �_ by

�1(B, 3)�
3
2 −B
_

=
_

2
.

So ‖6_‖!∞ 6 _/2. Since 6_ is a continuous function (it is the Fourier transform
of an integrable function), we deduce that {|6_ | > _/2} = ∅, which is the desired
result.

End of the proof. By definition of ℎ_, using the identity (5.3.2) and Plancherel’s
formula, we find

‖ 5 ‖?
!?
6 4?(2c)3

∫ +∞

0

∫
|b |≥�_

_?−3�� 5̂ (b)��2 db d_.

By definition of �_, if |b | ≥ �_ then

_ 6 Λ(b) := 2�1(B, 3) |b |
3
2 −B ,

so, using Fubini’s theorem, it comes

‖ 5 ‖?
!?
6 4?(2c)3

∫
R3

(∫ Λ(b)

0
_?−33_

) �� 5̂ (b)��2 db,

from where

‖ 5 ‖?
!?
6 �2(B, 3)

∫
R3
Λ(b)?−2�� 5̂ (b)��2 db,

As 3
2 − B =

3
?
, we have

Λ(b) 6 �1(B, 3) |b |
3
? .

137



We finally get

‖ 5 ‖?
!?
6 �3(B, 3)

∫
R3
|b |

3 (?−2)
?

�� 5̂ (b)��2 db,

which is the desired result. �

Corollary 5.3.3 (Sobolev embeddings). Let 3 ≥ 1 and ? ∈ (1, 3). Define ?∗ by

1
?∗
=

1
?
− 1
3
·

Then there exists a constant � such that, for any function 5 ∈ �∞0 (R
3),

‖ 5 ‖!?∗ (R3) 6 � ‖∇ 5 ‖!? (R3) .

Proof. Here we use the following identity

5 (G) = − 1��(3−1
�� ∫R3 (G − H) · ∇ 5 (H)|G − H |3

dH.

It follows that

| 5 | 6 1��(3−1
�� �1( |∇ 5 |),

and hence thewanted inequality follows directly from theHardy-Littlewood-Sobolev
inequality. �

Theorem 5.3.4 (Sobolev embedding). Consider an integer 3 ≥ 1 and two real
numbers B ∈ (0, 1) and ? ∈ (0, 3/B), then set

?∗ =
3?

3 − B? ·

There exists a constant � such that for all 5 in �1
1
(R3) and all G in R3 we have

| 5 (G) |?∗ ≤ � ‖ 5 ‖?
∗−?
!?
∗

∫
R3

| 5 (G) − 5 (H) |?

|G − H |3+?B
dH.

It follows that

‖ 5 ‖!?∗ ≤ �
1
?

(∬
R3×R3

| 5 (G) − 5 (H) |?

|G − H |3+?B
dH dG

) 1
?

.
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Proof. The following nice proof is taken from the book by Ponce [363] where it
is credited to Brézis. A similar proof is given by Brué and Nguyen in [98] (see
also [99]).

We denote by � several constants that do not have to be depend on 3, ? or B and
whose values can change from one line to another.

Step 1. We first check that the integral∫
R3

| 5 (G) − 5 (H) |?

|G − H |3+?B
dH

is well defined for all 5 in S(R3) and all G in R3 . To do so, we cut the integral on
R3 in two parts: the integral on �(G, 1) and that on R3 \ �(G, 1). On �(G, 1), we
use the estimate

| 5 (G) − 5 (H) | ≤  |G − H | with  = sup
<∈R3

|∇ 5 (<) | ,

while on R3 \ �(G, 1) one writes | 5 (G) − 5 (H) | ≤ 2 sup | 5 |.

Step 2. Let us fix G ∈ R3 and a real C > 0. We denote by CC the annulus

CC = �(0, 2C) − �(0, C) = {H ∈ R3 ; C ≤ |H | < 2C},

and we denote by |CC | its Lebesgue measure.

Then

| 5 (G) |? = 1
|CC |

∫
CC
| 5 (G) |? dℎ ≤ 1

|CC |

∫
CC

(
| 5 (G + ℎ) − 5 (ℎ) | + | 5 (G + ℎ) |

) ? dℎ.

Since

|0 + 1 |? ≤ (2 max{|0 |, |1 |})? ≤ 2?
(
|0 |? + |1 |?),

we deduce that

| 5 (G) |? ≤ 2?

|CC |

∫
CC
| 5 (G + ℎ) − 5 (G) |? dℎ + 2?

|CC |

∫
CC
| 5 (G + ℎ) |? dℎ.

Step 3. Hölder’s inequality implies that

1
|CC |

∫
CC
| 5 (G + ℎ) |? dℎ ≤ � ‖ 5 ‖?

!?
∗

1
C3−B?

·
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Consequently, we see that there exists � such that

| 5 (G) |? 1
CB?
≤ �
C3
‖ 5 ‖?

!?
∗ +

�

CB? |CC |

∫
CC
| 5 (G + ℎ) − 5 (G) |? dℎ.

Step 4. Note that |CC | ∼ C3 . Moreover, on CC we have C ∼ |ℎ |. It follows that

| 5 (G) |? 1
CB?
≤ � ‖ 5 ‖?

!?
∗

1
C3
+ �

∫
R3

| 5 (G + ℎ) − 5 (G) |?

|G − H |3+?B
dℎ.

Multiplying the two members of the inequality in the previous question by CB?, we
find

| 5 (G) |? ≤ � ‖ 5 ‖?
!?
∗ C
B?−3 + �CB?

∫
R3

| 5 (G + ℎ) − 5 (G) |?

|G − H |3+?B
dℎ.

We then choose C such that

‖ 5 ‖?
!?
∗ C
B?−3 = CB?

∫
R3

| 5 (G + ℎ) − 5 (G) |?

|G − H |3+?B
dℎ

and the desired inequality is inferred. �

5.4 Fractional Sobolev spaces defined on the half-line

Let � = (0, +∞) and consider a real number 0 < B < 1. Recall from Lions-
Magenes [315, Chapter 1, §10.1] that �B (�) is defined by interpolation:

�B (�) = [�1(�), !2(�)]\ , 1 − \ = B.

It is proved in the previous reference that D ∈ �B (�) is equivalent to

|D |�B (�) :=
(
‖D‖2

!2 (�) +
∬

�×�

|D(G) − D(H) |2

|G − H |1+2B
dG dH

) 1
2

< +∞.

Moreover, the norms ‖·‖�B (�) and |·|�B (�) are equivalent. Then we define �B (�) for
1 < B < 2 as the space of functions D ∈ �1(�) such that mGD ∈ �B−1(�). And by
induction one defines �B (�) for any B ≥ 0. We also recall that �∞0 (�) is dense in
�B (�) for all B ≥ 0.
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Proposition 5.4.1. For a function E defined on (0, +∞), define Eev and Eod to be the
even and odd extensions of E to R defined by

(5.4.1) Eev(H) =
{
E(−H) if H < 0
E(H) if H ≥ 0

, Eod(H) =
{
− E(−H) if H < 0,
E(H) if H ≥ 0.

The following properties hold

1. Assume that 0 ≤ B < 3
2 . Then the map E ↦→ Eev is continuous from �B (0, +∞)

to �B (R).

2. Assume that 3
2 < B <

7
2 . Then the map E ↦→ Eev is continuous from the space

{E ∈ �B (0, +∞) : E′(0) = 0} to �B (R).

3. Assume that 0 ≤ B < 1
2 . Then the map E ↦→ Eod is continuous from �B (0, +∞)

to �B (R).

4. Assume that 1
2 < B <

5
2 . Then the map E ↦→ Eod is continuous from the space

{E ∈ �B (0, +∞) : E(0) = 0} to �B (R).

5. Assume that 5
2 < B ≤ 4. Then the map E ↦→ Eod is continuous from the space

{E ∈ �B (0, +∞) : E(0) = E′′(0) = 0} to �B (R).

Proof. Let � = (0, +∞).

(1) The case B = 0 is trivial since ‖Eev‖2
!2 (R) = 2‖E‖2

!2 (�) . Consider now the case
0 < B < 1. Then the square of the �B (R)-norm of Eev is equivalent to

‖Eev‖2
!2 (R) + �, � =:

∬
R×R

|Eev(G) − Eev(H) |2
|G − H |1+2B

dG dH.

Then, by symmetry, we can write

� = 2
∬

�×�

|E(G) − E(H) |2
|G − H |1+2B

dG dH + 2
∬

�×�

|E(G) − E(H) |2
|G + H |1+2B

dG dH := �1 + �2.

since (G + H)1+2B ≥ |G − H |1+2B, we have �2 ≤ �1 and hence � ≤ 2�1. Now, directly
from the equivalence between the norms ‖·‖�B (�) and |·|�B (�) , we have

�1 ≤ 2‖E‖2
�B (�) .

This concludes the analysis of the case 0 < B < 1.
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The case B = 1 being straightforward, we now move to the case where 1 < B < 3/2.
Set f = B − 1 ∈ (0, 1/2). Then

‖Eev‖2
�B (R) = ‖E

ev‖2
!2 (R) + ‖mGE

ev‖2
�f (R) .

Since 0 < f < 1 we have

‖mGEev‖2�f (R) ≤ � (�0 + �1 + �2),

�0 = ‖mGEev‖2!2 (R) ≤ �1‖E′‖2!2 (�) ≤ �1‖E‖2�B (�)

�1 =

∬
�×�

|E′(G) − E′(H) |2
|G − H |1+2f

dG dH ≤ �2‖E′‖2�f (�) ≤ �2‖E‖2�B (�) ,

�2 =

∬
�×�

|E′(G) + E′(H) |2
|G + H |1+2f

dG dH.

Eventually we have

�2 ≤ �3

∫
�

|E′(G) |2
|G |2f

3G ≤ �4‖E′‖�f (�) ≤ �4‖E‖�B (�)

by Theorem 11.2 in [315], since 0 < f < 1
2 . This completes the proof of statement

(1).

(2) Assume that 3
2 < B < 2 and set f = B − 1 ∈ ( 12 , 1). By arguing as above, we see

that

‖Eev‖2
�B (R) ≤ �

(
‖E‖2

�B (�) +
∫
�

|E′(G) |2
|G |2f

dG
)
.

Now, since E′ ∈ �f (�) and since E′(0) = 0, we are in position to apply the Hardy’s
inequality given by Theorem 11.3 in [315, Chapter] which ensures that the integral
in the right hand side can be estimated by �‖E‖2

�B (�) .

It remains to consider the case where 2 ≤ B < 7/2. Now, since E′(0) = 0, we have
that m2

G E
ev = (m2

G E)ev. So the desired result follows from the first point. We deduce
that ‖m2

G E
ev‖2

�B−2 (R) ≤ �‖E‖
2
�B (�) .

The cases (3) to (5) are proved by exactly the same arguments. �
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Part III

Study of the Cauchy problem
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Chapter 6

Paralinearization of the
Dirichlet-to-Neumann operator

6.1 Classical results

If [ ∈ �∞(R3), then it follows from classical elliptic results that, for any B ≥ 1
2 ,

� ([) is bounded from �B (R3) into �B−1(R3). It is known that this property still
holds in the case where [ has limited regularity. We have already discussed this
point earlier, see Proposition 3.1.3. Namely, for B ≥ 0 large enough, we have

‖� ([)k‖�B ≤ �
(
‖[‖�B+1

)
‖k‖�B+1 .

Various variants of this estimate were obtained by Craig and Nicholls ([169]), Wu
([445, 446]), Günther and Prokert [234], Lannes [300] who proved tame estimates,
see also [22] where it is proved that this estimate holds for any B > 3/2.

On the other hand, it is known since Calderón that, if [ ∈ �∞ is bounded together
with all its derivatives, then� ([) is a pseudo-differential operator. Recall that given
a symbol 0 = 0(G, b) we define the pseudo-differential operator Op(0) by

Op(0)D(G) = 1
(2c)3

∫
R3
48G·b0(G, b)D̂(b) db,

and then
� ([)k = Op(_(1))k + '0([)k,

where

(6.1.1) _(1) =

√
(1 + |∇[ |2) |b |2 − (∇[ · b)2,
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and where the remainder satisfies the following property : there exists  such that
for all B ≥ 0 we have

‖'0([)k‖�B ≤ � (‖[‖�B+ ) ‖k‖�B .

This allows to approximate� ([) byOp(_(1)) which is an operator of order 1, modulo
the remainder '0([) which is of order 0. Actually, we have an approximation at any
order (see [52, 408]).

Theorem 6.1.1. Assume that [ ∈ �∞ is bounded together with all its derivatives.
There exists a sequence of symbols (_(−:)):∈N, where _(−:) is homogeneous of order
−: in b, such that for all ℓ ∈ N, we have

� ([)k = Op
(
_(1) + _(0) + · · · + _(−ℓ)

)
k + '−ℓ ([)k,

where '−ℓ ([) satisfies the following property: there exists ℓ such that, for all B ≥ 1
2 ,

(6.1.2) ‖'−ℓ ([)k‖�B+ℓ ≤ �
(
‖[‖�B+ ℓ

)
‖k‖�B .

Remark 6.1.2. Two observations are in order concerning these symbols.

(8) If 3 = 1 then _(1) = |b | and _(−:) = 0 for any : ∈ N, so

Op
(
_(1) + _(0) + · · · + _(−ℓ)

)
= |�G | .

In general, for 3 ≥ 2, we have _(0) ≠ 0 whenever [ ≠ 0. Indeed,

(6.1.3) _(0) =
1 + |∇[ |2

2_(1)
{
div

(
U(1)∇[

)
+ 8mb_(1) · ∇U(1)

}
,

with

U(1) =
1

1 + |∇[ |2
(
_(1) + 8∇[ · b

)
.

(88) Our second observation is that the symbols _(0) , _(−1) , . . . in Theorem 9.4.3 are
defined by induction so that one can check that _(−:) involves only derivatives of [
of order ≤ : + 2 (this will be proved below). Then the definition of the full symbol _
of � ([) can be extended for [ ∉ �∞ in the following obvious manner: we consider
in the asymptotic expansion

_ ∼ _(1) + _(0) + _(−1) + · · ·

only the terms which are meaningful. This means that, for [ ∈ �:+2 \ �:+3 with
: ∈ N, we set

(6.1.4) _ = _(1) + _(0) + · · · + _(−:) .
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6.2 Main statement

Notation 6.2.1. For d ∈ N, we denote by , d,∞(R3) the Sobolev spaces of !∞

functions whose derivatives of order d are in !∞. For d ∈]0, +∞[\N, we denote
by, d,∞(R3) the space functions in, [d],∞(R3) whose derivatives of order [d] are
uniformly Hölder continuous with exponent d − [d].

Definition 6.2.2 (homogeneous symbol). Given real numbers d ≥ 0 and < ∈ R,
we say that 0 : R3 × (R3 \ 0) → C is an homogeneous symbol of order < and
with regularity , d,∞ in G provided that: 0 is homogeneous of degree < and �∞

with respect to b ≠ 0, and such that, for all U ∈ N3 and all b ≠ 0, the function
G ↦→ mU

b
0(G, b) belongs to, d,∞(R3) and

(6.2.1) sup
|b |=1

mUb 0(·, b)
,d,∞

< +∞

We denote by ¤Γ<d the space of pluri-homogeneous symbols 0(G, b), they are symbols
of the form

0 =
∑

0≤ 9<d
0 (<− 9) ( 9 ∈ N),

where 0 (<− 9) is homogeneous of order < − 9 in b and with regularity , d− 9 ,∞ in G
(we say that 0 (<) is the principal symbol of 0).

Remark 6.2.3. Notice that, if 0 is an homogeneous symbol of order < and with
regularity, d,∞ in G, then

∃�U, ∀ |b | ≥ 1/2,
mUb 0(·, b)

,d,∞
≤ �U (1 + |b |)<−|U |

so that the symbol 0 belongs to Γ<d (R3).

Now fix a �∞ function Z such that Z = 0 on a neighborhood of the origin and Z = 1
for |b | ≥ 1. We also introduce a �∞ function j homogeneous of degree 0 and
satisfying, for 0 < Y1 < Y2 small enough,

j(\, [) = 1 if |\ | ≤ Y1 |[ | , j(\, [) = 0 if |\ | ≥ Y2 |[ | .

Given a symbol 0, we define the paradifferential operator )0 by

)0 = Op(f)
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where

(6.2.2) f̂([, b) = j([, b)0̂([, b)Z (b).

where 0̂([, b) =
∫
4−8G·[0(G, b) dG is the Fourier transform of 0 with respect to G.

Remark 6.2.4. We call attention to the fact that, if&(�G) is a Fourier multiplier with
symbol @(b), then we do not have &(�G) = )@, because of the cut-off function Z .
However, this is obviously almost true since we have &(�G) = )@ + ' where
' = &(�G) (� − Z (�G)) is a smoothing operator (it maps �C to �∞ for all C ∈ R).

Our goal in this chapter is to prove a sharp version of Proposition 3.1.4.

Theorem 6.2.5. Let 3 ≥ 1 and consider a real number B > 3 + 3/2. There exists
a nondecreasing function � : R+ → R+ such that the following property holds: For
any [ ∈ �B (R3) and k ∈ �B (R3),

� ([)k = )_ (B)
(
k − )�[

)
− )+ · ∇[ − )div+[ + � ([)k,

where

_(B) = _
(1) + _(0) + · · · + _(−:) with : :=

[
B − 2 − 3

2

]
,

the coefficients � and + are as in (1.2.5), and � ([)k satisfies

‖� ([)k‖�2B− 0 ≤ � (‖[‖�B ) ‖k‖�B ,

where  0 = 5/2 + 3/2.

We will also establish a variant of the previous result which allows to identify
quadratic and cubic terms in the remainder term � ([)k.

Theorem 6.2.6. Let 3 ≥ 1 and fix B0 > 3 + 3/2. For any B > B0 there exists a
nondecreasing function � : R+ → R+ such that the following property holds: For
any [ ∈ �B (R3) and k ∈ �B (R3),

� ([)k =
(
|�G | + )_B0−|b |

) (
k − )�[

)
− )+ · ∇[ − )div+[

+ �≤2([)k + �≥3([)k,

where

_(B0) = _
(1) + _(0) + · · · + _(−:) with : :=

[
B0 − 2 − 3

2

]
,
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the coefficients � and + are as in (1.2.5),

�≤2([)k = −|�G |'B
(
|�G |k, [

)
− div '(∇k, [)

where 'B (·, ·) is as defined by (3.6.4) and where �≥3([)k satisfies

‖�≥3([)k‖�B+B0− 0 ≤ � (‖[‖�B0 )
{
‖[‖2�B0 ‖k‖�B + ‖[‖�B0 ‖k‖�B0− 1

2
‖[‖�B

}
,

where  0 = 5/2 + 3/2.

6.3 The good unknown of Alinhac

Let us discuss the role of the “good unknown” of Alinhac l defined by

l = k − )�[.

This tool was introduced in [29]. The idea of working with l is rooted in a
cancellation first observed by Lannes [300] for the water waves equations linearized
around a non trivial solution. Here, we want to explain that l appears naturally
when one introduces the operator of paracomposition of Alinhac [36] associated to
the change of variables that flattens the boundary H = [(G) of the domain. Though
we shall not use general results about paracomposition operators, we explain here
the ideas that underly the computations that will be made later.

To study the elliptic equation ΔG,Hq = 0 in Ω = {(G, H) ∈ R3+1 ; H < [(G)}, we
shall reduce the problem to the half-space R3 × (−∞, 0) through the change of
coordinates ^ : (G, I) ↦→ (G, I + [(G)). Then q(G, H) solves ΔG,Hq = 0 if and only if
E = q ◦ ^ = q(G, I + [(G)) is a solution of %i = 0 in I < 0, where

(6.3.1) % = (1 + |∇[ |2)m2
I + Δ2 − 2∇[ · ∇mI − (Δ[)mI .

The boundary condition on q |H=[(G) becomes E(G, 0) = k(G) and � ([) is given by

� ([)k =
[
(1 + |∇[ |2)mIE − ∇[ · ∇E

] I=0.

We first explain the main difficulty to handle a diffeomorphism with limited regu-
larity. Let us use the notation � = −8m and introduce the symbol

?(G, b, Z) = (1 + |∇[(G) |2)Z2 + |b |2 − 2∇[(G) · bZ + 8(Δ[(G))Z .
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Notice that % = −?(G, �G , �I) use write )? as a short notation for )1+|∇(G) |2�
2
I +

|�G |2 − 2)∇[ · �G�I + )Δ[mI. Starting from ?(G, �G , �I)E = 0, by using standard
results for paralinearization of products, we find that )?E = 51 for some source term
51 which is continuous in I with values in �B−2 if [ is in �B and the first and second
order derivatives in G, I of E are bounded. The key point is that one can associate
to ^ a paracomposition operator, denoted by ^∗, such that )? (^∗q) = 52 for some
smoother remainder term 52. That is for some function 52 continuous in I with
values in �B+W− (3) , if [ is in �B and if the derivatives in G, I of order less than W of
E are bounded (the key difference between 51 and 52 is that one cannot improve the
regularity of 51 by assuming that E is smoother).

We shall not define ^∗, instead we recall the two main properties of paracomposition
operators (we refer to the original article [36] for the general theory). First, modulo
a smooth remainder, one has

^∗q = q ◦ ^ − )q′◦^^

where q′ denotes the differential of q. On the other hand, there is a symbolic
calculus formula which allows to compute the commutator of ^∗ to a paradifferential
operator. This formula implies that

^∗Δ − )?^∗

is a smoothing operator (that is an operator bounded from �` to �`+< for any real
number `, where < is a positive number depending on the regularity of ^). Since
ΔG,Hq = 0, this implies that )?

(
q◦ ^−)q′◦^^

)
is a smooth remainder term as asserted

above.

Now observe that
l =

(
q ◦ ^ − )q′◦^^

)I=0.

This is the reason why the good unknown enters into the analysis.

6.4 Paralinearization

This section contains the core of the analysis. We start by flattening the boundary
and recall some classical elliptic estimates. We then paralinearize the equations
obtained after this change of variables.
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6.4.1 Flattening of the free boundary

We begin by reducing the problem to a domain which does not depend on [. Set
� = (−∞, 0] and

d(G, I) = I + [(G).

Now introduce the function E : R3 × � → R defined by E(G, I) = q(G, d(G, I)). From
ΔG,Hq = 0 we deduce that E satisfies the elliptic equation

(6.4.1)
(

1
mId

mI

)2
E +

(
∇ − ∇d

mId
mI

)2
E = 0.

This yields

(6.4.2) Um2
I E + ΔE + V · ∇mIE − WmIE = 0,

where
U := 1 + |∇[ |2, V := −2∇[, W := Δ[.

Note also that E |I=0 = k and

� ([)k = (1 + |∇[ |2)mIE − ∇[ · ∇EI=0.

Our purpose is to give mIE |I=0 in terms of tangential derivatives.

6.4.2 Elliptic regularity

Lemma 6.4.1. Set � = (−∞, 0]. There holds

∇G,IE ∈ !∞I (�;�
B0− 3

2
G ) ∩ !2

I (�;�
B0−1
G ), m2

I E ∈ !2
I (�

B0−2
G ), m3

I E ∈ !2(�;�B0−3),

together with the estimates∇G,IE
!∞I (�;�

B0−
3
2

G )∩!2
I (�;�

B0−1
G )
≤ �

(
‖[‖�B0

)
‖k0‖

�
B0−

1
2
,(6.4.3) m2

I E

!2
I (�

B0−2
G ) ≤ �

(
‖[‖�B0

)
‖k0‖

�
B0−

1
2
,(6.4.4) m3

I E

!2 (�;�B0−3) ≤ �

(
‖[‖�B0

)
‖k0‖

�
B0−

1
2
,(6.4.5)

‖mIE − |�G |E‖!2
I (�;�

B0−1
G ) ≤ �

(
‖[‖�B0

)
‖[‖�B0 ‖k0‖

�
B0−

1
2
,(6.4.6)

for some universal non-decreasing function � : R+ → R+.
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Remark 6.4.2. Notice that the right-hand side is quadratic in ([, k) while the one
of (6.4.3) is sub-linear.

Proof. These results follow from quite classical results in the analysis of elliptic
problems. In [22], it is proved that, for B0 > 1 + 3/2, there holds

∇G,IE ∈ !∞I ( [−1, 0];�B0− 3
2

G ) ∩ !2
I ( [−1, 0];�B0−1

G ),

together with the estimate

(6.4.7)
∇G,IE

!∞I ( [−1,0];�
B0−

3
2

G )∩!2
I ( [−1,0];�B0−1

G )
≤ �

(
‖[‖�B0

)
‖k0‖

�
B0−

1
2
.

Notice that the latter estimate is different from (6.4.3). The fact that the estimate
(6.4.7) holds when � = (−∞, 0] is replaced by [−1, 0] can be deduced from the
analysis in the present paper, using in addition an induction argument already used
in [22] or [24]. We will not reproduce this induction argument here for the sake of
conciseness. Similarly, the estimate (6.4.6) follows from the results alluded to above
and the fact that the domain has infinite depth.

Let us recall a product estimate in Sobolev spaces (see Chapter 8 in [244]):

• If D 9 ∈ �B 9 (R3), 9 = 1, 2, and B1 + B2 > 0 then D1D2 ∈ �B0 (R3) and

(6.4.8) ‖D1D2‖�B0 ≤  ‖D1‖�B1 ‖D2‖�B2 ,

if
B0 ≤ B 9 , 9 = 1, 2, and B0 ≤ B1 + B2 − 3/2,

where the last inequality is strict if B1 or B2 or −B0 is equal to 3/2.

Now, writing

(6.4.9) m2
I E = −

1
1 + |∇[ |2

(
ΔE − 2∇[ · ∇mIE − Δ[mIE

)
,

and using the product rule in Sobolev spaces (6.4.8), since B0 > 1 + 3/2 we easily
deduce that m2

I E belongs to !2
I (�

B0−2
G ), and the estimate (6.4.4) follows from (6.4.3).

Then, by differentiating (6.4.9) in I and using again the product rule in Sobolev
spaces, since B0 > 2 + 3/2, one deduces the estimate (6.4.5) from (6.4.3) and
(6.4.4). �
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6.4.3 Paralinearization of the interior equation

Following the approach in [29], the key technical point is to obtain an equation for

, = E − )mIE[.

Hereafter we consider symbols 0(I, G, b) depending on the phase space variables
(G, b) ∈ R3 × R3 and on the parameter I ∈ �. Then ()0D) (I) = )0(I)D(I).

Lemma 6.4.3. The unknown, satisfies the paradifferential equation

(6.4.10) (� + )|∇[ |2)m2
I, + Δ, − 2)∇[ · ∇mI, − )Δ[mI, = &1 + �1,

where &1 is a smooth quadratic term given by

&1 := 'B (2∇[,∇mIE) + 'B (Δ[, mIE)

and �1 is a smooth cubic term, such that

(6.4.11) ‖�1‖!2 (�;�B+B0− ) ≤ �
(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
‖[‖�B

with  = 3 + 3
2 .

Proof. For this proof, we use the notation 51 ∼ 52 to say that ‖ 51 − 52‖!2 (�;�B+B0− )
is bounded by the right-hand side of (6.4.11).

Introduce the operators

� := (1 + |∇[ |2)m2
I + Δ − 2∇[ · ∇mI − (Δ[)mI,

and
% := (� + )|∇[ |2)m2

I + Δ − 2)∇[ · ∇mI − )Δ[mI .
We shall prove that %, ∼ &1. To do so, we begin with the paralinearization formula
for products. Write

�E = %E + )m2
I E
|∇[ |2 − 2)∇mIE · ∇[ − )mIEΔ[ + 61

with
61 = 'B ( |∇[ |2, m2

I E) − 2'B (∇[,∇mIE) − 'B (Δ[, mIE).
Write

61 = −&1 + 'B ( |∇[ |2, m2
I E)

where &1 is as given by the statement of the lemma.

Let us recall the following
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Proposition 6.4.4. Let U, V ∈ R be such that U + V > 0. If 0 ∈ �U (R3) and
1 ∈ �V (R3), then 'B (0, 1) ∈ �U+V− 32 (R3). Moreover,

(6.4.12) ‖'B (0, 1)‖
�
U+V− 32 (R3)

≤ � ‖0‖�U (R3) ‖1‖�V (R3) ,

for some positive constant � depending only on U, V, 3.

Since B − 1 > 3/2, according to Proposition 6.4.4 we have'B ( |∇[ |2, m2
I E)


!2
I (�

B+B0− 
G ) .

|∇[ |2
�B−1

m2
I E


!2
I (�B0−2) .

Using the estimate
|∇[ |2

�B−1 . ‖∇[‖�B0−1 ‖∇[‖�B−1 for B ≥ B0 > 3/2 + 1, and the
estimate (6.4.4) we end up with'B ( |∇[ |2, m2

I E)

!2
I (�

B+B0− 
G ) . ‖[‖�B0 ‖k0‖

�
B0−

1
2
‖[‖�B .

Now, writing �E = 0 and E = , + )mIE[, this yields

%, + %)mIE[ + )m2
I E
|∇[ |2 − 2)∇mIE · ∇[ − )mIEΔ[ ∼ &1.

Hence, we need only prove that

(6.4.13) %)mIE[ + )m2
I E
|∇[ |2 − 2)∇mIE · ∇[ − )mIEΔ[ ∼ 0.

By using the Leibniz’ rule (that is mG)? = )mG ? + )?mG and mI)? = )mI ? + )?mI for
any function ? = ?(G, I)), one obtains

%)mIE[ = � + �

with

� := (� + )|∇[ |2))m3
I E
[ + )ΔmIE[ − 2)∇[ · )∇m2

I E
[ − )Δ[)m2

I E
[

� := +2)∇mIE · ∇[ − 2)(m2
I E)∇[ · ∇[ + )mIEΔ[.

Now, we use the following result to contract two paraproducts:

Proposition 6.4.5. For any d ≥ 0, there holds

(6.4.14) ‖)0)1 − )01‖�`→�`+d ≤  ‖0‖,d,∞ ‖1‖,d,∞ ,

provided that 0 and 1 belong to, d,∞(R).
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Now (6.4.14) applied1 with d = B0 −  = B0 − 3 − 3/2 that implies that)|∇[ |2)m3
I E
[ − )|∇[ |2m3

I E
[


�B+B0− 

.
|∇[ |2

, B0− ,∞
m3
I E


, B0− ,∞ ‖[‖�B

. ‖∇[‖2
�B0−3

m3
I E


�B0−3 ‖[‖�B

and hence )|∇[ |2)m3
I E
[ ∼ )|∇[ |2m3

I E
[. Similarly, one deduces that )∇[ · )∇m2

I E
[ ∼

)∇[·∇m2
I E
[ and )Δ[)m2

I E
[ ∼ )Δ[m2

I E
[. We conclude that

� ∼ )�mIE[.

The key observation is that the right-hand side vanishes since �mIE = mI�E = 0 for
�E = 0. On the other hand, writing

|∇[ |2 = 2)∇[ · ∇[ + 'B (∇[,∇[),

it follows from (6.4.12) and (3.6.3) that

)m2
I E
|∇[ |2 ∼ 2)(m2

I E)∇[ · ∇[

and the desired result (6.4.13) easily follows. �

6.4.4 Paralinearization of the boundary condition

We now express � ([)k in terms of the unknown, .

Lemma 6.4.6. There holds

(6.4.15)
� ([)k =

(
(� + )|∇[ |2)mI, − )∇[ · ∇,

)I=0

− div
(
)+[

)
+&2 + �2.

where &2 := −'B (∇k,∇[) and �2 is a smooth cubic term, such that

(6.4.16) ‖�2‖
�
B+B0−

5
2−

3
2
≤ �

(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
‖[‖�B .

Proof. Set U := (1 + |∇[ |2)mIE − ∇[ · ∇E and recall that, by definition of E,
� ([)k = U|I=0. As before, we find that

U = mIE + )|∇[ |2mIE + )mIE |∇[ |2 − )∇[ · ∇E − )∇E · ∇[ + Q2 + '1,

1Assuming that d is not an integer. Otherwise we work with d′ = d − Y with Y small.

155



where
Q2 := −'B (∇E,∇[), '1 := 'B

(
|∇[ |2, mIE

)
.

Then

U = mIE + )|∇[ |2mIE + 2)mIE∇[ · ∇[ − )∇[ · ∇E − )∇E · ∇[ + Q2 + '1 + '2,

with
'2 = )mIE |∇[ |2 − 2)mIE∇[ · ∇[.

We next replace mIE (resp. ∇E) by mI (, + )mIE[) (resp. ∇(, + )mIE[) in the right
hand-side, to obtain, after a few computations,

U = (� + )|∇[ |2)mI, +
(
)m2

I E
+ )|∇[ |2)m2

I E

)
[

+ 2)mIE∇[ · ∇[ − )∇E · ∇[ − )∇[ · ∇)mIE[ − )∇[ · ∇, + Q2 + '1 + '2

= (� + )|∇[ |2)mI, + )(1+|∇[ |2)m2
I E−∇[·∇mIE[

− )∇E−(mIE)∇[ · ∇[ − )∇[ · ∇, + Q2 + '1 + '2 + '3

with

'3 := −
(
)|∇[ |2m2

I E
− )|∇[ |2)m2

I E

)
[ − )∇[ · )mI∇E[ + )∇[·mI∇E[

− )(mIE)∇[ · ∇[ + )∇[ · )mIE∇[.

Since
(1 + |∇[ |2)m2

I E − ∇[ · ∇mIE = − div
(
∇E − (mIE)∇[

)
we deduce

U = (� + )|∇[ |2)mI, − )∇[ · ∇, − div
(
)∇E−(mIE)∇[[

)
+ Q2 + '1 + '2 + '3.

We thus obtain

(6.4.17)
� ([)k =

(
(� + )|∇[ |2)mI, − )∇[ · ∇, − div

(
)∇E−(mIE)∇[[

))I=0

+&2 + �2.

with &2 = Q2 |I=0 and �2 = ('1 + '2 + '3) |I=0. Since

div
(
)∇E−(mIE)∇[[

)I=0 = div
(
)+[

)
,

to complete the proof it remains only to estimate �2. We claim that

‖'1 + '2 + '3‖
�0
I (�B+B0−

5
2−

3
2 )
≤ �

(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
‖[‖�B ,

so that the desired bound for �2 follows directly by taking the trace on I = 0. As in
the proof of the previous lemma, we estimate '1 (resp. '2, '3) directly from (6.4.12)
(resp. (6.4.12) and (3.6.3)) and the bounds (6.4.3) and (6.4.4) for ∇G,IE and m2

I E. �

156



6.5 Reduction to the boundary

Lemma 6.5.1. Set

1 =
1

1 + |∇[ |2
·

The unknown, satisfies the paradifferential equation

(6.5.1) m2
I, + )−1 |b |2, − 2)−81b ·∇[mI, − )1Δ[mI, = ',

where

(6.5.2) ‖'‖!2 (�;�2B− ) ≤ �
(
‖[‖�B

)
‖k‖

�
B− 1

2

with  = 3 + 3
2 .

Proof. It follows from Lemma 6.4.3 applied with B = B0 that

(6.5.3) (� + )|∇[ |2)m2
I, + Δ, − 2)∇[ · ∇mI, − )Δ[mI, = &1 + �1,

where the !2(�;�2B− )-norm of �1 satisfies (6.5.2) and where

&1 := 'B (2∇[,∇mIE) + 'B (Δ[, mIE).

In view of the estimate (6.4.3) for mIE, the classical estimate for Bony’s remain-
der term (see Proposition 6.4.4) implies that the !2(�;�2B− )-norm of &1 satis-
fies (6.5.2).

We now make act )1 on (6.5.3). We obtain

Πm2
I, + )1Δ, − 2)1)∇[ · ∇mI, − )1)Δ[mI, = )1 (&1 + �1),

where Π = )1 (� + )|∇[ |2). Remembering that for all ` ∈ R we have, ‖)1D‖�` ≤
 (`) ‖1‖!∞ ‖D‖�` , we see that the !2(�;�2B− )-norm of )1 (&1 + �1) is bounded
by the right-hand side of (6.5.2).

On the other hand, as explained in Remark 6.2.4, we have � + )|∇[ |2 = )1 + ( where
( is a smoothing operator. Also, it follows from Proposition 6.4.5 that

)1)1/1 = )1 + (1 = Id+(′1, )1)∇[ = )1∇[ + (2 )1)Δ[ = )1Δ[ + (3,

where (1, (
′
1, (2, (3 are operators of order−d with d = B−3−3/2. This immediately

implies the wanted result. �
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We now perform a full decoupling into a forward and a backward elliptic evolution
equations. Recall that the classes ¤Γ<d (R3) have been defined in §6.2.2.

Lemma 6.5.2. There exist two symbols 0, � ∈ ¤Γ1
B−1−3/2(R

3) such that,

(6.5.4) (mI − )0) (mI − )�)E = 5 ∈ !2
I

(
�;�2B−3− 32 (R3)

)
.

Proof. We will use the symbolic calculus for paradifferential operators. For the
reader convenience, we recall the statement here:

Theorem 6.5.3 (Composition). Let<, <′ be real numbers and d > 0. If 0 ∈ Γ<d (R3)
and 1 ∈ Γ<′d (R3) then )0)1 − )0#d1 is of order ≤ < + <′ − d with

0#d1 =
∑
|U |<d

1
8 |U |U!

mUb 0m
U
G 1.

We seek 0 and � in the form

(6.5.5) 0(G, b) =
∑

0≤ 9<C
01− 9 (G, b), �(G, b) =

∑
0≤ 9<C

�1− 9 (G, b),

where
C := B − 3 − 3/2,

and where 0< and �< are homogeneous symbols in b of order < with regularity
, C+1−<,∞ in G. As we have seen earlier in this chapter, this implies that 0< and �<
belong to Γ<

C+1−< (R
3) (see Definition 6.2.2 and the remark that follows).

We want to solve the system

(6.5.6)
)0 ◦ )� = −)1 |b |2 + ',

)0 + )� = 2)81·b+1Δ[,

for some remainder term ' of order ≤ −C.

Assume that we have defined 0 and � such that (6.5.17) is satisfied, and let us then
prove the desired result (6.5.21). We use here the following elementary property: if
&(�G) is a Fourier multiplier with symbol @(b), then for any symbol 0 ∈ Γ<0 (R

3)
for some < ∈ R, we have

)0(G,b)&(�G) = )0(G,b)@(b)
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Firstly, the first equation implies that

)0)�E − 1ΔE ∈ !2(�B+C) = !2(�2B−3− 32 ).

Notice that � does noes depend on I. Hence mI)� = )�mI. It follows from the
second equation that

mI)� + )0mID =
(
2)1∇[ · ∇mID − )1Δ[mID

)
.

We thus obtain the desired result (6.5.21).

We now have to solve (6.5.17). We claim that )0 ◦ )� − )g is of order ≤ −C where

(6.5.7) g :=
∑∑∑
|U |<B−3− 32 +:+ℓ

1
8UU!

mUb 0:m
U
G �ℓ .

To verify this claim, we apply Theorem 6.5.3 to infer that

)01)�1 − )01♯B−1− 32
�1 is of order ≤ 1 + 1 − (B − 1 − 3

2
) = −C,

)01)�0 − )01♯B−2− 32
�0 is of order ≤ 1 + 0 − (B − 2 − 3

2
) = −C,

)00)�1 − )00♯B−2− 32
�1 is of order ≤ 0 + 1 − (B − 2 − 3

2
) = −C,

and, for −C ≤ :, ℓ ≤ 0,

)0:)�ℓ − )0:♯C+:+ℓ�ℓ is of order ≤ −C.

We then write g =
∑
g< where g< is of order <. Together with the second equation

in (6.5.17), this yields a cascade of equations that allows to determine 0< and �<
by induction.

We are now in position to determine 0 and �. We proceed in several steps. We first
solve the principal system:

01�1 = −1 |b |2 ,
01 + �1 = 281∇[ · b,

by setting

01(G, b) = 81∇[ · b −
√
1 |b |2 − (1∇[ · b)2,

�1(G, b) = 81∇[ · b +
√
1 |b |2 − (1∇[ · b)2.
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Note that 1 |b |2 − (1∇[ · b)2 ≥ 12 |b |2 so that the symbols 01, �1 are well defined
and belong to Γ1

B−1−3/2(T
3).

We next solve the sub-principal system

00�1 + 01�0 +
1
8
mb01mG�1 = 0,

00 + �0 = 1Δ[.

It is found that

00 =
8mb01 · mG�1 − 1Δ[01

�1 − 01
, �0 =

8mb01 · mG�1 − 1Δ[�1

01 − �1
.

Once the principal and sub-principal symbols have been defined, one can define
the other symbols by induction. By induction, for −C + 1 ≤ < ≤ 0, suppose that
01, . . . , 0< and �1, . . . , �< have been determined. Then define 0<−1 and �<−1 by

�<−1 = −0<−1,

and

0<−1 =
1

01 − �1

∑∑∑ 1
8UU!

mUb 0:m
U
G �ℓ

where the sum is over all triple (:, ℓ, U) ∈ Z × Z × N3 such that

< ≤ : ≤ 1, < ≤ ℓ ≤ 1, |U | = : + ℓ − <.

By definition, one has 0<, �< ∈ Γ<C+1+< for −C + 1 < < ≤ 0. Also, we obtain that
g = −1 |b |2 and 0 + � = 21(8∇[ · b) + 1Δ[.

This completes the proof. �

6.5.1 Formal computations

The aim of this paragraph is to compute, formally, various quadratic terms. For this
paragraph only, as a notation, we say that

�([, k) ≈ �([, k) ⇐⇒ �([, k) − �([, k) = $ ( | ([, k) |3) .

Lemma 6.5.4. There holds

mI, |I=0 ≈ �+, |I=0 −&2 + �≤2([)k

with
�+ := |�G | − |�G | ()[ |�G |·) − )[Δ.
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Proof. We begin by recalling the computation of the second order approximation of
� ([)k, namely

� ([)k ≈
(
� (0) + �′(0) [[]

)
k.

To do so, we use the shape-derivative formula:

(6.5.8) �′([) [[̂]k = −� ([)
(
[̂�([)k

)
− div

(
[̂+ ([)k

)
,

where

�([)k = � ([)k + ∇[ · ∇k
1 + |∇[ |2

, + ([)k = ∇k −
(
�([)k

)
∇[ .

We have

(6.5.9) � (0) = |�G | , �(0) = � (0) , + (0) = ∇ ,

moreover applying (6.5.8), (6.5.9) we get

�′(0) [[]k = −� (0)
(
[�(0)k

)
− div

(
[+ (0)k

)
= −|�G |

(
[ |�G |k

)
− div([∇k) .

Consequently,

(6.5.10) � ([)k ≈ � (0)k + �′(0) [[]k = |�G |k − |�G |
(
[ |�G |k

)
− div

(
[∇k

)
.

We next paralinearize the quadratic part, that is we replace products 01 by the sum
of paraproducts )01 + )10 and a remainder term 'B (0, 1). We have

� ([)k ≈ |�G |k − |�G |
(
)[ |�G |k

)
− |�G |

(
)|�G |k[

)
− |�G |'B ([, � (0)k)

− div
(
)[∇k

)
− div

(
)∇k[

)
− 'B ([,∇k)

= |�G |
(
k − )|�G |k[

)
− div

(
)∇k[

)
− |�G | ()[ |�G |k) − div()[∇k)

+ �≤2([)k(6.5.11)

where �≤2([)k is as in (??).

Now by comparing (6.4.17) with (6.5.11) we deduce that, modulo cubic terms,(
(� + )|∇[ |2)mI, − )∇[ · ∇,

)I=0
− div

(
)+[

)
+&2

≈ |�G |
(
k − )|�G |k[

)
− div()∇k[) − |�G | ()[ |�G |k) − div()[∇k) + �≤2([)k.
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Since

div
(
)+[

)
≈ div()∇k[),

)∇[ · ∇, |I=0 ≈ )∇[ · ∇k,
(� + )|∇[ |2)mI, |I=0 ≈ mI, |I=0,

we infer that

mI, |I=0 ≈ |�G |
(
k − )|�G |k[

)
+ )∇[ · ∇k − |�G | ()[ |�G |k) − div()[∇k)

−&2 + �≤2([)k,

and, simplifying )∇[ · ∇k − div()[∇k),

mI, |I=0 ≈ |�G |
(
k − )|�G |k[

)
− |�G | ()[ |�G |k) − )[Δk −&2 + �≤2([)k.

Modulo quadratic term, k is given by, |I=0 and we easily complete the proof. �

Remark 6.5.5. To compare (??) and (6.5.11), notice that the quadratic part of
)+ · ∇[ + )div+[ is given by

)∇k · ∇[ + )Δk[ = div()[∇k).

It remains to compare −|�G | ()[ |�G |k) − div()[∇k) with the quadratic part of
)_−|b |

(
k − )�[

)
. Since _(1) − |b | is quadratic in [, only the sub-principal symbols

contribute. Notice that, when 3 = 1, then−|�G | ()[ |�G |k)−div()[∇k) = 0 (see [24,
Lemma �.1.11]) and this cancellation corresponds to the ones of the subprincipal
symbols (see Remark 6.1.2).

We now study the quadratic term in the equation (6.5.1) for the unknown, . Write
the quadratic part of the left-hand side of this equation under the form P2, with

P2 := m2
I + Δ − 2)∇[ · ∇mI − )Δ[mI .

We next seek an operator �− such that

(mI − �−) (mI − �+), ≈ P2,.

Lemma 6.5.6. The previous identity holds with �− := −�+ + 2)∇[ · ∇ + )Δ[.

Proof. It is sufficient to prove that �−�+, ≈ Δ, . Now observe that

�− = −|�G | + |�G | ()[ |�G |·) + Δ()[·)
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and hence

�−�+ = −|�G |2 + |�G |2)[ |�G | + |�G |)[Δ + |�G |)[ |�G |2 + Δ)[ |�G | − R�

where R� is given by

(6.5.12) R� = |�G |)[ |�G |2)[ |�G | + |�G |)[ |�G |)[Δ + Δ)[ |�G |)[ |�G | + Δ)[)[Δ.

Since Δ = −|�G |2 one has �−�+ = Δ + R�. Now R�, ≈ 0 which completes the
proof. �

6.5.2 Factorization

Recall that we proved that

(� + )|∇[ |2)m2
I, + Δ, − 2)∇[ · ∇mI, − )Δ[mI, = &1 + �1,

where &1 is a smooth quadratic term given by

&1 := 'B (2∇[,∇mIE) + 'B (Δ[, mIE)

and �1 is a smooth cubic term. Moreover, in the previous paragraph, we have found
two operators �− and �+ such that

(mI − �−) (mI − �+), = (m2
I + Δ − 2)∇[ · ∇mI − )Δ[mI), + cubic terms.

In this paragraph, we shall prove that one can factor out the full elliptic equation,
modulo smooth cubic terms.

Proposition 6.5.7. There exist two symbols @− = @−(G, b) and @+ = @+(G, b) of
order 1 in b and depending quadratically in [, satisfying

(6.5.13) #1
d−1(@−) + #

1
d−1(@+) ≤ �

(
‖[‖�B0

)
‖[‖2�B0

with d = B0 − 3
2 , and such that

(6.5.14) (mI − �− − )@−) (mI − �+ − )@+), = &1 + �3

where &1 is as above and �3 is a smooth cubic term, such that

(6.5.15) ‖�3‖!2 (�;�B+B0− ) ≤ �
(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
‖[‖�B

with  = 3 + 3
2 .
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Proof. The key point is to use Calderón factorization as in the previous section.
The main new point is that we identify the quadratic and cubic components of the
remainder. To sort terms according to the homogeneity, it is convenient to introduce
the following notations.

Notation 6.5.8. Given two functions 5 , 6, we write 5 ≡ 6 mod linear to say that
there exists an increasing function � such that

‖ 5 − 6‖�B+B0− ≤ �
(
‖[‖�B0

)
‖k‖

�
B0−

1
2

where  = 3 + 3/2. Similarly, 5 ≡ 6 mod quadratic (resp. 5 ≡ 6 mod cubic)
means that there exists an increasing function � such that

‖ 5 − 6‖�B+B0− ≤ �
(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2

(resp. ‖ 5 − 6‖�B+B0− ≤ �
(
‖[‖�B0

)
‖[‖2�B0 ‖k‖�B0− 1

2
). We say then that 5 is equal

to 6 modulo a smooth quadratic (resp. cubic) remainder term.

The strategy of the proof is the following. We first seek two symbols ? = ?(G, b)
and @ = @(G, b) depending on [, @−, @+ such that

(mI − �− − )@−) (mI − �+ − )@+), ≡ )?, + )@mI, +&1 mod cubic

and then to find @− and @+ which are approximate solutions of ? = 0 and @ = 0.

Since (mI − �−) (mI − �+), = P2, + R�, and since mI)@+ = )@+mI, one has

(mI − �− − )@−) (mI − �+ − )@+),
=

(
P2 + R� − ()@− + )@+)mI + �−)@+ + )@−�+ + )@−)@+

)
,.

Step 1. We begin by rewriting P2, under the form )?, + )@mI, + &1 modulo a
smooth cubic term. It follows from (6.5.1) that

P2, ≡ −)|∇[ |2m2
I, +&1 mod cubic.

So the question is to write m2
I, under the form)?, +)@mI, modulo a smooth cubic

term. To do so, we use again (6.5.1). By replacing the factor � + )|∇[ |2 multiplying
m2
I, by )1+|∇[ |2 + (� − )1), it follows from (6.5.1) that

)1+|∇[ |2m
2
I, = −Δ, + 2)∇[ · ∇mI, + )Δ[mI, + ()1 − �)m2

I, +&1 + �1.

Now it follows from the estimates for &1, �1 (see (6.5.11) for �1, while &1 is
estimated by means of (6.4.12)) and the one for m2

I, (which follows directly from
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the definition m2
I, = m2

I E − )m3
I E
[ and the estimates (6.4.4), (6.4.5) as well as (??))

that
)1+|∇[ |2m

2
I, ≡ −Δ, + 2)∇[ · ∇mI, + )Δ[mI, mod linear.

Moreover, using the estimate (3.6.3), one has

(6.5.16)
)(1+|∇[ |2)−1)1+|∇[ |2D


�
`+B0−1− 32

≤ �
(
‖[‖�B0

)
‖D‖�`

and hence

m2
I, ≡ )(1+|∇[ |2)−1

(
−Δ, + 2)∇[ · ∇mI, + )Δ[mI,

)
mod linear.

Applying )|∇[ |2 and using again (3.6.3) to obtain estimates similar to (6.5.16), this
yields

)|∇[ |2m
2
I, ≡ −)UΔ, + 2)U∇[·(8b)+UΔ[mI, mod cubic, with U =

|∇[ |2
1 + |∇[ |2

·

We conclude that

P2, ≡ −)U |b |2, − 2)U∇[·(8b)+UΔ[mI, +&1 mod cubic.

Step 2. We next rewrite R�, under the form )?, modulo a smooth cubic term.
Directly from the definition (6.5.12) one has

R�, =
(
|�G |)[ |�G | + Δ)[

) (
|�G |)[ |�G | + )[Δ

)
thus

R�, = |�G |
[
)[, |�G |

] [
|�G |, )[

]
|�G |.

Since )|b | − |�G | is regularizing, one can replace |�G | by )|b | to the prize of smooth
errors which are cubic since R� is quadratic in [:

R�, ≡ )|b |
[
)[, )|b |

] [
)|b |, )[

]
)|b |, mod cubic.

Now we claim that, for some symbol A,

R�, ≡ )A, mod cubic.

This follows from (3.5.8) setting

A = |b |♯d−1
(
[♯d |b | − |b |♯d[)♯d−1

(
|b |♯d[ − [♯d |b |

)
|b |.
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Step 3. Wenext rewrite �−)@++)@−�++)@−)@+ under the form)?, modulo a smooth
cubic term. Replacing |�G | by )|b | + (|�G | − )|b |) and recalling that ( |�G | − )|b |) is
a smoothing operator, one easily finds symbols 0− and 0+ such that �− = )0− and
�+ = )0+ modulo remainder terms whose operator norms are easily estimated from
(3.5.8), namely

0+ = |b | −
(
|b |♯d[ − [♯d |b |

)
|b |, 0− = −0+ + 2∇[ · (8b) + Δ[.

Notice that 0+ and 0− belong to Σ1
d−1. Then assuming that (6.5.13) holds, using

again (3.5.8), one obtains that

�−)@+ + )@−�+ + )@−)@+, ≡ )℘, mod cubic

where
℘ = 0−♯d−1@+ + @−♯d−10+ + @−♯d−1@+.

Notice that ℘ belongs to Σ2
d−1.

Step 4. We thus have found that

(mI − �− − )@−) (mI − �+ − )@+), ≡ )?, + )@mI, +&1 mod cubic

where

? = −U |b |2 + A + ℘,
@ = −@− − @+ − 2U∇ · (8b) + UΔ[.

Now notice that since �−�+ = Δ + R� we have 0−♯d−10+ = −|b |2 + A (at least if
one removes symbols smoother than the remainders) and hence we conclude that to
solve the system (? = 0, @ = 0) it is sufficient that the symbols ?± := 0± + @± solve

(6.5.17)
?−♯?+ = −

|b |2

1 + |∇[ |2
,

?− + ?+ = 2
8∇[ · b

1 + |∇[ |2
+ Δ[

1 + |∇[ |2
·

The previous system is solved in the previous section. So one obtains the desired
symbol @± writing @± = ?± − 0±. �

Corollary 6.5.9. Set
F := (mI − �+ − )@+),.

ThenF |I=0 − |�G |'B ( |�G |k, [) + div 'B (∇k, [)

�B+B0− ≤ �

(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
‖[‖�B .

with  = 3 + 3
2 .
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Proof. The proof is in three steps.

Step 1. Directly, from the definition of F, we begin by proving that

(6.5.18)
F

!2 (�;�B0−1) ≤ �
(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
.

To obtain this estimate, we shall write F under the form mIE − |�G |E + & where
& is a quadratic term. Namely, using the definition , = E − )mIE[ and the one of
�+ = |�G | −

[
|�G |, )[

]
|�G |, one has F = (mI − |�G |)E +& with

& = −(mI − |�G |))mIE[ +
( [
|�G |, )[

]
|�G | − )@+

)
,.

The first term (mI − |�G |)E is estimated by means of (6.4.6). Let us estimate &.
Directly from (3.5.7) and (3.5.8), one hasmI)mIE[�B0−1 =

)m2
I E
[


�B0−1
.

m2
I E


!∞ ‖[‖�B0−1 .

m2
I E


�B0−1 ‖[‖�B0−1 ,|�G |)mIE[


�B0−1 . ‖mIE‖!∞ ‖[‖�B0 . ‖mIE‖�B0 ‖[‖�B0 ,[ |�G |, )[

]
,


�B0
. ‖[‖,1,∞ ‖, ‖�B0 . ‖[‖�B0 ‖, ‖�B0 ,)@+,

�B0
. "1

0 (@+) ‖, ‖�B0 . �
(
‖[‖�B0

)
‖[‖2�B0 ‖, ‖�B0 ,

where we used (6.5.13) in the last inequality. Notice that, in view of the cut-off
function Z in the definition (6.2.2) of paradifferential operators, the last two-estimates
hold with ‖, ‖�B0 replaced by ‖∇G, ‖�B0−1 . To estimate the latter norm, directly
from the definition of, = E − )mIE[, one obtains

(6.5.19) ‖∇G, ‖�B0−1 . ‖∇GE‖�B0−1 + ‖mIE‖!∞ ‖[‖�B0 .

By combining the previous estimates and using (6.4.3) and (6.4.4) for the !2(�;�B0)-
norm of m:I E, one concludes that the the !2(�;�B0−1)-norm of & is bounded by the
right-hand side of (6.5.18).

Step 2. In this step we prove that

(6.5.20)
F

!2 (�;�B+B0− ) ≤ �
(
‖[‖�B0

)
‖k‖

�
B0−

1
2
‖[‖�B

By definition of F, it follows from Proposition 6.5.7 that

(6.5.21) (mI − �− − )@−)F = &1 + �3

where &1 is as above and �3 is a smooth cubic term. The !2(�;�B+B0− ) of &1 is
estimated directly from (6.4.12) and we obtain

(6.5.22) ‖&1‖!2 (�;�B+B0− ) ≤ �
(
‖[‖�B0

)
‖k‖

�
B0−

1
2
‖[‖�B
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Notice that (6.5.22) obviously implies that the same estimate holds for �3.

Now, as already mentioned �− −)0− is a smoothing operator satisfying, for any real
numbers ` and <, (�− − )0−)D�`+< . (1 + ‖[‖�B0 ) ‖D‖�` .
In particular, it follows from (6.5.18) that(�− − )0−)F

�B+B0− ≤ �
(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
.

Setting ?− = 0− + @−, it thus follows from previous estimate that

mIF − )?−F = 5

with ‖ 5 ‖!2 (�;�B+B0− ) ≤ �
(
‖[‖�B0

)
‖k‖

�
B0−

1
2
‖[‖�B . Since <?− ≤ −|b | this is a

parabolic evolution equation. The desired estimate for F now follows easily from
parabolic estimate as in [29, 22] (see for instance Prop. 4.10 in [29] or Prop. 2.18
in [22]).

Step 3. Once (6.5.20) is established, one deduces that

�−F = −|�G |F + �

with
‖�‖!2 (�;�B+B0− ) ≤ �

(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
‖[‖�B .

Now write
mIF + |�G |F = &1 + �.

Now we use a trick which consists in observing that, since

&1 := 'B (2∇[,∇mIE) + 'B (Δ[, mIE),

one can write &1 under the form &1 = |�G |U + mIV with

U = −|�G |'B (mIE, [), V = −'B (ΔE, [).

Then
(mI + |�G |) (F − U − V) = |�G |'B (m2

I E + ΔE, [) + �.
Since m2

I E +ΔE is quadratic in ([, E), it follows from (6.4.12) that the right-hand side
satisfies the same estimate as � does. Using parabolic estimate for the solution of
mID + |�G |D = 5 , one deduces that the (�0 ∩ !∞) (�;�B+B0− )-norm of F − U − V is
bounded by�

(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
‖[‖�B . Using the obvious estimate |ℎ(0) | ≤

supI∈� |ℎ(I) |, this implies thatF − U − V |I=0

�B+B0− ≤ �

(
‖[‖�B0

)
‖[‖�B0 ‖k‖

�
B0−

1
2
‖[‖�B .

Evaluating U and V for I = 0 concludes the proof. �
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By combining the previous resultwith (6.4.17) concludes the proof of Theorem6.2.6.

6.6 References

To flatten the boundary, it might be tempting to use a general change of variables
of the form H = d(G, I) (as in [167, 168, 292, 300]). However, these changes of
variables do not modify the behavior of the functions on I = 0 and hence they do not
modify the Dirichlet to Neumann operator (see the discussion in [430]). Therefore,
the fact that we use the most simple change of variables one can think of (that is
(G, H) → (G, H − [(G))) is an interesting feature of the approach developed in this
chapter.
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Chapter 7

The water-wave problem with surface
tension

We have seen in Chapter 1 (see Proposition 1.2.5) that the water-wave equations
with surface tension can be written under the form:

(7.0.1)


m[

mC
− � ([)k = 0,

mk

mC
+ 1

2
|∇k |2 − 1

2
(∇k · ∇[ + � ([)k)2

1 + |∇[ |2
+ 6[ + ^([) = 0.

where the unknowns are [ = [(C, G) ∈ R, k = k(C, G) ∈ R, G ∈ R3 , 3 ≥ 1, � ([)
is the Dirichlet-to-Neumann operator (studied in chapters 4 and 6), 6 > 0 is the
acceleration of gravity and ^([) is the mean curvature defined by

^([) = − div
(

∇[√
1 + |∇[ |2

)
.

7.1 The Cauchy problem

As we said in a previous chapter, in the framework of Sobolev spaces, without any
smallness hypothesis on the initial data, the well-posedness of the Cauchy problem
has been shown by Beyer-Günther ([80]) in the case with surface tension (_ = 1).
Many extensions of the result of Beyer and Günther have been obtained, by different
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methods, by Ogawa and Tani [354], Ambrose-Masmoudi [45, 46, 47], Schneider-
Wayne [385], Zhang-Zhang [456], Schweizer [387], Iguchi [257, 255, 256], Shatah-
Zeng [388, 389, 390], Ming-Zhang [344], Coutand-Shkoller [159], Guo-Tice [237,
238], Rousset-Tzvetkov [378], Christianson-Hur-Staffilani [129], Lannes [302],
Germain-Masmoudi-Shatah [218], Alazard-Burq-Zuily [19, 20], Chen-Marzuola-
Spirn-Wright [124], de Poyferré andNguyen [187, 186], Ifrim-Tataru [252], Ionescu-
Pusateri [259], Zhu [459], Berti-Delort [74], Rimah-Said [381].

Theorem 7.1.1 (from [19]). Let 3 ≥ 1, D = R3 or T3 and B > 2 + 3/2. For any
initial data ([0, k0) ∈ �B+ 1

2 (D) × �B (D), there exists a time ) > 0 such that the
Cauchy problem for (7.0.1) with initial data ([0, k0) has a unique solution

([, k) ∈ �0 ([0, )];�B+ 1
2 (D) × �B (D)

)
.

Remark 7.1.2. The assumption B > 2 + 3/2 corresponds to a natural threshold.
Indeed, if [ and k belong to �B (R3), then q ∈ �B+ 1

2 (Ω) where q denotes the
harmonic extension of k in the domainΩ occupied by the fluid. This is equivalent to
the fact that the velocity D = ∇G,Hq belongs to �B− 1

2 (Ω). Now D ∈ �B− 1
2 (Ω) implies

D ∈ Lip(Ω) if and only if B− 1
2 −1 > 3+1

2 , that is B > 2+ 32 . Therefore, the hypothesis
B > 2 + 3/2 is the minimal assumption (in terms of Sobolev spaces based on !2) to
guarantee that the initial velocity is Lipschitz.

One could want to solve the Cauchy problem in other spaces, for instance in Hölder
spaces. The next proposition shows that this is never not possible for a dispersive
equation, without loss of derivatives.

Proposition 7.1.3. Let U ∈ (0, +∞) with U ≠ 1 and set ((C) = 4−8C |�G |U . Consider
two real numbers B, f ∈ R and assume that there exists C0 ≠ 0 such that ((C0) is
continuous from the Zygmund space �f∗ (R3) to �B∗ (R3). Then B ≤ f − 3U

2 .

Moreover we have also shown that there is continuity with respect to the initial data
in the space where we take the initial data.

Theorem7.1.4 ([19]). Let 3 ≥ 1,D = R3 orT3 and B > 2+3/2. Consider a solution
([, k) ∈ �0( [0, )];�B+ 1

2 (D) × �B (D)) of (7.0.1) and a sequence ([=,0, k=,0)=∈N∗
converging in �B+ 1

2 (D) × �B (D) to ([, k) |C=0. Then, for = large enough, the
solutions ([=, k=) ∈ �0( [0, )];�B+ 1

2 (D) ×�B (D)) with data ([=,0, k=,0) exist on the
time interval [0, )] and satisfy

(7.1.1) lim
=→+∞

‖([=, k=) − ([, k)‖
�0 ( [0,)];�B+

1
2 ×�B)

= 0.
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7.2 A priori estimates

We will only prove a priori estimates and refer to the original article [19] for the rest
of the proof. Namely, we shall prove the following proposition.

Proposition 7.2.1. Let 3 ≥ 1 and B > 2 + 3/2. Then there exist a non-decreasing
function � such that, for all ) ∈]0, 1] and all solution ([, k) of (7.0.1) such that

([, k) ∈ �1( [0, )];�B+ 1
2 (R3) × �B (R3)),

the norm
" ()) = ‖([, k)‖

!∞ (0,) ;�B+
1
2 ×�B)

,

satisfies the estimate
" ()) ≤ � ("0) + )� (" ())),

with "0 := ‖([0, k0)‖
�
B+ 1

2 ×�B
.

7.2.1 Paralinearization

In this paragraph the time variable plays no role and we skip it.

Define the symbol

(7.2.1) _ = _(1) + _(0) ,

where

(7.2.2)

_(1) =

√
(1 + |∇[ |2) |b |2 − (∇[ · b)2,

_(0) =
1 + |∇[ |2

2_(1)
{
div

(
U(1)∇[

)
+ 8mb_(1) · ∇U(1)

}
with

U(1) =
1

1 + |∇[ |2
(
_(1) + 8∇[ · b

)
.

In our case the function [ will be at least �2, so that all these symbols are well
defined.

The following observation contains one of the key dichotomy the cases 3 = 1 and
3 = 2: If 3 = 1 then

_(1) (G, b) = |b | , _(0) (G, b) = 0.
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In particular, _ = |b |. In this case )_ is equal to |� | up to a smoothing remainder.

Also, directly from (7.2.2), one can check the following formula

(7.2.3) Im_(0) = −1
2
(mb · mG)_(1) ,

which reflects the fact that the Dirichlet-Neumann operator is a symmetric operator.

Proposition 7.2.2. Let 3 ≥ 1 and B > 2 + 3/2. Assume that

([, k) ∈ �B+ 1
2 (D) × �B (D).

and that [ is such that dist(Σ, Γ) > 0. Then

(7.2.4) � ([)k = )_
(
k − )�[

)
− )+ · ∇[ + 5 ([, k),

where _ is given by (7.2.2) and (7.2.1),

� :=
∇[ · ∇k + � ([)k

1 + |∇[ |2
, + := ∇k − �∇[,

and 5 ([, k) ∈ �B+ 1
2 (R3). Moreover, we have the estimate

‖ 5 ([, k)‖
�
B+ 1

2
≤ �

(
‖[‖

�
B+ 1

2

)
‖k‖�B−1 ,

for some non-decreasing function � depending only on dist(Σ, Γ) > 0.

Lemma 7.2.3. There holds ^([) = )ℓ[ + 5 , where ℓ = ℓ(2) + ℓ(1) with

(7.2.5)
ℓ(2) =

(
1 + |∇[ |2

)− 1
2
(
|b |2 − (∇[ · b)

2

1 + |∇[ |2

)
,

ℓ(1) = − 8
2
(mG · mb)ℓ(2) ,

and 5 ∈ �2B−2−3/2(D) is such that

(7.2.6) ‖ 5 ‖
�

2B−2− 32
≤ � (‖[‖�B+1/2),

for some non-decreasing function �.

Proof. Recall the following paralinearization formula (see Theorem 3.6.3): if U >
3/2, then

(7.2.7)
� (D) − )� ′(D)D�2U−3/2 ≤ � (‖D‖�U) ‖D‖�U ,
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It follows that

∇[√
1 + |∇[ |2

= )"∇[ + 5̃ , " =
1√

1 + |∇[ |2
� − ∇[ ⊗ ∇[
(1 + |∇[ |2)3/2

,

with
 5̃ 

�
2B−1− 32

≤ � (‖[‖
�
B+ 1

2
). Since

div()"∇[) = )−"b ·b+8 div"b[,

we obtain the desired result with ℓ(2) = "b · b, ℓ(1) = −8 div"b and 5 = div 5̃ . �

We also need to paralinearize the nonlinear terms that appear in the equation for
appear in the equation for k.

Lemma 7.2.4. We have

1
2
|∇k |2 − 1

2
(∇[ · ∇k + � ([)k)2

1 + |∇[ |2
= )+ · ∇k − )�)+ · ∇[ − )�� ([)k + 5 ′,

where � and + are as defined in Definition 1.2.1 and 5 ′ satisfies

‖ 5 ′‖
�

2B−2− 32
≤ �

(
‖([, k)‖

�
B+ 1

2 ×�B

)
,

for some non-decreasing function �.

Proof. Again, we use the paralinearization formula (7.2.7) applied with the function

� (0, 1, 2) = 1
2
(0 · 1 + 2)2

1 + |0 |2
(0 ∈ R3 , 1 ∈ R3 , 2 ∈ R).

Notice that

m0� =
(0 · 1 + 2)
1 + |0 |2

(
1 − (0 · 1 + 2)

1 + |0 |2
0

)
, m1� =

(0 · 1 + 2)
1 + |0 |2

0, m2� =
(0 · 1 + 2)
1 + |0 |2

.

We use these identities for 0 = ∇[, 1 = ∇k and 2 = � ([)k. Then

(0 · 1 + 2)
1 + |0 |2

= �, 1 − (0 · 1 + 2)
1 + |0 |2

0 = +,

where � and + are (as always) defined by Definition 1.2.1. It follows that

1
2
(∇[ · ∇k + � ([)k)2

1 + |∇[ |2
=

{
)+� · ∇[ + )�∇[∇k + )�� ([)k

}
+ A,
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with A ∈ �2B−2− 32 (R3) satisfies the desired estimate. Since + = ∇k − �∇[, this
yields

1
2
|∇k |2 − 1

2
(∇[ · ∇k + � ([)k)2

1 + |∇[ |2
= {)+ · ∇k − )+� · ∇[ − )�� ([)k} + A′

with A′ ∈ �2B−2− 32 (R3). Since by symbolic calculus

)�+ − )�)+ is of order −
(
B − 1 − 3

2

)
,

this completes the proof. �

7.2.2 A class of symbols

Definition 7.2.5. Given < ∈ R, �< denotes the class of symbols 0 = 0(C, G, b) of
the form

0 = 0 (<) + 0 (<−1)

with
0 (<) (C, G, b) = � (∇[(C, G), b),

0 (<−1) (C, G, b) =
∑
|U |=2

�U (∇[(C, G), b)mUG [(C, G),

such that

(i) )0 maps real-valued functions to real-valued functions;

(ii) � is a �∞ real-valued function of (Z, b) ∈ R3 × (R3 \ 0), homogeneous of
order < in b; and such that there exists a continuous function  =  (Z) > 0
such that

� (Z, b) ≥  (Z) |b |< ,

for all (Z, b) ∈ R3 × (R3 \ 0);

(iii) �U is a �∞ complex-valued function of (Z, b) ∈ R3 × (R3 \ 0), homogeneous
of order < − 1 in b.

Remark 7.2.6. Let us discuss a delicate technical point which comes from the fact
that we are interested to symbols that are not very regular. To study the equations
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with surface tension, as we have seen it is necessary to work everywhere at the sub
principal level. But the sub principal symbols depend on the second derivatives of
second derivatives of [ which are just �1/2 in G. An important technical remark
is that the subprincipal symbols _(0) , ℓ(1) as well as the symbols ? (−1/2) and W (1/2)

below, depend linearly of ∇2[.

Proposition 7.2.7. Let < ∈ R and ` ∈ R. Then there exists a function � such that
for all symbol 0 ∈ Σ< and all C ∈ [0, )],)0(C)D�`−< ≤ � (‖[(C)‖�B−1) ‖D‖�` .

Remark 7.2.8. This result is obvious for B > 3+ 3/2 since the !∞-norm of 0(C, ·, b)
is controlled by ‖[(C)‖�B−1 in this case. As alluded to above, this proposition solves
the technical difficulty which appears since we only assume B > 2 + 3/2.

Proof. By abuse of notations, we omit the dependence in time.

a) Consider a symbol ? = ?(G, b) homogeneous of degree A in b such that

G ↦→ mUb ?(·, b) belongs to �B−3(R3) ∀U ∈ N3 .

Let @ be defined by

@̂(\, b) = j1(\, b)k1(b)
|b | ?̂(\, b)

where j1 = 1 on supp j, k1 = 1 on suppk (see (6.2.2)), k1(b) = 0 for |b | ≤ 1
3 ,

j1(\, b) = 0 for |\ | ≥ |b | and 5̂ (\, b) =
∫
4−8G·\ 5 (G, b) 3G. Then

(7.2.8) )@ |�G | = )?,

and ���mUb @̂(\, b)��� . 〈\〉−1
∑
V≤U

���mVb ?̂(\, b)��� .
Therefore we have

(7.2.9)
mUb @(·, b)

�B−2
.

∑
V≤U

mVb ?(·, b)
�B−3

.

Now, it follows from the above estimate and the embedding �B−2(R3) ⊂ !∞(R3)
that @ is !∞ in G and hence @ ∈ ΓA−1

0 ⊂ ΓA0. Then, according to (3.5.7) applied with
< = A (and not < = A − 1), we have for all f ∈ R,)@E�f−A . sup

|U |≤ 32 +1
sup
|b |≥ 1

2

|b | |U |−A
mUb @(·, b)

!∞
‖E‖�f .
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Applying this inequality with E = |�G | D, f = ` − 1 and using again the Sobolev
embedding and (7.2.8), (7.2.9), we obtain

(7.2.10)
)?D�`−A−1 . sup

|U |≤ 32 +1
sup
|b |=1

mUb ?(·, b)
�B−3
‖D‖�` .

b) Consider a symbol 0 ∈ Σ< of the form

(7.2.11) 0 = 0 (<) + 0 (<−1) = � (∇[, b) +
∑
|U |=2

�U (∇[, b)mUG [.

Up to substracting the symbol of a Fourier multiplier of order <, we can assume
without loss of generality that � (0, b) = 0.

It follows from the previous estimates that)0 (<)D�`−< . sup
|b |=1
‖0 (<) (·, b)‖�B−2 ‖D‖�` ,)0 (<−1)D


�`−< . sup

|b |=1
‖0 (<−1) (·, b)‖�B−3 ‖D‖�` .

Now since B > 2 + 3/2 it follows from the usual nonlinear estimates in Sobolev
spaces that

sup
|b |=1
‖0 (<) (·, b)‖�B−2 = sup

|b |=1
‖� (∇[, b)‖�B−2 ≤ � (‖[‖�B−1) .

On the other hand, by using the product rule (6.4.8) with (B0, B1, B2) = (B − 3, B −
2, B − 3) we obtain

‖0 (<−1) (·, b)‖�B−3 ≤
∑
|U |=2

�U (∇[, b)mUG [

�B−3

.
(
|�U (0, b) | +

∑
|U |=2
‖�U (∇[, b) − �U (0, b)‖�B−2

) mUG [�B−3 ,

for all |b | ≤ 1. We conclude that ‖0 (<−1) (·, b)‖�B−3 ≤ � (‖[‖�B−1), which completes
the proof. �

Similarly we have the following result about elliptic regularity where one controls
the various constants by the �B−1-norm of [ only.
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Proposition 7.2.9. Let < ∈ R and ` ∈ R. Then there exists a function � such that
for all 0 ∈ �< and all C ∈ [0, )], we have

‖D‖�`+< ≤ � (‖[(C)‖�B−1)
{)0(C)D�` + ‖D‖!2

}
.

Remark 7.2.10. It is classical that, for all elliptic symbol 0 ∈ Γ<d (R3) with d > 0,
there holds

‖ 5 ‖�< ≤  {‖)0 5 ‖!2 + ‖ 5 ‖!2} ,

where  depends only on "<
d (0). Hence, if we use the natural estimate

"<−1
d (0 (<−1) (C)) ≤ � (‖[(C)‖,2+d) ≤ � (‖[(C)‖�B )

for d > 0 small enough, then we obtain an estimate which is worse than the one just
stated for 2 + 3/2 < B < 3 + 3/2.

Proof. Again, by abuse of notations, we omit the dependence in time.

Introduce 1 = 1/0 (<) and consider Y such that

0 < Y < min{B − 2 − 3/2, 1}.

By applying (3.5.8) with d = Y we find that )1)0 (<) = � + A where A is of order −Y
and satisfies

‖AD‖�`+Y ≤ � (‖∇[‖, Y,∞) ‖D‖�` ≤ � (‖[‖�B−1) ‖D‖�` .

Then
D = )1)0D − AD − )1)0 (<−1) .

Denoting by ' = −A − )1)0 (<−1) , we have

(� − ')D = )1)0D.

We claim that there exists a function � such that)0 (<−1)D

�`−<+Y ≤ � (‖[‖�B−1) ‖D‖�` .

To see this, notice that the previous proof applies with the decomposition )? =
)@ |�G |1−Y where

@̂(\, b) = j1(\, b)k1(b)
|b |1−Y

?̂(\, b).
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Once this claim is granted, since )1 is of order −<, we find that ' satisfies

‖'D‖�`+Y ≤ � (‖[‖�B−1) ‖D‖�` .

Writing
(� + ' + · · · + '# ) (� − ')D = (� + ' + · · · + '# ))1)0D

we get
D = (� + ' + · · · + '# ))1)0D + '#+1D.

The first term in the right hand side is estimated by means of the obvious inequality(� + ' + · · · + '# ))1�`→�`+<
≤

(� + ' + · · · + '# )
�`+<→�`+< ‖)1‖�`→�`+< ,

so that (� + ' + · · · + '# ))1)0D�`+< ≤ � (‖[‖�B−1) ‖)0D‖�` .

Choosing # so large that (# + 1)Y > ` + <, we obtain that'#+1
�`→�`+< . ‖'‖�`+<−Y→�`+< · · · ‖'‖�`→�`+Y ≤ � (‖[‖�B−1),

which yields the desired estimate for the second term. �

7.2.3 Symmetrization of equations

Zakharov showed that the surface wave system can be written as

m[

mC
=
X�

Xk
,

mk

mC
= −X�

X[
,

where � is the total energy. Zakharov and his collaborators have extensively studied
the properties related to the Hamiltonian nature of Hamiltonian nature of the equa-
tions (see [454] for many references). Noting by �0 the Hamiltonian associated to
the linearized system around the equilibrium ([, k) = (0, 0), we have

�0 =
1
2

∫ [
|b | |k̂ |2 + (6 + |b |2) |[̂ |2

]
db.

An important observation is that the canonical transformation ([, k) ↦→ 0 defined
by

0̂ =
1
√

2

{(
6 + _ |b |2

|b |

)1/4
[̂ − 8

(
|b |

6 + _ |b |2

)1/4
k̂

}
,
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diagonalizes �0 and thus reduces the study to that of the complex equation (cf [454])

m0̂

mC
+ 8 m�
m ¯̂0

= 0.

We will explain in this part how to obtain such a diagonalization for the non linear
problem. This is the main technical step of the paper [19].

For this we will start by paralinearizing the system (7.0.1).

Notation 7.2.11. In the sequence we will consider time as a parameter. Given a
function D = D(C, G), it is classical to note D(C) the function G ↦→ D(C, G). Given a
symbol 0(C, G, b) which depends on time, we will note )0 the operator defined by

()0D) (C) = )0(C)D(C).

We have seen previously that the unknown

* = k − )�[

plays a key role in the paralinearization of the operator � ([). The following result
states that this unknown is also involved in the paralinearization of the equation on
k.

Proposition 7.2.12. Under the previous regularity assumptions, we have{
mC[ + )+ · ∇[ − )_* = 51,

mC* + )+ · ∇* + )ℓ[ = 52,

where the remainders are estimated by

‖( 51, 52)‖
!∞ (0,) ;�B+

1
2 ×�B)

≤ �
(
‖([, k)‖

!∞ (0,) ;�B+
1
2 ×�B)

)
.

Consider a solution ([, k) of (7.0.1) which has the following regularity

[ ∈ �0 ([0, )];�B+ 1
2 (D)

)
, k ∈ �0 ([0, )];�B (D)

)
,

for some index B > 2 + 3/2.

Our main result on the symmetrization of equations is as follows.
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Proposition 7.2.13. There exists a symbol ? ∈ �1/2, a symbol W ∈ �3/2 and a
symbol @ ∈ �0 such that the unknown (complex-valued) Φ ∈ �0( [0, )];�B (D))
defined by

Φ = )? [ + 8)@*,

(recall that* = k − )�[) satisfies

mCΦ + )+ · ∇Φ + 8)WΦ = �,

where the remainder � is such that

‖�‖!∞ (0,) ;�B) ≤ �
(
‖([, k)‖

!∞ (0,) ;�B+
1
2 ×�B)

)
.

Proof. Let ℓ denote the symbol of the operator ^([). We can find ?, W, @ by a
systematic method by using the relations

ℓ(1) = − 8
2
(mG · mb)ℓ(2) , Im_(0) = −1

2
(mG · mb)_(1) ,

and

ℓ(2) =
(
2_(1)

)2 with 2 =

(
1 + |∇[ |2

)− 3
4
.

The first two identities reflect the fact that the operators are self-adjoint. The third
identity has a geometric meaning.

Notation 7.2.14. Let < ∈ R and consider two families of operators order <,

{�(C) : C ∈ [0, )]}, {�(C) : C ∈ [0, )]}.

We shall say that � ∼ � if � − � is of order < − 3/2 and satisfies the following
estimate: for all ` ∈ R, there exists a continuous function � such that for all
C ∈ [0, )],

‖�(C) − �(C)‖
�`→�`−<+

3
2
≤ �

(
‖[(C)‖

�
B+ 1

2

)
.

Namely, we shall prove that there exist three symbols ?, @, W such that

(7.2.12) )?)_ ∼ )W)@, )@)ℓ ∼ )W)?, )W ∼ ()W)∗.

We want to explain how we find ?, @, W by a systematic method. We first observe
that if (7.2.12) holds true then W is of order 3/2. To be definite, we chose @ of order
0, and then necessarily ? is of order 1/2. Therefore we seek ?, @, W under the form

(7.2.13) ? = ? (1/2) + ? (−1/2) , @ = @ (0) + @ (−1) , W = W (3/2) + W (1/2) ,
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where 0 (<) is a symbol homogeneous in b of order < ∈ R.

Let us list some necessary constraints on these symbols. Firstly, we seek real elliptic
symbols such that,

? (1/2) ≥  |b |1/2 , @ (0) ≥  , W (3/2) ≥  |b |3/2 ,

for some positive constant  . Secondly, in order for )?, )@, )W to map real valued
functions to real valued functions, we must have

?(C, G, b) = ?(C, G,−b), @(C, G, b) = @(C, G,−b), W(C, G, b) = W(C, G,−b).

In order for )W to satisfy the last identity in (7.2.12), W (1/2) must satisfy

(7.2.14) Im W (1/2) = −1
2
(mb · mG)W (3/2) .

Our strategy is then to seek @ and W such that

(7.2.15) )@)ℓ)_ ∼ )W)W)@ .

The idea is that if this identity is satisfied then the first two equations in (7.2.12) are
compatible; this means that if any of these two equations is satisfied, then the second
one is automatically satisfied. Therefore, once @ and W are so chosen that (7.2.15) is
satisfied, then one can define ? by solving either one of the first two equations. The
latter task being immediate.

Introduce the notations

ℓ♯_ = ℓ(2)_(1) + ℓ(1)_(1) + ℓ(2)_(0) + 1
8
mbℓ
(2) · mG_(1) ,

W♯W =

(
W (3/2)

)2
+ 2W (1/2)W (3/2) + 1

8
mbW

(3/2) · mGW (3/2) .

By symbolic calculus, it is enough to find @ and W such that

(7.2.16) @ (0) (ℓ♯_) + @ (−1)ℓ(2)_(1) + 1
8
mb@
(0) · mG (ℓ(2)_(1))

= (W♯W)@ (0) +
(
W (3/2)

)2
@ (−1) + 1

8
mb (W (3/2)W (3/2)) · mG@ (0) .

We set
W (3/2) =

√
ℓ(2)_(1) ,
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so that the leading symbols of both sides of (7.2.16) are equal. Then Im W (1/2) has
to be fixed by means of (7.2.14). We set

Im W (1/2) = −1
2
(mG · mb)W (3/2) .

With these choices of W (3/2) and Im W (1/2) , (7.2.16) is equivalent to the following
equation (where the unknowns are @ (0) , @ (−1) and Re W (1/2)):

(7.2.17)
@ (0) (ℓ♯_ − W♯W) = 1

8
mb (ℓ(2)_(1)) · mG@ (0) −

1
8
mb@
(0) · mG (ℓ(2)_(1))

=
1
8
{ℓ(2)_(1) , @ (0)}

where

(7.2.18) ℓ♯_ − W♯W := g

=
1
8
mbℓ
(2) · mG_(1) + ℓ(1)_(1) + ℓ(2)_(0) − 2W (1/2)W (3/2) + 8mbW (3/2) · mGW (3/2) .

Since @ (−1) does not appear in this equation, one can freely set @ (−1) = 0. Since
ℓ(2) , _(1) are real-valued symbols, we see easily that (7.2.17) will be satisfied (with
@ (0) real) as soon as

(7.2.19) Re g = 0, @ (0) Im g = −
{
ℓ(2)_(1) , @ (0)

}
.

The first condition is satisfied if Re W (1/2) solves the equation

ℓ(2) Re_(0) = 2W (3/2) Re W (1/2) ,

that is

Re W (1/2) =
ℓ(2) Re_(0)

2W (3/2)
=

√
ℓ(2)

_(1)
Re_(0)

2
.

It remains to solve the second equation in (7.2.19). Let us first recall that

ℓ(1) = − 8
2
(mG · mb)ℓ(2) , Im_(0) = −1

2
(mG · mb)_(1) , Im W (1/2) = −1

2
(mG · mb)W (3/2) ,

and consequently

Im g = −mbℓ(2) · mG_(1) −
1
2
_(1) (mb · mG)ℓ(2) −

1
2
ℓ(2) (mb · mG)_(1)

+ W (3/2) (mb · mG)W (3/2) + mbW (3/2) · mGW (3/2) .
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Writing

W (3/2) (mb · mG)W (3/2) + mbW (3/2) · mGW (3/2) =
1
2
mG · mb

(
W (3/2)

)2
=

1
2
mG · mb (ℓ(2)_(1)),

we thus obtain

Im g =
1
2
mb_
(1) · mGℓ(2) −

1
2
mbℓ
(2) · mG_(1) ,

and hence the second equation in (7.2.19) simplifies to

(7.2.20)
1
2

{
_(1) , ℓ(2)

}
@ (0) +

{
ℓ(2)_(1) , @ (0)

}
= 0.

The key observation is the following relation between ℓ(2) and _(1):

ℓ(2) =
(
2_(1)

)2
with 2 =

(
1 + |∇[ |2

)− 3
4
.

Consequently (7.2.20) reduces to

−1
2
@ (0) (_(1))2mG22 · mb_(1) + 322(_(1))2mb_(1) · mG@ (0) − mb@ (0) · mG

(
22(_(1))3

)
= 0.

Seeking a solution @ (0) which does not depend on b, we are led to solve

mb_
(1) · mG@ (0)

@ (0)
= −1

3
mb_
(1) · mG2
2

.

We find the following explicit solution:

@ (0) = 2−
1
3 =

(
1 + |∇[ |2

) 1
4 A
.

Then, we define ? by solving the equation

)@)ℓ ∼ )W)? .

By symbolic calculus, this yields

@ℓ(2) + @ℓ(1) = W (3/2) ? (1/2) + W (1/2) ? (1/2) + W (3/2) ? (−1/2) + 1
8
mbW

(3/2) · mG ? (1/2) .

Therefore, by identifying terms with the same homogeneity in b, we successively
find that

? (1/2) =
@ (0)ℓ(2)

W (3/2)
= @ (0)

√
ℓ(2)

_(1)
=

(
1 + |∇[ |2

)− 5
4
√
_(1) ,
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and

(7.2.21) ? (−1/2) =
1

W (3/2)

{
@ (0)ℓ(1) − W (1/2) ? (1/2) + 8mbW (3/2) · mG ? (1/2)

}
.

Note that the precise value of ? (−1/2) is meaningless since we have freely imposed
@ (−1) = 0. �

7.2.4 A priori estimates

In this paragraph, we complete the proof of Proposition 7.2.1. To do so, we use
Proposition 7.2.13 and work with the function Φ = )? [ + 8)@*, solution to an
equation of the form

(7.2.22) mCΦ + )+ · ∇Φ + 8)WΦ = �.

To obtain estimates in Sobolev, we shall commute the previous equation with an
elliptic operator of order B, then use an !2-energy estimate and eventually derive
estimates for the original unknowns [ and k.

We will also make extensive use of symbolic calculus. Let us recall that if )0 and
)1 are two paradifferential operators with symbols 0 ∈ Γ<d and 1 ∈ Γ<′d , then

8) [)0, )1] is of order < + <′ −min{d, 1},(7.2.23)
88) [)0, )1] − )1

8
{0,1} is of order < + <′ −min{d, 2},(7.2.24)

where the Poisson bracket notation is defined by

{0, 1} = mb0 · mG1 − mG0 · mb1 =
3∑
9=1
(mb 90) (mG 91) − (mG 90) (mb 91).

A first thing to do is to find an operator of order B that commutes well to the equation.
We look for an elliptic % operator of order B such that the commutator [)W, %] is of
order B. One cannot simply commute the operator (�−Δ)B/2 to the equation because,
in general, the commutator [)W, (� − Δ)B/2] is of order 3/2 + B − 1 = B + 1/2. One
possibility is to commute powers of the operator )W. Then the commutator vanishes.
However this requires to consider indices B which are multiples of 3/2. Note that
this idea corresponds to commuting time derivatives with the equations (which is
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also a classical strategy [80, 378, 388]). The paradifferential calculus allows to solve
this problem in a systematic (and optimal) way. For this we introduce the operator

)V with V =
(
W (3/2)

) 2B
3
,

where we denote W (3/2) the main symbol of W, which is given by W (3/2) =
√
ℓ(2)_(1) .

It is an operator of order B and such that the Poisson bracket{
V, W (3/2)

}
= 0.

Thus under the only assumption that ∇[ is of regularity �3/2 in G, it follows from
(7.2.24) that the commutator [)W (3/2) , )V] is of order 3/2 + B − 3/2 = B.

On the other hand, directly from (7.2.23) applied with d = 1/2, we verify that
[)W (3/2) , )V] is of order 1/2 + B − 1/2 = B. Therefore, the commutator

[
)V, )W

]
is of

order B.

Also, by using (7.2.23) with d = 1, we see that the commutator
[
)V, )+ · ∇

]
is

clearly of order B. It remains to study the commutator [)V, )mC ] = −)mC V. For this,
observe that the symbol V is of the form V = �(∇[, b). Then the most direct
estimate shows that the !∞G (R3)-norm of mCV is estimated by the !∞G (R3)-norm
of (∇[, mC∇[) and hence by � (" ())) in view of mC[ = � ([)k and the Sobolev
embedding �B−1(R3) ⊂ ,1,∞(R3). We thus end up with the following estimates[)V, )W]�B→!2 +

[)V, mC ]�B→!2 +
[)V, )+ · ∇]�B→!2 ≤ � (" ())),

for some non-decreasing function �.

Therefore, by commuting the equation (7.2.22) with )V, we find that the function
E := )VΦ satisfies

(7.2.25) (mC + )+ · ∇) E + 8)WE = �′,

with
‖�′‖!∞ (0,) ;!2) ≤ � (" ())),

for some non-decreasing function �.

d) Since by assumption ([, k) ∈ �1(0, ));�B+ 1
2 (R3) × �B (R3), we have

E ∈ �1( [0, )]; !2(R3)),
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and hence we can write
3

3C
〈E, E〉 = 2 Re 〈mCE, E〉 ,

where 〈·, ·〉 denotes the scalar product in !2(R3;C). Therefore, (7.2.25) implies that

3

3C
〈E, E〉 = 2 Re

〈
−)+ · ∇E − 8)WE + �′, E

〉
and hence

3

3C
〈E, E〉 = 〈ℛE, E〉 + 2 Re 〈�′, E〉 ,

where
ℛ := − {()+ · ∇)∗ + )+ · ∇} −

{
(8)W)∗ + (8)W)

}
.

Since ()W)∗ ∼ )W, we easily verify that

sup
C∈[0,)]

‖ℛ(C)‖!2×!2→!2×!2 ≤ � (" ())).

Therefore, integrating in time we conclude that for all C ∈ [0, )],

‖E(C)‖2
!2 − ‖E(0)‖2!2 ≤ � (" ()))

∫ )

0

(
‖E‖2

!2 + ‖�′‖2!2

)
dC′,

which immediately implies that

‖E‖!∞ (0,) ;!2) ≤ � ("0) + )� (" ())).

By definition of E, this yields

(7.2.26)
)V)?[!∞ (0,) :!2) +

)V)@*
!∞ (0,) ;!2) ≤ � ("0) + )� (" ())).

First of all, we use Proposition 7.2.9 to obtain

‖[‖
!∞ (0,) ;�B+

1
2 )
≤  

{)V)?[!∞ (0,) ;!2) + ‖[‖!∞ (0,) ;�
1
2 )

}
,(7.2.27)

‖k‖!∞ (0,) ;�B) ≤  
{)V)@k

!∞ (0,) ;!2) + ‖k‖!∞ (0,) ;!2)

}
,(7.2.28)

where  depends only on ‖[‖!∞ (0,) ;�B−1) .

Let us prove that the constant  satisfies an inequality of the form

(7.2.29)  ≤ � ("0) + )� (" ())).

188



To see this, notice that one can assume without loss of generality that

 ≤ � (‖[‖2
!∞ (0,) ;�B−1))

for some non-decreasing function � ∈ �1(R). Set C(C) = � (‖[(C)‖2
�B−1). We then

obtain the desired bound (7.2.29) from

 ≤ C(0) +
∫ )

0
|C′(C) | dC ≤ � ("0) +

∫ )

0
2�′(‖[‖2

�B−1) ‖mC[‖�B−1 ‖[‖�B−1 dC,

and using the equation mC[ = � ([)k to estimate ‖[‖�B−1 .

Consequently, (7.2.26) and (7.2.27) imply that we have

‖[‖
!∞ (0,) ;�B+

1
2 )
≤ � ("0) + )� (" ())).

It remains to prove an estimate for k. To do this, we begin by noticing that, since
k = * + )�[, we have)V)@k

!∞ (0,) ;!2)

≤
)V)@*

!∞ (0,) ;!2) +
)V)@)�

!∞ (0,) ;�B+
1
2→!2)

‖[‖
!∞ (0,) ;�B+

1
2 )
.

Now we have)V)@)�
!∞ (0,) ;�B+

1
2→!2)

≤ sup
C∈[0,)]

sup
|b |=1
‖V(C, ·, b)‖!∞G ‖@‖!∞ (0,) ;!∞) ‖�‖

!∞ (0,) ;�
3−1

2 )

and hence

(7.2.30) ‖k‖�B ≤  ′
{)@*

�B
+ ‖k‖!2 + ‖[‖

�
B+ 1

2

}
,

where  ′ depends only on ‖([, k)‖!∞ (0,) ;�B−1×�B−3/2) . Notice that ‖k‖!2 is estimated
from the equation for k. Then by using the inequality (7.2.26) and the previous
estimate for [, and the fact that  ′ satisfies the same estimate as  does, we
conclude that

‖k‖!∞ (0,) ;�B) ≤ � ("0) + )� (" ())).

We end up with the wanted inequality" ()) ≤ � ("0)+)� (" ())). This completes
the proof of Proposition 7.2.1.
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7.3 The smoothing effect

Theorem 7.3.1. Assume that 3 = 1 and let B > 5/2 and ) > 0. Consider a solution
([, k) of (7.0.1) on the time interval [0, )]. If

([, k) ∈ �0 ([0, )];�B+ 1
2 (R) × �B (R)

)
,

then for any X > 0

〈G〉− 1
2−X ([, k) ∈ !2 (0, ) ;�B+ 3

4 (R) × �B+ 1
4 (R)

)
.

7.3.1 Reduction to an !2 estimate

Let Φ be as defined in Proposition 7.2.13, such that

(7.3.1) mCΦ + )+mGΦ + 8)WΦ = �,

with � ∈ !∞(0, ) ;�B (R3)). Recall that, if 3 = 1 then

_(1) = |b | , _(0) = 0, ℓ(2) = 22 |b |2 ,

with
2 = (1 + |mG[ |2)−

3
4 .

Therefore, directly from the definition of W wee see that if 3 = 1 then W simplifies to

W = 2 |b |
3
2 − 38

4
b |b |−

1
2 mG2,

and hence modulo an error term of order 0, )W is given by |�G |
3
4 )2 |�G |

3
4 .

In this paragraph we shall prove that one can deduce Theorem 7.3.1 from the
following proposition.

Proposition 7.3.2. Assume that i ∈ �0( [0, )]; !2(R)) satisfies

mCi + )+mGi + 8)Wi = 5 ,

with 5 ∈ !1(0, ) ; !2(R)). Then, for all X > 0,

〈G〉− 1
2−Xi ∈ !2(0, ) ;�

1
4 (R)).
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We postpone the proof of Proposition 7.3.2 to the next paragraph.

The fact that one can deduce Theorem 7.3.1 from the above proposition, though
elementary, contains the idea that one simplify hardly all the nonlinear analysis by
means of paradifferential calculus.

Proof of Theorem 7.3.1 given Proposition 7.3.2. Following the proof of Proposi-
tion 7.2.1, we consider the symbol

(7.3.2) V := 2
2
3 B |b |B .

Then one can easily verify that the commutators [)V, mC],
[
)V, )W

]
and [)V, )+mG] are

of order B. Consequently, (7.3.1) implies that(
mC + )+mG + 8)W

)
)VΦ ∈ !∞(0, ) ; !2(R)),

and hence, (
mC + )+mG + 8)W

)
)VΦ ∈ !1(0, ) ; !2(R)).

Therefore it follows from Proposition 7.3.2 that

〈G〉− 1
2−X)VΦ ∈ !2(0, ) ;�

1
4 (R)).

Since, by definition, Φ = )?[ + 8)@* where )?[ and )@* are real valued functions,
this yields

〈G〉− 1
2−X)V)?[ ∈ !2(0, ) ;�

1
4 (R)), 〈G〉− 1

2−X)V)@* ∈ !2(0, ) ;�
1
4 (R)),

and hence, since k = * + )B[,

(7.3.3) 〈G〉− 1
2−X)V)?[ ∈ !2(0, ) ;�

1
4 (R)), 〈G〉− 1

2−X)V)@k ∈ !2(0, ) ;�
1
4 (R)),

Since 〈G〉− 1
2−X ∈ Γ0

d (R3) for any d ≥ 0, Theorem3.5.13 implies that the commutators[
〈G〉− 1

2−X, )V)?
]
,

[
〈G〉− 1

2−X, )V)@
]

are of order B − 1/2 and B − 1, respectively. Therefore, directly from (7.3.3) and the
assumption

[ ∈ �0( [0, )];�B+ 1
2 (R)), k ∈ �0( [0, )];�B (R)),

we obtain

)V)? 〈G〉−
1
2−X[ ∈ !2(0, ) ;�

1
4 (R)), )V)@ 〈G〉−

1
2−Xk ∈ !2(0, ) ;�

1
4 (R)).

Now since V, ?, @ are elliptic symbols of order B, 1/2, 0, respectively, we conclude
(cf the proof of Proposition 7.2.9)

〈G〉− 1
2−X[ ∈ !2(0, ) ;�B+ 3

4 (R)), 〈G〉− 1
2−Xk ∈ !2(0, ) ;�B+ 1

4 (R)).

This proves Theorem 7.3.1. �
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7.3.2 Proof of Proposition 7.3.2

To complete the proof of Theorem 7.3.1, it remains to prove Proposition 7.3.2. To
do so, following Doi’s approach, we begin with the following lemma which follows
from the observation that mb ( b|b | ) = 0 for b ∈ R \ {0} (and the fact that 2 is uniformly
bounded from below).

Lemma 7.3.3. Let X > 0 and consider

0(G, b) = b

|b |

∫ G

0

1
〈H〉1+X

dH.

Then
0 ∈ ¤Γ0

∞(R) :=
⋂
d≥0

¤Γ0
d (R),

and there exists  > 0 such that{
2 |b |

3
2 , 0

}
(C, G, b) ≥  〈G〉−1−X |b |

1
2 ,

for all C ∈ [0, )], G ∈ R, b ∈ R \ {0}.

We are now in position to prove Proposition 7.3.2.

Proof of Proposition 7.3.2. We will prove a priori estimates only, which means that
we assume that i ∈ �1(�; !2(R)) (one can reduce to this case by using well-chosen
mollifiers, see [19]).

This allows us to write

3

3C
〈)0i, i〉 =

〈
)mC0i, i

〉
+ 〈)0mCi, i〉 + 〈)0i, mCi〉

=
〈
)mC0i, i

〉
−

〈
)0)+mGi + )08)Wi − )0 5 , i

〉
−

〈
)0i, +)+mGi + 8)Wi − 5

〉
,

where 〈·, ·〉 denotes the !2 scalar product. Introduce the commutator

� :=
[
8)W, )0

]
.
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Since mC0 = 0, the previous identity yields

(7.3.4)

3

3C
〈)0i, i〉 = 〈�i, i〉 +

〈
8()∗W − )W))0i, i

〉
+ 〈mG ()+)0i) − )0)+mGi, i〉
+ 〈)0 5 , i〉 + 〈)0i, 5 〉

Since 0 ∈ ¤Γ0
0, it follows from the usual estimates for paradifferential operators that

|〈)0i, i〉| . ‖i‖2!2 ,

and
|〈)0i, 5 〉| + |〈)0 5 , i〉| ≤  ‖i‖2!2 +  ‖ 5 ‖2!2 ,

for some positive constant  . One easily obtains similar bounds for the second and
third terms in the right hand-side of (7.3.4). Indeed, by definition of W we know
that )∗W − )W is of order 0. On the other hand, as already seen, it follows from
Theorem 3.5.13 that mG ()+)0 ·) −)0)+mG is of order 0. Therefore, integrating (7.3.4)
in time, we end up with∫ )

0
〈�i, i〉 3C ≤ "

{
‖i(0)‖2

!2 + ‖i())‖2!2 +
∫ )

0

(
‖i‖2

!2 + ‖ 5 ‖2!2

)
3C

}
,

where " depends only on the !∞(0, ) ;�B+ 1
2 (R) × �B (R))-norm of ([, k).

Hence to complete the proof it remains only to obtain a lower bound for the left
hand-side. To do so, write

8)W = 8)2 |�G |
3
2 + 3

4
) b

|b | mG2
|�G |

1
2 ,

and recall that, by definition of 0 (see Lemma 7.3.3) there exists a constant  such
that {

2(C, G) |b |
3
4 , 0(G, b)

}
≥  〈G〉−1−2X |b |

1
2 ,

for some positive constant  > 0. Since[
)0, ) b

|b | mG2
|�G |

1
2

]
is of order 0,

Proposition 7.3.4 below then implies that

〈�i, i〉 ≥ 0
〈G〉− 1

2−Xi
2

�
1
4
− � ‖i‖2

!2 ,

This completes the proof of Proposition 7.3.2 and hence of Theorem 7.3.1. �
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Proposition 7.3.4. Let 3 ≥ 1 and X > 0. Assume that 3 ∈ Γ1/2
1/2(R

3) is such that, for
some positive constant  , we have

3 (G, b) ≥  〈G〉−1−2X |b |
1
2 ,

for all (G, b) ∈ R3 × R3 \ {0}. Then there exist two positive constants 0 < 0 < �

such that

〈)3D, D〉 ≥ 0
〈G〉− 1

2−XD
2

�
1
4
− � ‖D‖2

!2 .

We refer to [19] for the proof. Related results were previously proved by Bony [88]
in the much more general setting of sharp Gårding or Fefferman-Phong inequalities.
Notice however that these results requiremuchmore regularity than Proposition 7.3.4
(where the symbol is only assumed to be � 1

2 ).

7.4 Strichartz estimates

The following two theorems correspond to Strichartz estimates. We have two
complementary results. The first one gives a gain of regularity for solutions of low
regularity whose existence is ensured by Theorem 7.1.1. The second one gives a
gain of regularity which is better (instead of gaining 1/4 of derivative we gain 3/8)
but only applies to solutions which are a priori more regular.

Theorem 7.4.1 (semi-classical Strichartz estimate, from [20]). Let B > 5/2 and
) > 0. Let us consider a solution ([, k) of (7.0.1) defined on � = [0, )]. If

([, k) ∈ �0 (�, �B+ 1
2 (R) × �B (R)

)
,

then
([, k) ∈ !4 (�, �B+ 1

4
∞,2 (R) × �

B− 1
4

∞,2 (R)
)
.

Remark 7.4.2. The Besov space �f∞,2(R) is defined by

D ∈ �f∞,2(R) ⇐⇒
∑
9∈N

22 9f Δ 9 (D)2
!∞ (R) < +∞,

where D =
∑
9 Δ 9 (D) is the Littlewood-Paley decomposition of D. If f ∉ N, then

�f∞,2(R) ⊂ ,
f,∞(R), where,f,∞(R) denotes the usual Hölder space of order f.
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Theorem 7.4.3 (classical Strichartz estimate, from [20]). Let B > 11/2 and ) > 0.
Let us consider a solution ([, k) of (7.0.1) defined on � = [0, )]. If

([, k) ∈ �0 (�, �B+ 1
2 (R) × �B (R)

)
,

then
([, k) ∈ !4 (�, �B+ 3

8
∞,2 (R) × �

B− 1
8

∞,2 (R)
)
.

Remark 7.4.4. (8) The gain of regularity given by Theorem 7.4.3 is optimal, in the
sense that it is exactly the one we have for the linearized system.

(88) A key point is that the result of Theorem 7.4.1 remains true if R is replaced by
the torus T.

7.4.1 Semi-classical strichartz

In this section we place ourselves in the 1 dimension. As explained before, one of
the difficulties of the analysis is linked to the presence of the derivative term ),mG ,
and to the weak regularity of this one.

Symbol smoothing

The first step in order to demonstrate the dispersion estimates is to regularize this
term, following an idea introduced by Lebeau [309] and also used by Smith [398]
and Bahouri-Chemin [56].

Recall that the paraproduct ), is defined by

), =
∑
9≥4

(( 9−3) (,)Δ 9 .

We will replace the operator ), by the operator

) X, =
∑
9≥4

([X( 9−3)] (,)Δ 9 ,

Lemma7.4.5. The operator),−) X, is of order−X(B−3
2 ) (and is therefore continuous

from �` (R3) into �`−B+ 3
2 (R3)).
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We deduce that for B > 2 + 1
2 , there exists X <

1
2 such that the function D verifies the

equation
mCD + ) X,mGD + 8 |�G |3/2D = � ∈ !∞(0, ) ;�B− 1

2 ).
Recall that D ∈ !∞(0, ) ;�B (R)) by assumption. The regularity of the source term
� is half a derivative less than that of the unknown. However, such a loss of half a
derivative is admissible if we only want to prove Strichartz estimates.

Construction of an approximate solution

We want to construct an approximate solution of the homogeneous equation

mCD + ) X,mGD + 8 |�G |3/2D = 0.

We look for an approximate solution in the form

*̃ℎ (C, G) =
1

2cℎ

∬
4
8
ℎ
(q(C,G,b,ℎ)−Ib) �̃(C, G, I, b, ℎ)D0,ℎ (I) dI db,

where q will satisfy an eïkonal equation and

�̃(C, G, I, b, ℎ) = �(C, G, b, ℎ)

will be given by solving transport equations.

Let E(C, G, b, G) = D(ℎ− 1
2 C, G, b, G). Then we have

(7.4.1) ℎmgE + ℎ
1
2) X, (ℎmG)E + 8 |ℎ�G |

3
2 E = 0,

and we want to prove

‖E(g)‖!∞ ≤
 

ℎ

(
ℎ

g

) 1
2

‖E(0)‖!1 .

The factor  /ℎ corresponds to the Sobolev injection, and the factor
√
ℎ/g corre-

sponds to the gain due to the dispersion. With ℎ = 2− 9/2 we have

E0 = j(ℎ�G)E0 =
1

2cℎ

∫
1
2≤|[ |≤2

4
8
ℎ
(G−H)[j([)E0(H) dH

and we search for E in the form of an oscillating integral

E(g, G) = 1
2cℎ

∬
1
2≤|[ |≤2

4

8
ℎ

(
(G−H)[−g |[ |

3
2 +ℎ

1
2 q(g,G,[)

)
1(g, G, [, ℎ)E0(H) 3[3H,
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where

1(g, G, [, ℎ) =
 ∑
:=0

ℎ:`1: (g, G, [; ℎ), ` =
1
2
− X,

and
mGq, 1 9 ∈ (0

X = { 5 ∈ �
∞; |mV[ mUG 5 | ≤ �ℎ−X( |U |+|V |−1)+}

If we apply (formally) the operators ) X
,
mG and 8 |�G |

3
2 and cancel the terms corre-

sponding to the different powers of ℎ that we obtain, we find that q must verify

mgq − m[ ( |[ |
3
2 )mGq = −(X 9 (,) (ℎ

1
2 g, G)[,

and the symbols 1: are determined by transport equations:
m10
mg
− m[ ( |[ |

3
2 ) m10
mG
+ 8m2

[ ( |[ |
3
2 ) (mGq)210 = 0,

10 |g=0 = j([),
m1 9

mg
− m[ ( |[ |

3
2 )mG1 9 + 8m2

[ ( |[ |
3
2 ) (mGq)21 9 = −ℎ`

"−1∑
ℓ=0

4ℓ (ℎX+3YmG)ℓ1 9−1,

1 9 |g=0 = 0.

We can then verify by very classical estimations on the solutions of ordinary differ-
ential equations, using q = 0 for g = 0,mUG mV[ q(g, G, [)

!∞ (R)
≤  gℎ−X( |U |+|V |−1)+ .

and similarly that 1 9 satisfymUG mV[ 1: (g, G, [)
!∞ (R)

≤  ℎ−X( |U |+|V |−1)+ .

As 1
2 − X > 0, we have an asymptotic calculation which allows us to justify the

previous formal calculations and show that E(G, g) is indeed an approximate solution
of of the dilated equation (7.4.1).

Dispersion estimate

We can now obtain the dispersion estimate by making a stationary phase argument
in the [ variable by using that for 1/2 ≤ |[ | ≤ 2 we have���m2

[

(
(G − H) · [−g |[ |

3
2 + ℎ 1

2 q(g, G, [)
)��� = ���gm2

[ |[ |
3
2 +$ (ℎ 1

2 ℎ−Xg)
��� ≥ 2 |g | .
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For this we show in [19] a variant of the lemma of Van der Corput which leads to

|E(g, G) | =
����� 1
2cℎ

∬
1
2≤|[ |≤2

4

8
ℎ

(
(G−H)[−g |[ |

3
2 +ℎ

1
2 q(g,G,[)

)
1(g, G, [, ℎ)E0(H) d[ dH

�����
≤  
ℎ

(
ℎ

g

) 1
2
∫
|E0(H) | dH.

Obtaining this inequality is the main step in the demonstration.

Reconciliation of estimates

The previous dispersion estimate implies, via the ))∗ argument , the following
Strichartz estimate: if D is a solution of

mCD +
1
2
((X 9 (,)mG + (mG(X 9 (,))D) + 8 |�G |3/2 D = 5 , D |C=0 = 0

with supp 5̂ ⊂ { 1
2ℎ
−1 ≤ |b | ≤ 2ℎ−1}, then

‖D‖
!4 ((0,ℎ

1
2 ),!∞ (R))

≤  ℎ−1/8 ‖ 5 ‖
!1 ((0,ℎ

1
2 ),!2 (R))

.

The idea, coming from the works of Bahouri and Chemin [56, 57] and Burq, Gérard
and Tzvetkov [102], is that this Strichartz estimate in very short time is sufficient to
demonstrate a Strichartz estimate on a time interval of size 1. The principle is to
apply this estimate to functions

D 9 ,: = i

( C − :ℎ 1
2

ℎ
1
2

)
Δ 9D ℎ = 2− 9 , − 1 ≤ : ≤ )ℎ− 1

2 ,

where i ∈ �∞0 (0, 2), is equal to 1 on (1/2, 3/2). We can easily find the equation

verified by D 9 ,: by commuting the truncation in time i
(
ℎ−

1
2 (C−:ℎ 1

2 )
)
to the equation

verified by Δ 9D. We are then able to apply the previous estimate; then estimate the

!4( [0, )], �B−
1
4

∞,2 (R))-norm of Δ 9D by putting the estimates back together: more
precisely, by writing that

‖Δ 9D‖4!4 ((0,)), !∞ (R)) ≤
)ℎ
− 1

2∑
:=−1
‖Dℎ,: ‖4

!4 ((:ℎ
1
2 ,(:+2)ℎ

1
2 ), !∞ (R))

,
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we find, with always the notation ℎ = 2− 9 ,

‖Δ 9D‖4!4 ((0,)), !∞ (R)) ≤ �ℎ
− 1

2 ℎ4(B− 1
8 ) (ℎY + ‖Dℎ‖!∞ ((0,)),�B (R)))4.

To obtain an estimate on D from the estimates of the dyadic blocks, it remains to
write that

‖D‖
!4 ((0,)), �

B− 1
4

∞,2 (R))
= ‖

(∑
9∈N

22 9 (B− 1
4 ) ‖Δ 9D‖2!∞ (R)

) 1
2 ‖!4 (0,))

= ‖
∑
9∈N

22 9 (B− 1
4 ) ‖Δ 9D‖2!∞ (R) ‖

1
2
!2 (0,))

≤
(∑
9∈N
‖22 9 (B− 1

4 ) ‖Δ 9D‖2!∞ (R) ‖!2 (0,))

) 1
2

=

(∑
9∈N

22 9 (B− 1
4 ) ‖Δ 9D‖2!4 ((0,)),!∞ (R))

) 1
2
.

This concludes the proof.

7.4.2 Classical Strichartz estimation

To conclude this chapter, I just want to say a few words here about the strategy of
the proof of the theorem 7.4.3, which is long and quite difficult. The big difference
with the proof of the semi-classical estimates is that we need a long time parametrix
(of the order of $ (ℎ−1/2)) for the dilated equation (7.4.1) (see the previous work
of Robbiano-Zuily [374, 375] who write such a parametrix in a much more regular
framework). The previous method does not work anymore because of the term
m2
b
( |b |3/2) (mGq)2 which intervenes in the transport equations. We have shown that

we can get around this problem by defining the phase as a solution of the equation
nonlinear

mq

mf
+ 1
ℎ

1
2

(
|b + ℎ 1

2 mGq |
3
2 − |b |

3
2

)
+ ℎ 1

2 (X 9, (ℎ
1
2 C, G)mGq = −(X 9, (ℎ

1
2 C, G)b,

k(0, G, b, ℎ) = 0.

This allows to introduce a shift in the BKW cascade which determines the co-
efficients 1 9 . The difficulty is that we need to understand how to show uniform
estimates in large time and also how to order the computations to show that we

199



obtain an approximate solution. Similarly, adaptations are needed in the stationary
phase argument. We show that the coefficient 1 can be written in the form 1 = 4\

with \ =
∑
ℎ 9 `0\ 9 , `0 > 0, and we use the stationary phase lemma with the com-

plex phase Gb − f |b |3/2 + ℎ 1
2 q + ℎ

8
\. This approach applies under the constraint

1/(B − 3
2 ) <

1
4 i.e. B > 11/2.
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Chapter 8

The dynamics of the roots of
polynomials under differentiation

8.1 Introduction

Stefan Steinerberger studied in [402] (see also [356]) the following question: Con-
sidering a polynomial ?= of degree = having all its roots on the real line distributed
according to a smooth function D0(G), and a real number C ∈ (0, 1), how is the
distribution of the roots of the derivatives m:G ?= with : = bC · =c ? This question led
him to discover a nice non-local nonlinear equation which reads as follows

(8.1.1) mCD +
1
c
mG

(
arctan

(
�D

D

))
= 0,

where the unknown D = D(C, G) is a positive real-valued function.

Besides its aesthetic aspect, this equation has many interesting features. Shlyakht-
enko and Tao [392] derived the same equation in the context of free probability and
random matrix theory (see also [403]). However, our motivation comes from the
links between this equation and many models studied in fluid dynamics.

In this chapter, we assume that the space variable G belongs to the circleS = R/(2cZ),
and � is the circular Hilbert transform (which acts on periodic functions), defined
by

(8.1.2) �D(G) = 1
2c

pv
∫
S

6(G) − 6(G − U)
tan(U/2) dU,
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where the integral is understood as a principal value. Granero-Belinchón ([221])
proved the local existence of smooth solutions for positive initial data D0 in the
Sobolev space �2(S) = {D ∈ !2(S) ; m2

G D ∈ !2(S)}, as well as the global existence
under a condition in appropriateWiener spaces. Then, Kiselev and Tan [289] proved
that the Cauchy problem for (8.1.1) is globally well-posed for positive initial data in
the Sobolev space �B (S) for all B > 3/2, with �B (S) = {D ∈ !2(S) ; ΛBD ∈ !2(S)}
where Λ denotes the fractional Laplacian:

Λ = mG� = (−mGG)
1
2 .

In fact, the equation (8.1.1) enters the family of fractional parabolic equations, which
has attracted a lot of attention in recent years. To see this, introduce the coefficients

+ = −1
c

�D

D2 + (�D)2
, W =

1
c

D

D2 + (�D)2
·

Then the equation (8.1.1) has the following form

(8.1.3) mCD ++mGD + WΛD = 0.

We can see that this last equation shares many characteristics with the Hele-Shaw
equation, the Muskat equation or the dissipative surface quasi-geostrophic equation,
to name a few.

Inspired by these results, our goal here is to solve the Cauchy problem for (8.1.1) in
the critical Sobolev space � 1

2 (S). Several interesting difficulties appear at that level
of regularity.

The main result of this chapter is the following.

Theorem 8.1.1 (A., Lazar, Nguyen). For all initial data D0 in � 1
2 (S) such that

infG∈S D0 > 0, there exists a time ) such that the Cauchy problem has a unique
solution D ∈ �0( [0, )];� 1

2 (S)) ∩ !2((0, )); ¤�1(S)), satisfying infG∈S D(C, G) ≥
infG∈S D0(G) for C ∈ (0, )].

Remark 8.1.2. Moreover the solution is smooth for positive times. Consequently, it
follows from the global regularity result of Kiselev and Tan that the previous solution
exists globally in time.
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8.2 A toy model

To prove Theorem 9.3.1, the main difficulty is that the coefficient W is not bounded
from below by a positive constant. This means that (8.1.3) is a degenerate parabolic
equation.

Although it is not essential for the rest of the paper, it helps if we begin by examining
a model equation with some non-degenerate dissipative term. Our goal here is to
introduce a basic commutator estimate which allows to deal with equations of the
form (8.1.3).

Consider the equation

(8.2.1) mCD + 0(D, �D)ΛD = 1(D, �D)�ΛD,

where 0 and 1 are two�∞ real-valued functions defined onR2, satisfying 0 ≥ < > 0
for some given positive constant <, together with

sup
(G,G ′,H,H′)∈R4

|1(G, H) − 1(G′, H′) |
|G − G′| + |H − H′| < +∞.

Proposition 8.2.1. There exists a constant � > 0 such that, for all ) > 0 and for all
D ∈ �1( [0, )]; ¤� 1

2 (S)) solution to (8.2.1), there holds

(8.2.2)
1
2

d
dC
‖D‖2

¤�
1
2
+ <

∫
S
|ΛD |2 dG ≤ � ‖D‖ ¤� 1

2
‖ΛD‖2

!2 .

Remark 8.2.2. Using classical arguments, it is then possible to infer from the a
priori estimate (8.2.2) a global well-posedness result for initial data which are small
enough in � 1

2 (S). However, the study of the local well-posedness of the Cauchy
problem for large data is more difficult and requires and extra argument which is
explained in the next section.

Proof. Let us use the short notations 0 = 0(D, �D) and 1 = 1(D, �D). Multiplying
the equation (8.2.1) by ΛD and integrating over S, we obtain

(8.2.3)
1
2

d
dC
‖D‖2

¤�
1
2
+

∫
S
0 |ΛD |2 dG = � :=

∫
S
1(�ΛD) (ΛD) dG.

To estimate �, we use the fact that � is skew-symmetric to write

(8.2.4) |� | = 1
2

����∫
S

( [
1, �

]
ΛD

)
ΛD dG

���� .
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Now we claim that

(8.2.5)
[1, �]

ΛD

!2 . ‖1‖ ¤� 1

2
‖ΛD‖!2 .

Indeed, this follows from the Sobolev embedding ¤� 1
2 ⊂ BMO and the classical

commutator estimate

(8.2.6) ‖ [�, 5 ]E‖!2 . ‖ 5 ‖BMO ‖E‖!2 .

(Alternatively one can prove (8.2.5) directly using the definition of the Hilbert
transform as a singular integral and the Gagliardo semi-norm.) It follows that

(8.2.7) � . ‖1‖ ¤� 1
2
‖ΛD‖2

!2 .

Now we estimate the ¤� 1
2 -norm of 1 by means of the following elementary estimate.

Lemma 8.2.3. Consider a �∞ function f : R2 → R satisfying

∀(G, G′, H, H′) ∈ R4, |f(G, H) − f(G′, H′) | ≤  |G − G′| +  |H − H′| .

Then, for all B ∈ (0, 1) and all D ∈ ¤�B (R), one has f(D, �D) ∈ ¤�B (R) together with
the estimate

(8.2.8) ‖f(D, �D)‖ ¤�B ≤ 2 ‖D‖ ¤�B .

Proof. By assumption, for any U ∈ R, we have

‖XUf(D, �D)‖!2 ≤  (‖XUD‖!2 + ‖XU�D‖!2).

Then by using the Gagliardo semi-norms, we get

‖f(D, �D)‖ ¤�B ≤  ‖D‖ ¤�B +  ‖�D‖ ¤�B ,

and the desired result follows since ‖�D‖ ¤�B = ‖D‖ ¤�B . �

The previous lemma implies that

‖1‖ ¤� 1
2
. ‖D‖ ¤� 1

2
+ ‖�D‖ ¤� 1

2
. ‖D‖ ¤� 1

2
,

and we deduce from (8.2.7) that

� . ‖D‖ ¤� 1
2
‖ΛD‖2

!2 .

Therefore the wanted result (8.2.2) follows from (8.2.3). �
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8.3 Local well-posedness

We construct solutions to (8.1.1) as limits of solutions to a sequence of approximate
nonlinear systems. We divide the analysis into three parts.

1. We start by proving that the Cauchy problem for these systems systems are
well posed globally in time and satisfy the maximum principles. In particular,
the approximate solutions are bounded by a positive constant.

2. Then, we show that the solutions of the approximate systems are bounded in
�0( [0, )]; ¤� 1

2 (S)) on a uniform time interval that depends on the profile of
the initial data (and not only on their norm).

3. The third task is to show that these approximate solutions converge to a limit
which is a solution of the original equation. To do this, we use interpolation
and compactness arguments.

8.3.1 Approximate systems

Fix X ∈ (0, 1] and consider the following approximate Cauchy problem:

(8.3.1)


mCD +

1
c

DΛD − (�D)mGD
D2 + (�D)2

− Xm2
G D = 0,

D |C=0 = 4
Xm2
GD0.

The following elementary lemma states that this Cauchy problemhas smooth positive
solutions (see Granero in [221] for the maximum principle).

Lemma 8.3.1. For any initial data D0 ∈ !2(S) with infG∈S D0 > 0 and for any X > 0,
the initial value problem (8.3.1) has a unique solution D in �1( [0, +∞);�∞(S)).
This solution is such that, for all C ∈ [0, +∞),

(8.3.2) inf
G∈S

D(C, G) ≥ inf
G∈S

D0(G).

In addition, if maxG∈S D0(G) < +∞ then maxG∈S D(C, G) ≤ maxG∈S D0(G).
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8.3.2 Uniform estimates

Fix X > 0 and 20 and consider an initial data D0 in � 1
2 (S) with infG∈S D0(G) ≥ 20.

As we have seen in the previous paragraph, there exists a unique function D ∈
�1( [0, +∞);�∞(S)) satisfying

(8.3.3)


mCD +

1
c

DΛD − (�D)mGD
D2 + (�D)2

− Xm2
G D = 0,

D |C=0 = 4
Xm2
GD0,

inf
G∈S

D(C, G) ≥ 20.

We shall prove estimates which are uniform with respect to X ∈ (0, 1] and this is
why we are writing simply D instead of DX, to simplify notations.

Notice that

mCD +
1
c

arctan
(
�D

D

)
− Xm2

G D = 0.

This implies that the mean value of D is preserved and hence it will be sufficient
to estimate the homogeneous ¤� 1

2 (S)-norm of D. For this, we proceed as follows.
Given Y > 0 to be determined, we want to estimate

E := D − 4(Y+X)m2
GD0.

Set
D0,Y = 4

(Y+X)m2
GD0,

and introduce the coefficients

W =
1
c

D

D2 + (�D)2
,

+ = −1
c

�D

D2 + (�D)2
,

d =
√
D2 + (�D)2.

With the previous notations, we have

(8.3.4) mCE ++mGE + WΛE − Xm2
G E = 'Y (D, D0)

where
'Y (D, D0) = −WΛD0,Y −+mGD0,Y + Xm2

G D0,Y .

The following result is our main technical estimate.

206



Lemma 8.3.2. For any D0 ∈ �
1
2 (S) with infG∈S D0(G) > 0, there exist a constant Y0

and a function ) : (0, 1] → (0, 1) with

lim
Y→0

) (Y) = 0,

such that the following result holds: for all X ∈ (0, 1], all D ∈ �1( [0, +∞);�∞(S))
satisfying (8.3.3)with initial data D |C=0 = 4

Xm2
GD0, and for all Y ∈ (0, Y0], the function

E = D − 4(Y+X)m2
GD0 satisfies

sup
C∈[0,) (Y)]

‖E(C)‖2
¤�

1
2
+

∫ ) (Y)

0

∫
S

D |ΛE |2

D2 + (�D)2
dG dC + X

∫ ) (Y)

0
‖E‖2

¤�
3
2

dC ≤ F (Y),

(8.3.5)

for some function F : R+ → R+ with limY→0 F (Y) = 0.

Proof. Hereafter, � denotes various constants which depend only on the constant
20 (remembering that 20 is some given constant such that inf D(C, G) ≥ inf D0 ≥ 20)
and we use the notation � .20 � to indicate that � ≤ �� for such a constant �.

Consider a parameter ^ ∈ (0, 1] whose value is to be determined. Then decompose
the Hilbert transform as � = �^,1 + �^,2 where

�^,16(G) =
1

2c

∫
S
6(G − U)j

(U
^

) dU
tan(U/2) ,

�^,26(G) =
1

2c

∫
S
6(G − U)

(
1 − j

(U
^

)) dU
tan(U/2) ,

for some cut-off function j ∈ �∞ satisfying j = 1 in [−1, 1] and j = 0 inR\[−2, 2].

Multiply equation (8.3.4) by ΛE and then integrate over S, to obtain

(8.3.6)
1
2

d
dC
‖E‖2

¤�
1
2
+

∫
S
W(ΛE)2 dG = � + � + ' + '′

where

� =

∫
S
+ (�^,1ΛE) (ΛE) dG,

� =

∫
S
+ (�^,2ΛE) (ΛE) dG,

' =

∫
S
(−WΛD0,Y −+mGD0,Y) (ΛE) dG,

'′ =

∫
S
X(m2

G D0,Y)ΛE dG.
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Set
, :=

√
WΛE,

so that the dissipative term in (8.3.6) is of the form∫
S
W(ΛE)2 dG =

∫
S
,2 dG.

Step 1: Estimate of �, ' and '′. Directly from the definition of W and + , we have

(8.3.7) W ≤ 1
c20

, |+ | ≤ 1
2c20

.

One important feature of the critical problem is that the dissipative term is degenerate.
This means that the coefficient W is not bounded from below by a fixed positive
constant. As a result, we do not control the !2-norm of ΛE. Instead, we merely
control the !2-norm of , =

√
WΛE. Hereafter, we will systematically write ΛE

under the form

ΛE =
1
√
W

√
WΛE =

1
√
W
,.

To absorb the contribution of the factor 1/√W in the estimates for � and ', it will be
sufficient to notice that we have the pointwise bound���� +√W ���� = 1

D
√
X + D2 + (�D)2

|�D | .20 |�D | .

In particular, remembering that the Hilbert transform is bounded from !? (S) to
!? (S) for any ? ∈ (1, +∞) and using the Sobolev embedding �B (S) ⊂ !2/(1−2B) (S),
we deduce that

(8.3.8)
+/√W

!4 .20 ‖�D‖!4 .20 ‖D‖ ¤� 1
2
.

Then it follows from Hölder’s inequality that

|� | ≤
∫
S

+
√
W

���^,2ΛE�� ��√WΛE�� dG .20 ‖D‖ ¤� 1
2

�^,2ΛE!4 ‖, ‖!2 .

On the other hand,�^,2ΛE!4 =
�^,2mG�E!4 . ^

−1 ‖�E‖!4 . ^−1 ‖E‖ ¤� 1
2
,
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where we used the definition of �^,2, noting that 6G (G − U) = mU (6(G) − 6(G − 0))
and integrating by parts in U.

By combining the previous estimates, we conclude that

|� | .20 ^
−1 ‖D‖ ¤� 1

2
‖E‖ ¤� 1

2
‖, ‖!2 .

The estimate of ' is similar. Recall that

' =

∫
S
(−WΛD0,Y −+mGD0,Y) (ΛE) dG.

To estimate the contribution of the first term, we write����∫
S
W(ΛD0,Y) (ΛE) dG

���� ≤ √W
!∞

ΛD0,Y

!2

√WΛE
!2 .20 Y

− 1
2 ‖D0‖ ¤� 1

2
‖, ‖!2 ,

where we have used the elementary inequalityD0,Y
 ¤�1 . (Y + X)−

1
4
D0,Y


¤�

1
2
. Y−

1
4 ‖D0‖ ¤� 1

2
,

since the Fourier transform of D0,Y = 4
(Y+X)m2

GD0 is essentially localized in the interval
|b | .

√
Y + X. With regards to the second term, we use again the estimate (8.3.8) to

get ����∫
S
+ (mGD0,Y) (ΛE) dG

���� ≤ +/√W
!4

mGD0,Y

!4

√WΛE
!2

.20 Y
−1 ‖D‖ ¤� 1

2
‖D0‖ ¤� 1

2
‖, ‖!2 .

Eventually, we haveXm2
G D0,Y


¤�

1
2
=

Xm2
G 4
(Y+X)m2

GD0

 ¤� 1
2
.

Xm2
G 4

Xm2
GD0

 ¤� 1
2
. ‖D0‖ ¤� 1

2
.

Hence
|'′| . ‖D0‖ ¤� 1

2
‖E‖ ¤� 1

2
.

So, by combining the previous inequalities, we conclude that

|� + ' + '′| .20 ^
−1 ‖D‖ ¤� 1

2
‖E‖ ¤� 1

2
‖, ‖!2 + Y−

1
2 (1 + ‖D‖ ¤� 1

2
) ‖D0‖ ¤� 1

2
‖, ‖!2

+ ‖D0‖ ¤� 1
2
‖E‖ ¤� 1

2
,
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hence, replacing D by E + D0,Y in the right-hand side, we conclude that

(8.3.9)
|� + ' + '′| .20

(
^−1 ‖D‖ ¤� 1

2
+ Y− 1

2 ‖D0‖ ¤� 1
2

)
‖E‖ ¤� 1

2
‖, ‖!2

+ Y− 1
2
(
‖D0‖ ¤� 1

2
+ ‖D0‖2¤� 1

2

)
‖, ‖!2 + ‖D0‖ ¤� 1

2
‖E‖ ¤� 1

2
.

Step 2: Estimate of �. Since �^,1 is skew-symmetric, one easily verifies that

� =
1
2

∫
S

( [
+, �^,1

]
ΛE

)
ΛE dG.

Then, we multiply and divide by √W and use the Cauchy-Schwarz inequality, to find

(8.3.10) � ≤
(∫
S
W−1��[+, �^,1] (ΛE)��2 dG

) 1
2 √WΛE

!2 .

We now have to estimate the commutator [+, �^,1]. Directly from the definition of
�^,1, we have

[+, �^,1] (ΛE) =
1

2c
pv

∫
S

+ (G) (XUΛE) (G) − XU (+ΛE) (G)
tan(U/2) j

(U
^

)
dU

= − 1
2c

pv
∫
S

(XU+) (G) (ΛE) (G − U)
tan(U/2) j

(U
^

)
dU

= − 1
2c

pv
∫
S

(XU+) (G)√
W(G − U), (G − U)j

(U
^

) dU
tan(U/2) ,

where we replaced ΛE by,/√W to obtain the last identity.

Therefore,∫
S
W−1��[+, �^,1] (ΛE)��2 dG

.

∫
S
(W(G))−1

(∫
|U |≤2^

|XU+ (G) | W(G − U)−1/2 |, (G − U) | dU
| tan(U/2) |

)2
dG

.20

∫
S
(d2(G)

(∫
|U |≤2^

|XU+ (G) | d(G − U) |, (G − U) |
dU

| tan(U/2) |

)2
dG.

Lemma 8.3.3. Introduce the notation

&U (6) := |XU6 | + |XU�6 |.
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Then there holds

|XU+ | .20

&U (E) (1 +&U (E))2
d2 + Y−3(1 + ‖D0‖

�
1
2
)3 |U | .(8.3.11)

Proof. One has

|XU+ (G) | .
|XU�D(G) |
d2(G)

+ |�D(G − U) | |XUD(G) | ( |D(G) | + |D(G − U) |)
d2(G − U)d2(G)

.20

|XU�D(G) |
d2(G)

+ |XUD(G) |
2 + |XU�D(G) |2

d(G − U)d(G) + |XUD(G) | + |XU�D(G) |
d(G − U)d(G) .

Since

1
d(G − U) .

1
d(G) (1 +&U (D)),

we obtain

|XU+ | .20

&U (D) (1 +&U (D))2
d2 ·

To get the wanted result (8.3.11) from this, we replace D by E + D0,Y and use the two
following elementary ingredients:

&U (D0,Y) (1 +&U (D0,Y))2

d2 .20 &U (D0,Y) (1 +&U (D0,Y))2,

&U (D0,Y) ≤
( mGD0,Y


!∞ +

mG (�D0,Y)

!∞

)
|U | .

D0,Y

�2 |U | . Y−

3
4 ‖D0‖

�
1
2
|U | .

Since |U |3 . |U |, this completes the proof. �

Set  (Y) := Y−3(1 +
D0,Y


�

1
2
)3. It follows from the previous lemma and the

preceding inequality that∫
S
W−1��[+, �^,1] (ΛE)��2 dG .20 (�) + (� �),

where

(�) :=
∫
S

d(G)2
( ∫
|U |≤2^

&U (E) (G) (1 +&U (E) (G))2
d(G)2

d(G − U) |, (G − U) | dU
| tan( U2 ) |

)2
dG,

(� �) :=  (Y)2
∫
S

d(G)2
( ∫
|U |≤2^

d(G − U) |, (G − U) | dU
)2

dG.
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Using the Cauchy-Schwarz inequality, we see that

(�) .
(∬

S2
&U (E) (G)2(1 +&U (E) (G))4

d2(G − U)
d2(G)

dU dG
|U |2

)
‖, ‖2

!2 .

Since

d2(G − U)
d2(G)

. 1 + |&U (D) (G) |2,

we end up with

(�) .
(∬

S2
&U (E) (G)2(1 +&U (E) (G))4(1 +&U (D) (G))2

dU dG
|U |2

)
‖, ‖2

!2 .

On the other hand,∬
S2
&U (E) (G)2(1 +&U (E) (G))4(1 +&U (D) (G))2

dU dG
|U |2

.

∬
S2
&U (E) (G)2(1 +&U (E) (G))4

dU dG
|U |2

+
(∬
S2
&U (E) (G)4(1 +&U (E) (G))8

dU dG
|U |2

) 1
2
(∬
S2
&U (D) (G)4

dU dG
|U |2

) 1
2

. ‖E‖2
¤�

1
2

(
1 + ‖E‖ ¤� 1

2

)4 (1 + ‖D‖ ¤� 1
2

)2
,

where we used the fact that &U ( 5 ) (G) = |XU 5 (G) | + |XU� 5 (G) | and∬
S2

(
|XU 5 (G) |2? + |XU� 5 (G) |2?

) dU dG
|U |2

. | | 5 | |2?
¤�

1
2

for any ? ≥ 1.

This gives
(�) . ‖E‖2

¤�
1
2

(
1 + ‖E‖ ¤� 1

2

)4 (1 + ‖D‖ ¤� 1
2
)2 ‖, ‖2

!2 .

On the other hand,

(� �) .  (Y)2^ 1
2 ‖D‖4

¤�
1
2
‖, ‖2

!2 .
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Therefore, it follows from (8.3.10) that

� ≤
(∫
S
W−1��[+, �^,1] (ΛE)��2 dG

) 1
2

‖, ‖!2

.
(
(�) + (� �)

) 1
2 ‖, ‖!2

. ‖E‖ ¤� 1
2

(
1 + ‖E‖ ¤� 1

2

)2 (1 + ‖D‖ ¤� 1
2
) ‖, ‖2

!2 +  (Y)^
1
4 ‖D‖2

¤�
1
2
‖, ‖2

!2 .

By combining this with (8.3.9), we get from (8.3.6) that there exists a constant �
depending only on 20 such that
(8.3.12)

1
2

d
dC
‖E‖2

¤�
1
2
+ ‖, ‖2

!2 ≤ � ‖E‖ ¤� 1
2

(
1 + ‖E‖ ¤� 1

2

)2 (1 + ‖D‖ ¤� 1
2
) ‖, ‖2

!2

+ � (Y)^ 1
4 ‖D‖2

¤�
1
2
‖, ‖2

!2

+ �
(
^−1 ‖D‖ ¤� 1

2
+ �Y− 1

2 ‖D0‖ ¤� 1
2

)
‖E‖ ¤� 1

2
‖, ‖!2

+ �Y− 1
2

(
‖D0‖ ¤� 1

2
+ ‖D0‖2¤� 1

2

)
‖, ‖!2 + ‖D0‖ ¤� 1

2
‖, ‖!2

+ � ‖D0‖ ¤� 1
2
‖E‖ ¤� 1

2
.

Using the Young’s inequality, this immediately yields an inequality of the form

(8.3.13)
1
2

d
dC
‖E‖2

¤�
1
2
+ Υ ‖, ‖2

!2 ≤ " ‖E‖2¤� 1
2
+ �,

where

" := 4�2Y−1
(
‖D0‖ ¤� 1

2
+ ‖D0‖2¤� 1

2

)2
+ 1,

� := 4�2Y−1
(
‖D0‖ ¤� 1

2
+ ‖D0‖2¤� 1

2

)2
,

Υ :=
1
4
− � ‖E‖ ¤� 1

2

(
1 + ‖E‖ ¤� 1

2

)2 (1 + ‖D‖ ¤� 1
2
)

− � (Y)^ 1
4 ‖D‖2

¤�
1
2

− �2
(
^−1 ‖D‖ ¤� 1

2
+ Y− 1

2 ‖D0‖ ¤� 1
2

)2
‖E‖2

¤�
1
2
.
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In particular, as long as Υ ≥ 0, we have

‖E(C)‖2
¤�

1
2
≤ 42"C ‖E(0)‖2

¤�
1
2
+ 4

C" − 1
"

�.

If one further assumes that C" ≤ 1, it follows that

‖E(C)‖2
¤�

1
2
≤ 42"C ‖E(0)‖2

¤�
1
2
+ C�.

Introduce the parameter

a(Y) := 2 ‖E |C=0‖ ¤� 1
2 (S)

= 2
D0 − 4Ym

2
GD0

 ¤� 1
2 (S)

.

Then choose Y small enough, so that

�a(Y)
(
1 + a(Y)

)2 (1 + 2 ‖D0‖ ¤� 1
2
) ≤ 1

16
.

We then fix ^ small enough to that

� (Y)^ 1
4 (2 ‖D0‖ ¤� 1

2
)2 ≤ 1

16
,

where recall that  (Y) := Y−3(1 +
D0,Y


�

1
2
)3.

We then deduce the wanted uniform estimate by an elementary continuation argu-
ment. �

8.3.3 Compactness

Previously, we have proved a priori estimates for the spatial derivatives. In this
paragraph, we collect results from which we will derive estimates for the time
derivative as well as for the nonlinearity. These estimates are used to pass to the
limit in the equation.

Recall the notations introduced in the previous section, as well as the estimates
proved there. Fix 20 > 0. Given X ∈ (0, 1] and an initial data D0 ∈ �

1
2 (S) satisfying

D0 ≥ 20, we have seen that there exists a (global in time) solution DX to the Cauchy
problem:

(8.3.14)


mCDX +

1
c

DXΛDX − (�DX)mGDX
D2
X
+ (�DX)2

− Xm2
G DX = 0,

DX |C=0 = 4
Xm2
GD0.
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Moreover, we have proved that one can fix Y small enough such that one can write
DX under the form

DX (C, G) = (4(Y+X)m
2
GD0) (G) + EX (G),

and there exist ) > 0 and " > 0 depending on D0 such that, for all X ∈ (0, 1],

sup
C∈[0,)]

‖EX (C)‖2
�

1
2
+

∫ )

0

∫
S

DX |ΛEX |2

D2
X
+ (�DX)2

dG dC + X
∫ )

0
‖EX‖2¤� 3

2
dC ≤ ".(8.3.15)

Now, to pass to the limit in the equation (8.3.14), we need to estimate the time
derivative. Since mCDX = mCEX, it is sufficient to estimate the latter quantity. It is
given by

(8.3.16) mCEX = −+XmGEX − WXΛEX + Xm2
G EX + 'X,

where

WX =
1
c

DX

D2
X
+ (�DX)2

, +X = −
1
c

�DX

D2
X
+ (�DX)2

,

'X = −WX (Λ4(Y+X)m
2
GD0) −+X (mG4(Y+X)m

2
GD0) + Xm2

G 4
(Y+X)m2

GD0.

As already seen in (8.3.7), we have WX .20 1 and |+X | .20 1. By combining this with
the fact that 4Ym2

G is a smoothing operator, we immediately see that

‖'X‖!∞ ( [0,)];!2) .20,Y ‖D0‖ ¤� 1
2
.

Here the implicit constant depends on Y, but this is harmless since Y is fixed now.
On the other, directly from (8.3.15), we get that

‖WXΛEX‖!2 ( [0,)];!2) .20

√WXΛEX!2 ( [0,)];!2) .20 ",

and

X
m2
G EX


!2 ( [0,)];�−

1
2 )
≤
√
X
m2
G EX


!2 ( [0,)];�−

1
2 )
≤ ".

It remains only to estimate the contribution of+XmGEX. For this, we begin by proving
that (EX)X∈(0,1] is bounded in !? ( [0, ) (Y)]; ¤�1(S)) for any 1 ≤ ? < 2. Indeed, we
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can write
(8.3.17)

‖EX‖2¤�1 ≤
D2

X
+ (�DX)2

DX


!∞

∫
S

DX |ΛEX |2

D2
X
+ (�DX)2

dG

.20 ‖(DX, �DX)‖2!∞
∫
S

DX |ΛE |2

D2
X
+ (�DX)2

dG

.20

(
‖(EX, �EX)‖2!∞ + Y−

1
2 ‖D0‖2

�
1
2

) ∫
S

DX |ΛE |2

D2
X
+ (�DX)2

dG

.20

(
‖EX‖2

�
1
2

log
(
2 + ‖EX‖ ¤�1

)
+ Y− 1

2 ‖D0‖2
�

1
2

) ∫
S

DX |ΛEX |2

D2
X
+ (�DX)2

dG,

to conclude that

‖EX‖2¤�1

log(2 + ‖EX‖ ¤�1)
.

∫
S

DX |ΛEX |2

D2
X
+ (�DX)2

dG,

where the implicit constant depends on 20, Y, ‖D0‖
�

1
2
and " . Remembering that

|+X | .20 1, it immediately follows that, for any ? ∈ [1, 2), (+XmGEX)X∈(0,1] is bounded
in !? ( [0, )]; !2).

Now, by combining all the previous estimates, we see that (EX)X∈(0,1] is bounded in
the space

-? =

{
D ∈ �0( [0, )];� 1

2 (S)) ∩ !? ( [0, )];�1(S)) ; mCD ∈ !? ( [0, )];�−
1
2 (S))

}
.

Since � 1
2 (S) (resp. �1(S)) is compactly embedded into �B (S) (resp. � 1

2+B (S) for
any B < 1/2, by the classical Aubin-Lions lemma, this in turn implies that one can
extract a sequence (DX=)=∈N which converges strongly in

�0( [0, )];�B (S)) ∩ !? ( [0, )];� 1
2+B (S)).

Then it is elementary to pass to the limit in the equation.

Exercise 8.3.4. The goal of this exercise is to prove Lemma 8.3.1.

We begin by considering a modified system, namely

(8.3.18)


mCD +

1
c

DΛD − (�D)mGD
D2 + (�D)2

− Xm2
G D = 0,

D |C=0 = 4
Xm2
GD0.
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• Write the Cauchy problem (8.3.18) under the following form

(8.3.19) mCD − Xm2
G D = �X, D |C=0 = 4

Xm2
GD0,

where

�X = −
1
c

DΛD − (�D)mGD
X + D2 + (�D)2

·

Prove that for a > 0,

‖�X (D) − �X (E)‖!2 .X
(
‖D‖

�
1
2 +a
+ ‖E‖

�
1
2 +a

)
‖D − E‖�1

+
(
‖D‖�1 + ‖E‖�1

)
‖D − E‖

�
1
2 +a
,

where the notation .X is intended to indicate that the implicit constant depends
on X.

• Deduce that the Cauchy problem for (8.3.18) has a unique mild solution in
�0( [0, )X); !2(S)) ∩ !2(0, )X;�1(S)).

• Show that we have the following alternative: either

(8.3.20) )X = +∞ or lim sup
C→)X

‖D(C)‖!2 = +∞.

• Use

‖�X‖!2 .X ‖D‖�1 ,

to obtain that the solution exists globally in time.

• By using the nonlinear estimates in Sobolev spaces, show that the Cauchy
problem is well-posed on �B (S) for all B > 3/2.

• Recall why at a point GC where the function D(C, ·) reaches its minimum, we
have

mGD(C, GC) = 0, m2
G D(C, GC) ≥ 0, ΛD(C, GC) ≤ 0.

(Hint: use an expression for Λ in terms of singular integrals.)

Deduce that infG∈S D(C, G) ≥ infG∈S D0(G).
By similar arguments, we obtain the second inequality supG∈S D(C, G) ≤ supG∈S D0(G).

Then explain how to deal with the original equation (8.3.1).
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Chapter 9

Control and Stabilization of
water-waves

In this chapter, we give applications of the techniques developed in Chapter 7 to
study the observability, controllability, and stabilization of water wave equations
with surface tension. The question we want to understand is: which water waves
can be generated or damped by means of pressure perturbations applied over a small
portion of the free surface.

9.1 Introduction

We introduced the water wave equations in Chapter 1 (see in particular Proposi-
tion 1.2.5). In this section, we introduce a more general situation where: 8) the
waves evolve inside a container with lateral boundaries and 88) we take into consid-
eration an external pressure. To simplify the presentation, we assume that the fluid
domain is two-dimensional; however, the results proved in this chapter are valid in
an arbitrary dimension.

More precisely, we consider the incompressible Euler equations for a potential flow
in a fluid domain located between with a free surface, two vertical walls and a flat
bottom, which is at time C of the form

Ω(C) = { (G, H) ∈ [0, !] × R : −ℎ < H < [(C, G) },

where ! is the length of the basin, ℎ is its depth and [, the free surface elevation, is
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an unknown function.

H = [(C, G)
H

G0 !

0

−ℎ

Ω(C)

The Eulerian velocity field E is assumed to be irrotational. It follows that E = ∇G,Hq
for some time-dependent potential q satisfying

(9.1.1) ΔG,Hq = 0, mCq +
1
2

��∇G,Hq��2 + % + 6H = 0,

where 6 > 0 is the gravity acceleration, % is the pressure, ∇G,H = (mG , mH) and
ΔG,H = m2

G + m2
H . In addition we assume that the velocity satisfies the solid wall

boundary condition on the bottom and the lateral walls:

(9.1.2)
mHq = 0 on H = −ℎ,
mGq = 0 on G = 0 or G = !,

The water waves equations are then given by two boundary conditions on the free
surface: the classical kinematic boundary condition, describing the deformations of
the domain,

mC[ =

√
1 + (mG[)2 m=q|H=[,

where m= is the outward normal derivative, so
√

1 + (mG[)2 m=q = mHq − (mG[)mGq.
Secondly, the balance of forces across the free surface reads

% |H=[(C,G) = %ext(C, G) + _^([),

where _ is a positive constant, %ext is an external source term (whose sign does not
matter for our purposes) and ^([) is the curvature of the free surface:

^([) := −mG
(

mG[√
1 + (mG[)2

)
= −

m2
G [

(1 + (mG[)2)3/2
·
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Controllability

In this chapter, we present results which are concerned with the generation and the
absorption of water waves by means of pressure disturbances applied above a small
portion of the free surface.

The first question is the following : given

• a time ) > 0,

• an initial state ([8=, q8=) and a final state ([ 5 8=0; , q 5 8=0;) in some space,

• a small subset l = (0, 1) ⊂ [0, !],

is-it possible to find a function %4GC (C, G) supported in [0, )] × l such that the
solution to the water-wave equations with initial data ([8=, q8=) satisfies ([, q) |C=) =
([ 5 8=0; , q 5 8=0;)?

%4GC

Ω(0)

H

G

Ω())

H

G

Figure 9.1: Generation of a water wave in time ) starting from a fluid at rest, which
means that ([8=, q8=) = (0, 0).

Stabilization

Think of a rectangular wave pool, with vertical walls, with a wave generator at one
end. The waves generated by the wave generator will be be reflected on the opposite
side and then interact with the wave produced by the wave generator. Therefore, to
experimentally simulate the propagation in the open sea, it is necessary to introduce
wave absorbers to minimize the reflection of the waves. The same problem arises
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for the numerical analysis of the wave equations. Indeed, for computational reasons,
one must work in a bounded domain. To simulate the propagation in an unbounded
domain such as the open sea, one can damp the outgoing waves in an absorption zone
surrounding the boundary of the boundary. The mathematical study of the damping
properties of these absorbers corresponds to the question of the stabilization of the
water wave equations.

To state this problem, let us introduce the energy E = E(C), defined by

(9.1.3) E = 6
2

∫ !

0
[2 dG +_

∫ !

0

(√
1 + [2

G − 1
)

dG + 1
2

∫ !

0

∫ [(C,G)

−ℎ

��∇G,Hq��2 dH dG.

This is the sumof the gravitational potential energy, a surface energy due to stretching
of the surface and the kinetic energy. Recall that the energy is conserved when there
is no external pressure, which means that if %4GC = 0 then E(C) = E(0) for all time.
The stabilization problem for the water-wave equations consists in finding a pressure
law, relating %4GC to the unknown ([, k), such that:

i) E is decreasing and converges to zero;

ii) mG%4GC is supported inside a small subset of [0, !].

%4GC

Ω(C)

H

G
! − X !0

0

−ℎ

Figure 9.2: Absorption of water waves in the neighborhood of G = ! by means of
an external counteracting pressure produced by blowing above the free surface.
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9.2 Extension to periodic functions

We pause in this section to explain how, instead of working in a domain with lateral
boundaries, one can reduce the study to a periodic problem in G.

This is a classical idea that goes back to to Boussinesq (see [93, page 37]). The
idea is to extend the initial data to periodic functions, solve the Cauchy problem for
these extended initial data and then obtain a solution to the water wave equations in
a bounded container by considering the restrictions of these solutions.

To do this, following a classical idea, we use a reflection/periodization procedure
with respect to the normal variable at the boundary of the container, as illustrated
below.

Figure 9.3: Periodization of the domain (see Boussinesq [93]).

A question naturally arises about the regularity of the functions obtained by this
process. Indeed, if we consider the graph obtained by this process, starting from
from the smooth function [0, c] 3 G ↦→ G ∈ [0, c], then we obtain a new function
which is simply Lipschitz. To avoid these singularities, we must assume that the
normal derivative vanishes.

Since this method is of independent interest, we work with 2D or 3D fluid domains.
Let 3 ∈ {1, 2},& = [0, !1] if 3 = 1 and& = [0, !1] × [0, !2] if 3 = 2. One denotes
by a the outward unit normal to & (a = (1, 0) if G1 = !1, a = (0,−1) if G2 = 0,...).

Definition 9.2.1. Given 1 ≤ 3 ≤ 2 and f > 3/2, one denotes by �f
4 (&) the space

�f
4 (&) = {E ∈ �f (&) : maE = 0 on m&}.

(We refer the reader to Lions-Magenes [315] or to the proof of Proposition 9.2.4 for
comments about the fractional spaces �f (&).)

Definition 9.2.2. Let E : & → R. If 3 = 2, we define Ẽ : R2 → R as the unique
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extension of E satisfying

Ẽ(G) = E(G) ∀G ∈ &,(9.2.1)
Ẽ(−G1, G2) = Ẽ(G1, G2) = Ẽ(G1,−G2) ∀G ∈ R2,(9.2.2)
Ẽ(G1 + 2!1, G2) = Ẽ(G) = Ẽ(G1, G2 + 2!2) ∀G ∈ R2.(9.2.3)

Similarly, when 3 = 1, Ẽ : R→ R is defined by

Ẽ(G) = E(G) ∀G ∈ &,(9.2.4)
Ẽ(−G) = Ẽ(G) ∀G ∈ R,(9.2.5)
Ẽ(G + 2!1) = Ẽ(G) ∀G ∈ R.(9.2.6)

Definition 9.2.3. Given f ∈ R, denote by �f
4 (T3) the Sobolev space of those

periodic functions which are even (satisfying (9.2.2)-(9.2.3) when 3 = 2 and (9.2.5)-
(9.2.6) for 3 = 1).

Now consider the case 3 = 1 (to fix notations) and D ∈ �f
4 (T) with f > 3/2 + 1 =

3/2. Then, mGD(G) is �0 and odd which implies that mGD(0) = 0. Moreover, one has
D(!1 + Y) = D(−!1 + Y) = D(!1 − Y) and hence one has also mGD(!1) = 0 (then
mGD(=!1) = 0 for any = ∈ Z). We have a similar result when 3 = 2. This proves that

(9.2.7) ∀f >
3

2
+ 1, ∀E ∈ �f

4 (T3), E |& ∈ �f
4 (&).

Conversely, the following result shows that any function E in �f
4 (&), with f ∈

(3/2, 7/2), is the restriction to & of a function belonging to �f
4 (T3).

Proposition 9.2.4. Let 1 ≤ 3 ≤ 2 and 3
2 < f < 7

2 . Then the map E ↦→ Ẽ is
continuous from �f

4 (&) = {E ∈ �f (&) : maE = 0 on m&} to �f
4 (T3).

To prove the previous proposition, notice that mG2 Ẽ = m̃G2E. This means that the
result is clearly a one dimensional result and it is enough to prove it for the one
dimensional case, in which case it is a direct consequence of the following

9.3 Controllability

We begin by discussing the controllability problem. We use the Craig-Sulem-
Zakharov formulation as explained in Proposition 1.2.5. Recall the notations and
this formulation. Set

k(C, G) := q(C, G, [(C, G)),
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and define the Dirichlet to Neumann operator, denoted by � ([), relating k to the
normal derivative of the potential by

(� ([)k) (C, G) =
√

1 + (mG[)2 m=q |H=[(C,G) .

Then ([, k) solves

(9.3.1)


mC[ = � ([)k,

mCk + 6[ +
1
2
(mGk)2 −

1
2

(
� ([)k + (mG[) (mGk)

)2

1 + (mG[)2
+ _^([) + %ext = 0.

This system is augmented with initial data

(9.3.2) [ |C=0 = [8=, k |C=0 = k8=.

We consider the case when [ and k are 2c-periodic in the space variable G and we set
T := R/(2cZ). Recall that the mean value of [ is conserved in time and can be taken
to be 0 without loss of generality. We thus introduce the Sobolev spaces �f

0 (T) of
functions with mean value 0. Our main result asserts that, given any control domain
l and any arbitrary control time ) > 0, the equation (9.3.1) is controllable in time
) for small enough data.

The following result asserts that, in arbitrarily small time, one can generate any
small amplitude, two-dimensional, gravity-capillary water waves.

Theorem 9.3.1 (Alazard, Baldi, Han-Kwan [17] and Zhu [458]). 8) Assume that
_ > 0. Let ) > 0 and consider a non-empty open subset l ⊂ T. There exist f
large enough and a positive constant "0 small enough such that, for any two pairs

of functions ([8=, k8=), ([ 5 8=0; , k 5 8=0;) in �
f+ 1

2
0 (T) × �f (T) satisfying

‖[8=‖
�
f+ 1

2
+ ‖k8=‖�f < "0,

[ 5 8=0;
�
f+ 1

2
+

k 5 8=0;�f < "0,

there exists %4GC in �0( [0, )];�f (T)), supported in [0, )] × l, that is

supp %4GC (C, ·) ⊂ l, ∀C ∈ [0, )],

such that the Cauchy problem (9.3.1)-(9.3.2) has a unique solution

([, k) ∈ �0( [0, )];�f+ 1
2

0 (T) × �f (T)),

and the solution ([, k) satisfies ([ |C=) , k |C=) ) = ([ 5 8=0; , k 5 8=0;).

88) The result extends in any dimension provided that the domain l satisfies the
geometric control condition (see [458]).
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Remark 9.3.2. 8) This result holds for any ) > 0 and not only for ) large enough.
Compared to the Cauchy problem, for the control problem it is more difficult to work
on short time intervals than on large time intervals.

88) This result holds also in the infinite depth case.

In the rest of this section, our goal is to sketch the proof of the controllability result.

Step 1: Reduction to a dispersive equation

The proof is based on the fact that the water waves equation is a dispersive equation.

Recall that � (0) is the Fourier multiplier |�G | tanh(ℎ |�G |). Removing quadratic
and higher order terms in the equations, System (9.3.1) becomes{

mC[ = � (0)k,
mCk + 6[ − _m2

G [ = %ext.

Introduce the Fourier multiplier (of order 3/2)

! :=
(
(6 − _m2

G )� (0)
) 1

2 .

The operator � (0)−1 is well-defined on periodic functions with mean value zero.
Then D = k − 8!� (0)−1[ satisfies the dispersive equation

mCD + 8!D = %4GC .

It is proved in Chapter 7 that there are symbols ? = ?(C, G, b) and @ = @(C, G, b) with
? of order 0 in b and @ of order 1/2, such that D = )?k + 8)@[ satisfies an equation
of the form

%(D)D = %4GC with %(D) := mC + )+ (D)mG + 8!
1
2
(
)2(D)!

1
2 ·

)
,

where ! 1
2 =

(
(6 − ^m2

G )� (0)
) 1

4 , )+ (D) and )2(D) are paraproducts. Here +, 2 depend
on the unknown D with + (0) = 0 and 2(0) = 1, and hence %(0) = mC + 8! is the
linearized operator around the null solution. Furthermore, the mapping ([, k) ↦→ D

is invertible (under a smallness assumption) and, up to modifying the sub-principal
symbols of ? and @, one can further require that

(9.3.3)
∫
T

Im D(C, G) dC = 0.
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Here we have simplified the result (neglecting remainder terms and simplifying the
dependence of +, 2 on D) and we refer the original article [17] for the full statement.

Step 2: Quasi-linear scheme

Since the water waves system (9.3.1) is quasi-linear, one cannot deduce the control-
lability of the nonlinear equation from the one of %(0). Instead of using a fixed point
argument, we use a quasi-linear scheme and seek %4GC as the limit of real-valued
functions %= determined by means of approximate control problems. To guarantee
that %4GC will be real-valued we seek %= as the real part of some function. To insure
that supp %= ⊂ l we seek %= under the form

%= = jl Re 5=.

Hereafter, we fix l, a non-empty open subset of T, and a �∞ cut-off function jl,
supported on l, such that jl (G) = 1 for all G in some open interval l1 ⊂ l.

The approximate control problems are defined by induction as follows: we choose
5=+1 by requiring that the unique solution D=+1 of the Cauchy problem

%(D=)D=+1 = jl Re 5=+1, D=+1 |C=0 = D8=

satisfies D=+1()) = D 5 8=0; . Our goal is to prove that

• this scheme is well-defined (that is one has to prove a controllability result for
%(D=));

• the sequences ( 5=) and (D=) are bounded in �0( [0, )];�f (T));

• the series
∑( 5=+1 − 5=) and ∑(D=+1 − D=) converge in �0( [0, )];�f− 3

2 (T)).

It follows that ( 5=) and (D=) are Cauchy sequences in �0( [0, )];�f− 3
2 (T)) (and in

fact, by interpolation, in �0( [0, )];�f′ (T)) for any f′ < f).

To use the quasi-linear scheme, we need to study a sequence of linear approximate
control problems. The key point is to study the control problem for the linear
operator %(D) for some given function D. Our goal is to prove the following result.

Proposition 9.3.3. Let ) > 0. There exists B0 such that, if
D

�0 ( [0,)];�B0 ) is small
enough, depending on ) , then the following properties hold.
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8) (Controllability) For all f ≥ B0 and all

D8=, D 5 8=0; ∈ �̃f (T) :=
{
F ∈ �f (T) ; Im

∫
T
F(G) dG = 0

}
,

there exists 5 satisfying ‖ 5 ‖�0 ( [0,)];�f) ≤  ()) (‖D8=‖�f +
D 5 8=0;�f ) such that

the unique solution D to

%(D)D = jl Re 5 ; D |C=0 = D8=,

satisfies D()) = D 5 8=0; .

88) (Stability) Consider another state D′with
D′

�0 ( [0,)];�B0 ) small enough and denote
by 5 ′ the control associated to D′. Then

‖ 5 − 5 ′‖
�0 ( [0,)];�f−

3
2 )
≤  ′()) (‖D8=‖�f +

D 5 8=0;�f ) D − D′�0 ( [0,)];�B0 ) .

Again, we simplified the assumptions and refer the reader to the original article for
the full statement.

Step 3: Reduction to a regularized problem

We next reduce the analysis by proving that it is sufficient

• to consider a classical equation instead of a paradifferential equation;

• to prove a !2-result instead of a Sobolev-result.

This is obtained by commuting %(D) with some well-chosen elliptic operator Λℎ,B
of order B with

B = f − 3
2

and depending on a small parameter denoted by ℏ to avoid confusion with the depth
ℎ (the reason to introduce ℏ is explained below). In particular Λℏ,B is chosen so that
the operator

%(D) := Λℏ,B%(D)Λ−1
ℏ,B

satisfies

(9.3.4) %(D) = %(D) + '(D)
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where '(D) is a remainder term of order 0. For instance, if B = 3< with < ∈ N, set

Λℏ,B = � + ℏBL
2B
3 where L := !

1
2
(
)2!

1
2 ·

)
.

With this choice one has [Λℏ,B,L] = 0 so (9.3.4) holdswith '(D) = [Λℏ,B, )+ (D)]Λ−1
ℏ,B
.

It follows from symbolic calculus that
'(D)L(!2) . ‖+ ‖,1,∞ uniformly in ℏ.

Moreover, since + (D) and 2(D) are continuous in time with values in �B0 (T) with
B0 large, one can replace paraproducts by usual products, up to remainder terms in
�0( [0, )];L(!2)). We have

%(D) = mC ++ (D)mG + 8!
1
2
(
2(D)! 1

2 ·
)
+ '2(D)

where

'2(D) := '(D) +
(
)+ (D) −+ (D)

)
mG + 8!

1
2
( (
)2(D) − 2(D)

)
!

1
2 ·

)
.

The remainder '2(D) belongs to �0( [0, )];L(!2)) uniformly in ℏ. On the other
hand,

(9.3.5)
[Λℏ,B, jl]Λ−1

ℏ,B


L(!2) = $ (ℎ),

which is the reason to introduce the parameter ℏ. The key point is that one can
reduce the proof of Proposition 9.3.3 to the proof of the following result.

Proposition 9.3.4. Let ) > 0. There exists B0 such that, if
D

�0 ( [0,)];�B0 ) is small
enough, then the following properties hold.

8) (Controllability) For all E8= ∈ !2(T) there exists 5 with ‖ 5 ‖�0 ( [0,)];!2) ≤
 ()) ‖E8=‖!2 such that the unique solution E to %(D)E = jl Re 5 , E |C=0 = E8=

is such that E()) is an imaginary constant:

∃1 ∈ R / ∀G ∈ T, E(), G) = 81.

88) (Regularity) Moreover ‖ 5 ‖
�0 ( [0,)];�

3
2 )
≤  ()) ‖E8=‖

�
3
2
.

888) (Stability) Consider another state D′ with
D′

�0 ( [0,)];�B0 ) small enough and
denote by 5 ′ the control associated to D′. Then

‖ 5 − 5 ′‖�0 ( [0,)];!2) ≤  ′()) ‖E8=‖
�

3
2

D − D′
�0 ( [0,)];�B0 ) .
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Let us explain how to deduce Proposition 9.3.3 from the latter proposition. Consider
D8=, D 5 8=0; in �̃f (T) and seek 5 ∈ �0( [0, )];�f (T)) such that

%(D)D = jl Re 5 , D(0) = D8= =⇒ D()) = D 5 8=0; .

Since the equation is reversible in time, it is sufficient to consider the case where
D 5 8=0; = 0. Now, to deduce this result from Proposition 9.3.4, the main difficulty
is that the conjugation with Λℏ,B introduces a nonlocal term: indeed, Λ−1

ℏ,B
(jl 5 ) is

not compactly supported in general. This is a possible source of difficulty since we
seek a localized control term. We overcome this problem by considering the control
problem for %(D) associated to some well-chosen initial data E8=. Proposition 9.3.4
asserts that for all E8= ∈ �

3
2 (T) there is 5̃ ∈ �0( [0, )];� 3

2 (T)) such that

%(D)E1 = jl Re 5̃ , E1 |C=0 = E8= =⇒ E1(), G) = 81, 1 ∈ R.

Define KE8= = E2(0) where E2 is the solution to

%(D)E2 =
[
Λℏ,B, jl

]
Λ−1
ℏ,B Re 5̃ , E2 |C=) = 0.

Using (9.3.5)ne can prove that the L(� 3
2 )-norm of K is $ (ℏ) and hence � + K is

invertible for ℏ small. So, E8= can be so chosen that E8= + KE8= = Λℏ,BD8=. Then,
setting 5 := Λ−1

ℏ,B
5̃ and D := Λ−1

ℏ,B
(E1 + E2), one checks that

%(D)D = jl Re 5 , D(0) = D8=, D(), G) = 81, 1 ∈ R.

It remains to prove that D()) is not only an imaginary constant, but it is 0. This
follows from the property (9.3.3). Indeed, % can be so defined that if %(D)D is a
real-valued function, then 3

3C

∫
T

Im D(C, G) dG = 0. Since
∫
T

Im D(0, G) dG = 0 by
assumption, one deduces that

∫
T

Im D(), G) dG = 0 and hence D()) = 0.

Step 4: Reduction to a constant coefficient equation

The controllability of %(D) will be deduced from the classical HUMmethod. A key
step in the HUMmethod consists in proving that some bilinear mapping is coercive.
To determine the appropriate bilinear mapping, we follow an idea introduced in [16]
and conjugate %(D) to a constant coefficient operator modulo a remainder term of
order 0.

To do so, we use a change of variables and a pseudo-differential change of unknowns
to find an operator " (D) such that

" (D)%(D)" (D)−1 = mC + 8! + R(D),
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where
R(D)L(!2) .

D
�B0

(and hence R(D) is a smallerturbation of order 0).

To find " (D), we begin by considering three changes of variables of the form

(1 + mG^(C, G))
1
2 ℎ(C, G + ^(C, G)), ℎ(0(C), G), ℎ(C, G − 1(C)),

to replace %(D) with

(9.3.6) &(D) = mC +,mG + 8! + '3,

where, = , (C, G) satisfies
∫
T
, (C, G) dG = 0, ‖, ‖�0 ( [0,)];�B0−3) .

D
�0 ( [0,)];�B0 )

where 3 > 0 is a universal constant, and '3 is of order zero. This is not trivial
since the equation is nonlocal and also because this exhibits a cancellation of a term
of order 1/2. Indeed, in general the conjugation of ! 1

2
(
2(D)! 1

2 ·
)
and a change of

variables generates also a term of order 3/2− 1. This term disappears here since we
consider transformations which preserve the !2(3G) scalar product.

We next seek an operator � such that 8
[
�, |�G |

3
2
]
+,mG� is a zero order operator.

This leads to consider, following [16], a pseudo-differential operator � = Op(0)
for some symbol 0 = 0(G, b) in the Hörmander class (0

d,d with d = 1
2 , namely

0 = exp(8 |b | 12 V(C, G)) for some function V depending on, .

Step 5: Observability

Then, we establish an observability inequality. That is, we prove that there exists
Y > 0 such that for any initial data E0 whose mean value 〈E0〉 = 1

2c

∫
T
E0(G) dG

satisfies

(9.3.7) |Re〈E0〉| ≥
1
2
|〈E0〉| − Y ‖E0‖!2 ,

the solution E of
mCE + 8!E = 0, E(0) = E0

satisfies

(9.3.8)
∫ )

0

∫
l

|Re(�E) (C, G) |2 dG dC ≥  
∫
T
|E0(G) |2 dG.

To prove this inequality with the real-part in the left-hand side allows to prove the
existence of a real-valued control function.
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The observability inequality is deduced using a variant of Ingham’s inequality. Re-
call that Ingham’s inequality is an inequality for the !2-norm of a sum of oscillatory
functionswhich generalizes Parseval’s inequality (it applies to pseudo-periodic func-
tions and not only to periodic functions). For example, one such result asserts that
for any ) > 0 there exist two positive constants �1 = �1()) and �2 = �2()) such
that

(9.3.9) �1
∑
=∈Z
|F= |2 ≤

∫ )

0

�����∑
=∈Z

F=4
8=|=|

1
2 C

�����2 dC ≤ �2
∑
=∈Z
|F= |2

for all sequences (F=) in ℓ2(C). The fact that this result holds for any ) > 0 (and
not only for ) large enough) is a consequence of a general result due to Kahane on
lacunary series (see [?]).

Note that, since the original problem is quasi-linear, we are forced to prove an
Ingham type inequality for sums of oscillatory functions whose phases differ from
the phase of the linearized equation. For our purposes, we need to consider phases
that do not depend linearly on C, of the form

sign(=)
[
ℓ(=) 3

2 C + V(C, G) |=| 12
]
, ℓ(=) :=

(
(6 + |=|2) |=| tanh(ℎ |=|)

) 1
2
,

where G plays the role of a parameter. Though it is a sub-principal term, to take
into account the perturbation V(C, G) |=| 12 requires some care since 48V(C,G) |=|1/2 − 1 is
not small. In particular we need to prove upper bounds for expressions in which we
allow some amplitude depending on time (and whose derivatives in time of order :
can grow as |=|:/2).

Step 6: HUM method

Inverting �, we deduce from (9.3.8) an observability result for the adjoint operator
&(D)∗ (&(D) is as given by (9.3.6)). Then the controllability will be deduced from
the classical HUM method (we need in fact a version that makes it possible to
consider a real-valued control). The idea is that the observability property implies
that some bilinear form is coercive and hence the existence of the control follows
from the Riesz’s theorem and a duality argument. A possible difficulty is that the
control %4GC is acting only on the equation for k. To explain this, consider the case
where ([ 5 8=0; , k 5 8=0;) = (0, 0). Since the HUM method is based on orthogonality
arguments, the fact that the control is not acting on both equations means for our
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problem that the final state is orthogonal to a co-dimension 1 space. The fact that
this final state can be chosen to be 0 will be obtained by choosing this co-dimension
1 space in an appropriate way, introducing an auxiliary function " = " (G) which
is chosen later on.

Consider any real function " = " (G) with " − 1 small enough, and introduce

!2
" :=

{
i ∈ !2(T;C) ; Im

∫
T
" (G)i(G) dG = 0

}
.

Notice that !2
"
is an R-Hilbert space. Also, for any E0 ∈ !2

"
, the condition (9.3.7)

holds. Then, using a variant of the HUM method in this space, one deduces that for
all E8= ∈ !2 (not necessarily in !2

"
) there is 5 ∈ �0( [0, )]; !2) such that, if

&(D)F = mCF +,mGF + 8!F + '3F = jl Re 5 , F(0) = F8=,

then
F(), G) = 81" (G)

for some constant 1 ∈ R. Now

&(D) = Φ(D)−1%(D)Φ(D),

where Φ(D) is the composition of the transformations in (9.3.5). Since Φ(D) and
Φ(D)−1 are local operators, one easily deduce a controllability result for %(D) from
the one proved for &(D). Now, choosing " = Φ(D(), ·)) (1) where 1 is the constant
function 1, we deduce from F(), G) = 81" (G) that D(), G) is an imaginary constant,
as asserted in statement 8) of Proposition 9.3.3. Concerning " , notice that " ≠ 1
because of the factor (1 + mG^(C, G))

1
2 multiplying ℎ(C, G + ^(C, G)) in (9.3.5).

Step 7: Convergence of the scheme

To prove that the scheme converges, we prove that ( 5=) and (D=) are Cauchy se-
quences. This is where we need statement 88) in Proposition 9.3.3, to estimate the
difference of two controls associated with different coefficients. To prove this sta-
bility estimate we introduce an auxiliary control problem which, loosely speaking,
interpolates the two control problems. Since the original nonlinear problem is quasi-
linear, there is a loss of derivative (this reflects the fact that the flow map is expected
to be merely continuous and not Lipschitz on Sobolev spaces). We overcome this
loss by proving and using a regularity property of the control, see statement 88) in
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Proposition 9.3.4. This regularity result is proved by adapting an argument used by
Dehman-Lebeau [188] and Laurent [304]. We also need to study how the control
depends on ) or on the function " .

9.4 Stabilization of the water-wave equations

9.4.1 The multiplier method for the water-wave equations

We now discuss the multiplier method for the water-wave problem, as introduced
in [11] for the nonlinear water-wave equations. The motivation was to prove an
observability inequality. Namely, the question studied in [11] is the following: is-
it possible to estimate the energy of gravity water waves by looking only at the
motion of some of the curves of contact between the free surface and the vertical
walls? From the point of view of control theory, this is the question of boundary
observability of gravity water waves.

H
!1

!2
ℛ

G1

G2

�2(C)

�1(C)

Figure 9.4: The boundary observability problem consists in bounding from below
the energy by looking only at the motion of the curves �1 and �2.

For the sake of readability, we begin by recalling some well-known results for the
linear wave equation

(9.4.1) m2
C D − ΔD = 0 in Ω ⊂ R=, D |mΩ = 0.

The multiplier method, introduced by Morawetz, consists in multiplying the equa-
tions by <(G) · ∇D(C, G), for some well-chosen function <, and to integrate by parts
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in space and time. For instance, by considering a smooth extension < : Ω→ R= of
the normal a(G) to the boundary mΩ, one obtains
(9.4.2)∫ )

0

∫
mΩ

(m=D)2 df dC ≤  ())E(D) where E(D) := ‖D(0, ·)‖2
�1

0 (Ω)
+‖mCD(0, ·)‖2!2 (Ω) .

This is the so-called hidden regularity property. The name comes from the fact that,
using energy estimates, one controls only the square of the �0( [0, )]; !2(Ω))-norm
of ∇GD by means of the right-hand side of (9.4.2), which is insufficient to control
the left-hand side of (9.4.2) by means of classical trace theorems.

Another key estimate is the so-called boundary observability inequality, which is,
compared to (9.4.2), a reverse inequality where one can bound the norms of the
initial data by the integral of m=D restricted to a domain Γ0 ⊂ mΩ. Let us recall
the proof of such an inequality in the simplest case. Consider the one dimensional
linear wave equation with Dirichlet boundary condition:

(9.4.3) m2
C D − m2

G D = 0, D(C, 0) = D(C, 1) = 0.

Multiply the equation by GmGD and integrate by parts, to obtain
(9.4.4)

1
2

∫ )

0
(mGD(C, 1))2 dC =

∫ 1

0
(mCD) (GmGD) dG

)0 + 1
2

∬
(

[
(mCD)2 + (mGD)2

]
dG dC

where ( = (0, )) × (0, 1). Since

(9.4.5)
����∫ 1

0
(mCD) (GmGD) dG

���� ≤ E :=
1
2

∫ 1

0

[
(mCD)2 + (mGD)2

]
3G,

by using the conservation of energy (3E/3C = 0), we deduce

(9.4.6)
∫ )

0
(mGD(C, 1))2 dC ≥ () − 2)

∫ 1

0

[
(mCD)2 + (mGD)2

]
(0, G) 3G.

This inequality implies that, for ) > 2, one can bound the energy by means of an
observation at the boundary. For more details, generalizations and extensions to
other equations, we refer the reader to the SIAM Review article by Lions [316].
Similar results are known for many other wave equations and we only mention the
paper by Machtyngier and Zuazua [321] for the Schrödinger equation 8mCD +ΔD = 0.
Biccari [81] used recently themultipliermethod to analyze the interior controllability
problem for the fractional Schrödinger equation 8mCD + (−Δ)BD = 0 with B ≥ 1/2 in
a �1,1 bounded domain with Dirichlet boundary condition.
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In [11] we proved the following exact identity analogous to (9.4.4) for the nonlinear
water-wave equations without surface tension. (The result in [11] holds for 3Dwaves
but here we give a statement for 2D waves to simplify notations.)

Theorem 9.4.1. Consider the equations without surface tension (that is assume that
^ = 0) and without external pressure (%4GC = 0). Consider a smooth enough solution
defined on the time interval [0, )] and introduce

<(C) = [(C, !).

Then
(9.4.7)
!

2

∫ )

0

[
6<(C)2 − <(C)<′(C)2

]
dC =

)

2
H

+ !
2

∫ )

0

∫ <(C)

−ℎ
(mHq)2(C, !, H) dH dC

+ 1
2

∫ )

0

∫ !

0

(
ℎ + 7

4
[

)
(mGq)2(C, G,−ℎ) dG dC

− 1
4

∫ !

0
[k 3G

C=)C=0
−

∫ !

0
G[mGk dGC=)C=0

− 7
4

∫ )

0

∬
Ω(C)
(mG[) (mGq) (mHq) dG dH dC,

where
∫
5 3G |C=)

C=0 stands for
∫
5 (), G) 3G −

∫
5 (0, G) 3G and

(9.4.8) H =
6

2

∫ !

−!
[2(C, G) dG + 1

2

∬
Ω(C)

��∇G,Hq(C, G, H)��2 dG dH.

The proof uses the Zakharov’s formulation of the water-wave problem as a Hamil-
tonian system (see [453]) and the observation by Craig and Sulem [171] that the
equations and the hamiltonian are most naturally expressed in terms of the Dirichlet
to Neumann operator � ([). The main ingredients of the proof of Theorem 9.3.1
are then: 8) a Pohozaev identity for the Dirichlet to Neumann operator (that is a
computation of

∫
(� ([)k)GmGk dG) which shows that the contributions due to the

boundary conditions are positive and 88) some computations inspired by the anal-
ysis of Benjamin and Olver [68] of the conservation laws for water waves. In the
appendix of [11], we give another proof of (9.4.7) which exploits the hamiltonian
structure of the water-wave equations.
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9.4.2 Stabilization

We now consider the stabilization problem.

Recall that the energy E = E(C) is defined by

E = 6
2

∫ !

0
[2 dG + ^

∫ !

0

(√
1 + [2

G − 1
)

dG + 1
2

∫ !

0

∫ [(C,G)

−ℎ

��∇G,Hq��2 dH dG.

Our goal is to prove that, for some pressure law relating %4GC to the unknown ([, k),
there holds:

i) E is decreasing and converges to zero exponentially in time;

ii) mG%4GC is supported inside a small subset of [0, !].

In the numerical literature, a popular choice is to assume that %4GC = jmC[ for some
cut-off function j ≥ 0 supported1 in [! − X, !] for some X > 0. To explain this
choice, we start by recalling that, as observed by Zakharov [453], the equations have
the hamiltonian form

m[

mC
=
XE
Xk
,

mk

mC
= −XE

X[
− %4GC .

Consequently,

(9.4.9)
dE
dC

=

∫ (
XE
X[

m[

mC
+ XE
Xk

mk

mC

)
dG = −

∫
m[

mC
%4GC dG,

and hence, if %4GC = jmC[ with j ≥ 0, we deduce that dE/dC ≤ 0. It is thus easily
seen that the energy decays. However, it is much more complicated to prove that
the energy converges exponentially to zero. To study this problem, we first need to
pause to clarify the question since, in general, solutions of the water-wave equations
do not exist globally in time (they might blow-up in finite time, see [115, 160]). Our
goal is in fact to prove that there exists a constant � such that, if a regular solution
exists on the time interval [0, )], then

(9.4.10) E()) ≤ �
)
E(0).

1We consider a damping located near G = ! only, and not also near G = 0, since we imagine that
water waves are generated near G = 0. To do so, as explained above, one could use also the variations
of an external pressure.
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Since the equation is invariant by translation in time, one can iterate this inequality.
Consequently, if the solution exists on time intervals of size =)0 with )0 ≥ 2�, then
E(=)0) ≤ 2−=E(0), which is the desired exponential decay.

We now define the pressure law.

Definition 9.4.2. We assume that

%4GC (C, G) = j(G)mC[(C, G) −
1

2!

∫ !

−!
j(G)mC[(C, G) dG,

where the cut-off function j is defined as follows. Fix X > 0 and consider a
2!-periodic �∞ function ^, satisfying 0 ≤ ^ ≤ 1 and such that (see Figure 9.5)

^(G) = ^(−G), G^′(G) ≤ 0 for G ∈ [−!, !], ^(G) =


1 if G ∈ [0, ! − X],

0 if G ∈
[
! − X

2
, !

]
.

We successively set
<(G) = G^(G),

and
j(G) = 1 − <G (G).

G

j(G) = 1 − <G (G)

!−!

1

G

^(G)

!−!

G

<(G) = G^(G)

!−!

Figure 9.5: The cutoff function j and the multiplier <.

Here is our main result.
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Theorem 9.4.3. Assume that ^ > 0 and that

^ sup
[−!,!]

<GG (G)2 ≤ 6.

Then there exists a positive constant �, depending only on the physical parameters
^, 6, ℎ, !, such that the following result holds. Let ) > 0 and consider a regu-
lar solution ([, k, %4GC) defined on the time interval [0, )] with %4GC as given by
Definition 9.4.2 and set

d(C, G) = (<(G) − G)[G (C, G) +
9
4
[(C, G) − 1

2
<G (G)[(C, G).

If, for all (C, G) ∈ [0, )] × [−!, !],

8) d(C, G) ≥ −ℎ
4
, |dG (C, G) | <

1
4
,

88)
∫ !

0
(1 − <G (G))[(C, G) dG ≤

ℎ

12
, |<G (G) | |[G (C, G) |2 ≤ 2, |[G (C, G) | ≤

1
2
,

then one has the estimate

E()) ≤ �
)
E(0).

Remark 9.4.4. (8) An important remark is that the constant � can be given by an
explicit formula in terms of ^, 6, ℎ, !.

(88) By combining this result with the local controllability result for small data
proved by Alazard, Baldi and Han-Kwan in [17], this in turn implies that one can
deduce controllability for larger data, but in large time (following an argument due
to Dehman-Lebeau-Zuazua [189]).

(888) We studied a similar problem in [12] for the case without surface tension.
Assuming that %4GC is given by

(9.4.11) mG%4GC = j(G)
∫ [(C,G)

−ℎ
qG (C, G, H) dH,

where j ≥ 0 is a cut-off function, we proved in [12] an inequality of the form

(9.4.12) E()) ≤ � (#)√
)
E(0),
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where the constant � (#) depends on the frequency localization2 of the solution
([, k). The fact that this constant must depend on the frequency localization can be
easily understood by considering the linearized equations (see [12]).

To prove Theorem 9.4.3, it is sufficient to prove that there exists a positive constant
� such that

(9.4.13)
∫ )

0
E(C) dC ≤ �E(0).

Indeed, since E is a decreasing function, this will imply the wanted inequality

E()) ≤ 1
)

∫ )

0
E(C) dC ≤ �

)
E(0).

The proof of (9.4.13) is in two steps.

First step. The first step consists in deriving an exact identity which involves the
integral in time of the energy. Here one can explain one of the main difficulties
one has to cope with to stabilize the water-wave equations: one cannot decouple
the problem of the observability and the question of the stabilization. Compared to
what is done for the usual wave equation for instance, since the water-wave system is
quasi-linear, one cannot write the solution as the sum of the two different problems.
Another difficulty is that we do not know how to deduce an internal observability
inequality from a boundary observability inequality (for the wave equation or the
Schrödinger equation, this is possible thanks to a hidden regularity result). To
overcome these two problems, we prove directly an internal observability result for
the water-wave system with an external source term, by considering a multiplier
<(G)mG with <(G) = G^(G) where ^ is a cut-off function satisfying ^(G) = 1 for
0 ≤ G ≤ ! − X and ^(G) = 0 for ! − X/2 ≤ G ≤ !.

We proceed by establishing an exact identity similar to the one given above for
the case without surface tension. With surface tension, one has to handle many
remainder terms. In the end, instead of stating an identity (aswe did in Theorem9.4.1
for the case without surface tension), we will obtain an inequality.

Consider a smooth function < = <(G) with <(0) = <(!) = 0, and set

Z = mG (<[) +
3
2
(1 − <G)[ −

1
4
[,

2The quantity # measuring the frequency localization is of the ratio of two Sobolev norms. One
can think of the ratio ‖D‖� 1 /‖D‖!2 , which is proportional to # for a typical function oscillating at
frequency # , like D(G) = cos(2c#G/!).
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our first main task will be to derive the following inequality

(9.4.14)

1
4

∫ )

0
E(C) dC ≤ $ +, + � − � where

� :=
ℎ

4

∫ )

0

∫ !

−!
qG (C, G,−ℎ)2 dG dC,

$ :=
∫ )

0

∫ !

−!

(
3
2
(1 − <G)k + (G − <)kG

)
� ([)k dG dC,

, := −
∫ )

0

∫ !

−!
%4GC Z dG dC,

� :=
∫ !

−!
Z (0, G)k(0, G) dG −

∫ !

−!
Z (), G)k(), G) dG.

These four quantities play different roles. Their key properties are the following:

• � ≥ 0 and hence (9.4.14) gives a bound for the horizontal component of the
velocity at the bottom (this plays a key role to control the velocity in terms of
the pressure, see (9.4.16)).

• , is the only term which involves the pressure.

• $ corresponds to an observation, this means that this term depends only on
the behavior of the solutions near {G = −!} or {G = !} when < is as given by
Definition 9.4.2. Indeed, G − < and 1 − <G vanish when G ∈ [−! + X, ! − X]
by definition of <.

• � is not an integral in time, by contrast with the other terms and, in addition,
it is easily estimated by  E(0).

Second step. The goal of the second step is to deduce the wanted result (9.4.13)
from the inequality (9.4.14). To do so, it is sufficient to prove that there exists a
constant  depending only on 6, ^, ℎ, ! such that

(9.4.15) $ +, + � − � ≤  E(0) + 0
∫ )

0
E(C) dC for some 0 <

1
4
.

Indeed, by combining (9.4.14) and (9.4.15) one obtains that∫ )

0
E(C) dC ≤  

1/4 − 0E(0),
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which is the wanted result (9.4.13). To prove (9.4.15), recalling that � ≥ 0, we need
to estimate the terms �,,,$.

The estimate of the term � is easy so we begin by explaining how to estimate , .
Recall that the hamiltonian structure of the equation implies that

d
dC
E(C) = −

∫ !

−!
%4GCmC[ dG.

Since mC[ = � ([)k, one deduces the inequality∫ )

0

∫ !

−!
j(mC[)2 dG dC =

∫ )

0

∫ !

−!
j(� ([)k)2 dG dC ≤ E(0).

This gives an estimate for the !2-norm of jmC[, which is the main contribution
to the definition of %4GC . A more tricky inequality, relying on the special choice
j(G) = 1 − <G (G), is that

−
∫ )

0

[(∫ !

−!
jmC[ dG

) ∫ !

−!
Z dG

]
dC ≤ !

6

(1 − <G)2!∞ E(0).
By combining the above inequalities, we will be able to estimate the term , . The
main difficulty is to bound the observation term $, and in particular to estimate∬

(G − <)kG� ([)k dG dC.

Using the Cauchy-Schwarz inequality, the key point is to estimate the !2-norm of
kG in terms of the two quantities which are under control, that is the integral of
j(� ([)k)2 and the positive term �. In this direction, we will prove the following
inequality, which is of independent interest: there exists a constant �, depending
only on ‖[G ‖!∞G , such that

(9.4.16)

∫ !

−!
jk2

G dG ≤ �
∫ !

−!
j(� ([)k)2 dG + �

∫ !

−!
q2
G |H=−ℎ dG

− �
∫ !

−!

∫ [(C,G)

−ℎ
jGqGqH dH dG.

Notice that this result holds in fact for any smooth cut-off function j and one can
also take j = 1. In this case this inequality simplifies since the last term in the
right-hand side vanishes. This gives a way to control the !2-norm of kG by the
!2-norm of� ([)k. When [ is smooth, this can be obtained by delicate commutator
estimates. However, it is possible to give a simple proof which applies for any
Lipschitz domain.
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9.5 References

There are many results about the controllability or the stabilization of linear or non-
linear equations describing water waves in some asymptotic regimes like Benjamin-
Ono, KdV or nonlinear Schrödinger equations (see the Coron’s book [155]). How-
ever, one cannot easily adapt these studies to the water-wave system since it is
quasi-linear (instead of semi-linear) and since it is a pseudo-differential system,
involving the Dirichlet-Neumann operator which is nonlocal and also depends non-
linearly on the unknown. The first results about the possible applications of control
theory to the linearized water-wave equations are due to Reid and Russell [373]
and Reid [371, 372], who studied the linearized equations at the origin (see also
Miller [343], Lissy [318] and Biccari [81] for other control results about dispersive
equations involving a fractional Laplacian). The first study about the controllability
of the nonlinearwater-wave problem is due to Alazard, Baldi and Han-Kwan ([17]).

As explained in this chapter, to experimentally simulate the propagation of water
waves in a numerical wave tank, for computational reasons, one must work in a
bounded domain. To simulate the propagation in an unbounded domain such as the
open sea, one can use artificial boundary conditions as explained in [268, 428, 273,
272]. Another possibility consists in damping the outgoing waves in an absorption
zone surrounding the boundary of the boundary (cf. [268, 428]). For the water wave
equations, the idea of using this last method goes back to Le Méhauté [307] in 1972.
This approach is used in many numerical studies ([227, 133, 200, 86, 131, 201]).
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Chapter 10

The Cauchy problem for the
Hele-Shaw and Muskat equations
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